CN110734371A - Device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation - Google Patents

Device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation Download PDF

Info

Publication number
CN110734371A
CN110734371A CN201911013437.8A CN201911013437A CN110734371A CN 110734371 A CN110734371 A CN 110734371A CN 201911013437 A CN201911013437 A CN 201911013437A CN 110734371 A CN110734371 A CN 110734371A
Authority
CN
China
Prior art keywords
reactor
tower
propionic acid
acetic anhydride
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911013437.8A
Other languages
Chinese (zh)
Inventor
蒋燕
黄正梁
李蒙
帅云
韩春晓
杨遥
马炯
王靖岱
谢东升
吴德飞
阳永荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Sinopec Engineering Group Co Ltd
Sinopec Nanjing Engineering Co Ltd
Original Assignee
Zhejiang University ZJU
Sinopec Engineering Group Co Ltd
Sinopec Nanjing Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Sinopec Engineering Group Co Ltd, Sinopec Nanjing Engineering Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201911013437.8A priority Critical patent/CN110734371A/en
Publication of CN110734371A publication Critical patent/CN110734371A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention discloses a device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation, which belongs to the field of chemical industry and can adjust the degree of liquid phase back mixing in a reactor by changing the operation conditions of liquid raw material injection position, gas distributor type, circulating liquid flow, gas flow and the like, thereby regulating and controlling the product ratio of acetic anhydride/propionic acid.

Description

Device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation
Technical Field
The invention relates to the technical field of petrochemical industry and coal chemical industry, in particular to a device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation of types.
Background
The acetic anhydride is produced by the acetaldehyde oxidation method, the ketene method and the carbonylation method. The carbonylation method for preparing acetic anhydride is a new process developed on the basis of preparing acetic acid by using low-pressure carbonylation method in 70-80 th century, and compared with other two methods, the carbonylation method has the advantages of short flow, good product quality, low consumption index, less discharge of three wastes and the like, represents the advanced technical direction of current acetic anhydride production, and developed countries abroad commonly adopt the technology to produce acetic anhydride, and the acetic anhydride produced by adopting the technology now accounts for more than 45% of the total output of the world.
The successful development of methanol carbonylation catalysts has greatly stimulated the enthusiasm for research on ethanol carbonylation catalysts. In the 20 th century, a process for synthesizing acetic acid as a byproduct of propionic acid from a light hydrocarbon compound was developed abroad in the 50 th century, and in the 60 th century, a method for synthesizing ethylene by carbonylation was developed, and thereafter, a plurality of production technologies such as a propionaldehyde oxidation method, an ethanol carbonylation method, an acrylonitrile method, an acrylic acid method and the like were successively developed. Propionic acid production in the world is mainly concentrated in the united states, germany, the united kingdom and japan, which are major propionic acid producing countries having a yield of about 90% of the world's propionic acid production.
The production of propionic acid in foreign countries has already been industrialized, but the production of propionic acid in China is still in the beginning stage. With the rapid development of food, feed, pesticide, spice and other industries in China, the demand of propionic acid is bound to show a continuously increasing situation. At present, the domestic researches on the production method of propionic acid comprise an ethylene carbonylation method, a propionaldehyde oxidation method, an acrylonitrile method, a propionic acid alkene reduction hydrogenation method and the like.
The ethylene carbonylation method and the propionaldehyde oxidation method need to react under high temperature and high pressure, the reaction conditions are harsh, the corrosivity of the ethylene carbonylation method and the propionaldehyde oxidation method is very high under the conditions of high temperature and high pressure, and the requirements of the whole process on equipment materials are very high.
The method for producing propionic acid by ethanol carbonylation has broad development prospect, aspect, broad ethanol source and low price in our country, aspect, the route condition is mild, the method is the development direction of propionic acid production in our country.
Disclosure of Invention
The invention provides methods and devices for synthesizing acetic anhydride and co-producing propionic acid by carbonylation aiming at the technical problems.
The purpose of the invention can be realized by the following technical scheme:
carbonylation acetic anhydride coproduction propionic acid device, the device includes a batching kettle, the bottom of the batching kettle is connected with the upper end of the reactor, the output end of the middle lower part of the reactor is connected with the middle upper part of the flash evaporator, the output end of the top end of the reactor is connected with the light component recovery device;
the top output end of the flash evaporator is connected with the middle upper part of the lightness-removing tower, and the bottom output end of the flash evaporator is connected with the bottom end of the reactor;
the output end of the top of the light component removal tower is connected with a feed pipeline of the batching kettle, and the output end of the bottom of the light component removal tower is connected with the middle upper part of the rough separation tower;
the output end of the top of the rough separation tower is connected with the upper part of the acetic anhydride tower, and the output end of the bottom of the rough separation tower is connected with the upper part of the propionic acid tower through a hydrolysis tank;
the output end of the top of the acetic anhydride tower is respectively connected with a feed pipeline of the batching kettle and the light component recovery device, and the output end of the bottom is an output pipeline of an acetic anhydride product;
the output at the top of the propionic acid tower is respectively connected with a feed pipeline of the batching kettle and a light component recovery device, the output at the bottom is connected with the middle part of the propionic acid refining tower, the top output of the propionic acid refining tower is an propionic acid product output pipeline, and the output at the bottom is an output pipeline of a heavy component byproduct.
The technical scheme of the invention is as follows: the reactor is a gas-liquid reactor, and the gas-liquid reactor is a bubble tower, a stirring kettle or a jet flow bubble reactor; preferably: the gas distributor is a circular ring-shaped perforated distributor or a disc-shaped distributor and is positioned at the high-pressure CO feeding position at the bottom of the reactor.
According to the technical scheme, the jet bubbling reactor comprises a reaction cylinder body, a baffle and a gas distributor are sequentially arranged on the lower portion of the reaction cylinder body from bottom to top, the bottom end of the reaction cylinder body is connected with a circulating liquid injection pipe through a centrifugal pump and a pipeline, the circulating liquid injection pipe is located in the reaction cylinder body, and input ends are further arranged at the bottom of the reaction cylinder body and are input pipelines for CO gas.
A method for synthesizing acetic anhydride and CO-producing propionic acid by carbonylation using the above device, using methyl acetate, ethanol and CO as production raw materials, rhodium iodide as a main catalyst, methyl iodide as a catalyst promoter in the acetic anhydride synthesis process, ethyl iodide as a catalyst promoter in the propionic acid synthesis process, acetic acid as a solvent, reaction pressure of 2-5 MPa, reaction temperature of 170-230 ℃, the above reactions being carried out under the catalysis of the same reactor and the same catalyst system, and the liquid phase back mixing degree in the reactor being adjusted by adjusting the circulating liquid flow rate of the reaction liquid circulating system, and the product ratio of acetic anhydride/propionic acid being adjusted by adjusting the gas introduction amount of the loop control through the feed gas inlet.
In specific , the method comprises the following steps:
1) production raw materials of methyl acetate and ethanol, a solvent of acetic acid, rhodium iodide serving as a main catalyst, methyl iodide serving as a cocatalyst in the acetic anhydride synthesis process, and ethyl iodide serving as a cocatalyst in the propionic acid synthesis process are mixed, pressurized and heated and then sent into a reactor;
2) introducing high-pressure CO under a rhodium-based catalyst system, and generating acetic anhydride and propionic acid in a reactor under the conditions that the reaction pressure is 2-5 MPa and the reaction temperature is 170-230 ℃;
3) the mother liquor pumped out from the bottom of the reactor is cooled and then returns to the reactor; mother liquor pumped out from the middle lower part of the reactor is sent to a flash evaporator for decompression flash evaporation, liquid containing catalyst is separated and circulated back to the reactor, and gas phase enters a light component removal tower;
4) the gas phase entering the light component removal tower is separated, the light component obtained by separation returns to the raw material system, and the heavy component enters the coarse separation tower; separating acetic anhydride, propionic acid and acetic acid in a crude separation tower, separating light components in the crude separation tower in an acetic anhydride tower, wherein the tower top of the acetic anhydride tower is 99.8 wt% of acetic acid, and the tower bottom of the acetic anhydride tower is 99 wt% of acetic anhydride; the heavy components of the crude separation tower enter a hydrolysis tank and then enter an propionic acid tower, the top of the propionic acid tower is acetic acid with the purity of 99.8 wt%, and the bottom of the propionic acid tower is propionic acid with the purity of about 97 wt%; the stream of propionic acid is continuously sent into a propionic acid refining tower, the top of the propionic acid refining tower is 99.5 wt% of propionic acid, and the bottom is a heavy component by-product.
The method comprises the following steps: the liquid phase back mixing degree in the reactor is adjusted by changing the position of injecting the fresh liquid raw material into the reactor, so as to adjust and control the product proportion of acetic anhydride/propionic acid; the injection position of the fresh liquid raw material is a circulating liquid injection pipe, and the circulating liquid injection pipe extends into a position with the depth being 1/10-5/6 liquid level below the liquid level in the reactor;
or the injection position of the fresh liquid raw material is the lower part of the reactor and is in a region which is away from the bottom end 1/7-1/5 of the cylinder of the reactor.
The method comprises the following steps: the liquid phase back mixing degree in the reactor is adjusted by changing the type of the gas distributor, so as to further adjust and control the product ratio of acetic anhydride/propionic acid. The gas distributor is a circular ring-shaped perforated distributor or a disc-shaped distributor and is positioned at a high-pressure CO feeding position at the bottom of the reactor.
The method comprises the following steps: the outlet section of the circulating liquid injection pipe is circular, and the ratio of the circular outlet section area to the reactor section area is 0.00005-0.005;
or the cross section of the outlet of the circulating liquid injection pipe is triangular, and the ratio of the cross section of the outlet to the cross section of the reactor is 0.00005-0.005, preferably 0.0002-0.002;
the ratio of the flow rate of the circulating liquid to the effective volume of the reactor is 5 to 250.
, the ratio of the circulating liquid flow rate to the effective volume of the reactor is 60-150.
The method comprises the following steps: the apparent gas velocity (calculated by the sectional area of the reactor) corresponding to the introduction amount of the raw material gas CO is 0.001-0.03 m/s, and preferably 0.005-0.01 m/s.
The technical scheme of the invention is as follows: the molar ratio of methyl acetate to ethanol is 1-10: 1.
in the above method, the flow ratio of the mother liquor withdrawn at the bottom of the reactor to the mother liquor withdrawn at the bottom of the reactor is 1: 1 to 2.
The invention has the beneficial effects that:
the invention develops carbonylation synthesis acetic anhydride coproduction propionic acid process routes, realizes the reaction to generate two products of acetic anhydride and propionic acid in the same reactors, realizes the adjustment of the yield of the two products, simultaneously shares a light component recovery system and a refining separation system, greatly shortens the process, reduces the device investment, and a production unit can flexibly produce the acetic anhydride or the propionic acid according to market conditions to bring considerable economic benefit.
Drawings
FIG. 1 is a schematic diagram of the structure of a reactor;
a-fresh liquid raw material inlet, B-reaction liquid outlet, 1 '-centrifugal pump, 2' -gas compressor, 3 '-buffer tank, 4' -valve , 5 '-flowmeter, 6' -circulating liquid injection pipe, 7 '-baffle plate and 8' -gas distributor.
FIG. 2 is a graph of acetic anhydride and propionic acid product yields as a function of liquid phase back-mixing.
FIG. 3 is a plot of the multiple tank series model parameter N as a function of the nozzle exit liquid jet Reynolds number for different superficial gas velocities.
FIG. 4 is a plot of the multiple tank series model parameter N as a function of the nozzle outlet liquid jet Reynolds number for different sparger types.
FIG. 5 is a graph of the variation of the multi-tank series model parameter N with the Reynolds number of the liquid jet at the nozzle outlet at different liquid feed injection locations.
FIG. 6 is a graph of the parameter N of a multi-tank tandem model as a function of the Reynolds number of the liquid jet at the outlet of the nozzle for different injection pipe penetration depths.
FIG. 7 is a schematic flow diagram of the apparatus of the present invention;
wherein: 1 is a batching kettle, 2 is a reactor, 3 is flash evaporation gas, 4 is a dehydrogenation tower, 5 is a crude separation tower, 6 is an acetic anhydride tower, 7 is a hydrolysis tank, 8 is a propionic acid tower, and 9 is a propionic acid refining tower.
Detailed Description
The invention is further illustrated at with reference to the following examples, but the scope of the invention is not limited thereto:
referring to fig. 1 and 7, carbonylation acetic anhydride coproduction propionic acid device comprises a batching kettle 1, wherein the bottom end of the batching kettle 1 is connected with the upper end of a reactor 2, the output end of the middle lower part of the reactor 2 is connected with the middle upper part of a flash evaporator 3, and the output end of the top end of the reactor 2 is connected with a light component recovery device;
the top output end of the flash evaporator 3 is connected with the middle upper part of the light component removal tower 4, and the bottom output end is connected with the bottom end of the reactor 2;
the output end of the top of the light component removal tower 4 is connected with a feed pipeline of the batching kettle 1, and the output end of the bottom of the light component removal tower is connected with the middle upper part of the rough separation tower 5;
the output end of the top of the rough separation tower 5 is connected with the upper part of an acetic anhydride tower 6, and the output end of the bottom is connected with the upper part of an propionic acid tower 8 through a hydrolysis tank 7;
the output end of the top of the acetic anhydride tower 6 is respectively connected with the feed pipeline of the batching kettle 1 and the light component recovery device, and the output end of the bottom is an output pipeline of an acetic anhydride product;
the output at 8 tops of propionic acid tower links to each other with batching cauldron 1's charge-in pipeline and light components recovery unit respectively, and the output of bottom links to each other with the middle part of propionic acid refining tower 9, the top output of propionic acid refining tower 9 is propionic acid product output pipeline, and the output of bottom is the output pipeline of heavy components by-product.
The reactor is a gas-liquid reactor, and the gas-liquid reactor is a bubble tower, a stirring kettle or a jet flow bubble reactor. And the gas distributor is a circular ring-shaped perforated distributor and is positioned at the high-pressure CO feeding position at the bottom of the reactor.
The jet bubbling reactor 2 comprises a reaction cylinder, a baffle 7 ' and a gas distributor 8 ' are sequentially arranged at the lower part of the reaction cylinder from bottom to top, the bottom end of the reaction cylinder is connected with a circulating liquid injection pipe 6 ' through a centrifugal pump 1 ' and a pipeline, the circulating liquid injection pipe 6 ' is positioned in the reaction cylinder, and input ends are arranged at the bottom of the reaction cylinder and are input pipelines of CO gas.
Example 1
As shown in figure 7, carbonylation acetic anhydride coproduction propionic acid method comprises the steps of preparing raw materials of methyl acetate (4500kg/h), acetic acid (530kg/h), ethanol (250kg/h), rhodium-based catalyst (1700kg/h, wherein the catalyst promoter comprises methyl iodide 10716kg/h and ethyl iodide 5614kgH) mixing in a batching kettle (1), boosting the pressure to 4.0MPag by a pump, feeding the mixture into a reactor (2) at a high speed, wherein the section of an outlet of a circulating liquid injection pipe is circular, the ratio of the sectional area of the outlet to the sectional area of the reactor is 0.002, a gas distributor is circular, and the circulating liquid injection pipe extends into 1/2 liquid level below the liquid level in the reactor; while introducing gaseous CO (1000 Nm/s) at a pressure of 3.9MPag and a superficial gas velocity of 0.00245m/s3H) is passed into the reactor (2) at a ratio of the circulation liquid flow to the effective volume of the reactor of 120, a reaction pressure of about 3.9MPag and a temperature of about 190 ℃. 9000kg/h of liquid are withdrawn from the lower middle part of the reactor (2) and flashed in a flash evaporator (3) at a flash pressure of about 0.2MPag, and the top gas (about 2200 Nm/m) is flashed off3H) removing the light component tower (4); 1100kg/h of liquid withdrawn from the bottom of the reactor (2) were pumped back into the reactor (2). And (3) sending the excessive gas at the top of the reactor (2) into a light component recovery device, and returning the treated gas to the reactor.
Gas phase from upstream flash vessel (3) (about 2200 Nm)3The reaction product is cooled and separated, and then enters a light component removal tower (4), light components at the top of the tower are pumped back to a blending kettle (1) by a pump, heavy components at the bottom of the tower are pumped into a crude separation tower (5) by a pump, light components at the top of the crude separation tower are pumped into an acetic anhydride tower (6) for separation, the product at the top of the tower is 800kg/h and 99.8 wt% of acetic acid after separation, and the product at the bottom of the tower is 1200kg/h and 99 wt% of acetic anhydride. About 1600kg/h of heavy components at the bottom of the crude separation tower enter a hydrolysis tank (7) and are sent into a propionic acid tower (8) by a pump for separation, the top of the separated propionic acid tower (8) is 1200kg/h of acetic acid with the purity of 99.8 wt%, and the bottom of the tower is about 400kg/h of propionic acid with the purity of 97 wt%. The propionic acid with the concentration of 97 wt% is continuously sent into a propionic acid refining tower, the top product of the propionic acid refining tower is 380kg/h, 99.5 wt% of propionic acid, and the bottom is 20kg/h of heavy components.
Example 2
Referring to FIG. 2, under the same conditions as in example 1, the fresh liquid feedstock and the liquid discharged from the bottom of the reactor were pumped by the circulating pump and introduced into the reactor through the circulating liquid injection pipe, and the liquid discharge was discharged by overflow to maintain the liquid level in the reactor constantThe cross section of the outlet is circular, the ratio of the cross section area of the outlet to the cross section area of the reactor is 0.002, the gas distributor is circular, the circulating liquid injection pipe extends into the 1/2 liquid level below the liquid level in the reactor, the apparent gas velocity is 0.00245m/s, and the flow variation range of the circulating liquid is 1-15 m3/h (jet Reynolds number Re)jHas a variation range of 1.8092 x 104~30.3484×104The ratio of the flow rate of the circulating liquid to the effective volume of the reactor is 12 to 176). The degree of liquid phase back-mixing is shown in fig. 2, where N is a multi-pot series model parameter, the greater the N, the less the back-mixing, and as the circulation flow rate increases, N increases from 1.07 to 1.21 and then decreases from 1.21 to 1.13, and the corresponding acetic anhydride/propionic acid product ratio (molar ratio) increases from 3.55 to 3.74 and then decreases from 3.74 to 3.64.
Note: the multi-kettle series model is that the reactor is divided into N equal-volume full-mixing kettle reactors along the axial direction, and the whole reactor is regarded as being composed of the N full-mixing kettle reactors, so that the N can quantitatively represent the back-mixing degree of the reactor, namely the larger the N is, the smaller the back-mixing is.
Example 3
Referring to FIG. 3, the difference from example 1 is that the superficial gas velocity is 0.0098m/s, the ratio of the concentrations of methyl iodide and ethyl iodide is 1:2, and the other conditions are the same as example 1. As the recycle flow rate increases, N increases from 1.13 to 1.29 and then decreases from 1.29 to 1.21, with the corresponding acetic anhydride/propionic acid product ratio (molar ratio) increasing from 2.14 to 3.15 and then decreasing from 3.15 to 2.74.
Example 4
Referring to FIG. 3, the difference from example 1 is that the superficial gas velocity is 0.0098m/s, 0.00245m/s, 0.0196m/s, and the ratio of the concentrations of methyl iodide and ethyl iodide is 2: 1. As the recycle flow rate increases, N increases from 1.05 to 1.17 and then decreases from 1.17 to 1.04, with the corresponding acetic anhydride/propionic acid product ratio (molar ratio) increasing from 4.53 to 5.69 and then decreasing from 5.69 to 4.51.
Example 5
The difference from example 1 is that the injection point of the fresh liquid feed is the bottom of the reactor and the results are shown in FIG. 4. As the recycle flow rate increases, the nozzle feed N increases from 1.13 to 1.29 and then decreases from 1.29 to 1.21, with the corresponding acetic anhydride/propionic acid product ratio (molar ratio) increasing from 3.64 to 3.85 and then decreasing from 3.85 to 3.74. The N in the bottom feed increased from 1.17 to 1.3 and then decreased from 1.3 to 1.19, with the corresponding acetic anhydride/propionic acid product ratio (molar ratio) increasing from 3.69 to 3.87 and then decreasing from 3.87 to 3.72.
Example 6
The difference from example 1 is that the gas distributor has a disk shape, and the result is shown in FIG. 5. With increasing circulation flow, with the annular gas distributor N increases from 1.17 to 1.3 and then decreases from 1.3 to 1.19, the corresponding acetic anhydride/propionic acid product ratio (molar ratio) increases from 3.69 to 3.87 and then decreases from 3.87 to 3.72. With a disc-shaped gas distributor, N increases from 1.16 to 1.23 and then decreases from 1.23 to 1.19, and the corresponding acetic anhydride/propionic acid product ratio (molar ratio) increases from 3.68 to 3.77 and then decreases from 3.77 to 3.72.
Example 7
The difference from the example 1 is that the extending positions of the circulating liquid injection pipes are 1/10, 1/6, 1/4, 1/2, 3/4 and 5/6 liquid levels below the liquid level respectively, and the circulating amount of the liquid is 8m3H is used as the reference value. As a result, as shown in FIG. 6, as the depth of the recycle liquid injection pipe into the reactor increases, N increases from 1.12 to 1.29 and then decreases from 1.29 to 1.15, and the corresponding acetic anhydride/propionic acid product ratio (molar ratio) increases from 3.62 to 3.85 and then decreases from 3.85 to 3.66.

Claims (4)

  1. The device for synthesizing acetic anhydride and coproducing propionic acid by carbonylation is characterized by comprising a batching kettle (1), wherein the bottom end of the batching kettle (1) is connected with the upper end of a reactor (2), the output end of the middle lower part of the reactor (2) is connected with the middle upper part of a flash evaporator (3), and the output end of the top end of the reactor (2) is connected with a light component recovery device;
    the top output end of the flash evaporator (3) is connected with the middle upper part of the light component removal tower (4), and the bottom output end is connected with the bottom end of the reactor (2);
    the output end of the top of the light component removal tower (4) is connected with a feed pipeline of the batching kettle (1), and the output end of the bottom of the light component removal tower is connected with the middle upper part of the rough separation tower (5);
    the output end of the top of the rough separation tower (5) is connected with the upper part of an acetic anhydride tower (6), and the output end of the bottom of the rough separation tower is connected with the upper part of an propionic acid tower (8) through a hydrolysis tank (7);
    the output end of the top of the acetic anhydride tower (6) is respectively connected with a feed pipeline of the batching kettle (1) and a light component recovery device, and the output end of the bottom is an output pipeline of an acetic anhydride product;
    the output at propionic acid tower (8) top links to each other with the charge-in pipeline and the light component recovery unit of batching cauldron (1) respectively, and the output of bottom links to each other with the middle part of propionic acid refining tower (9), the top output of propionic acid refining tower (9) is propionic acid product output pipeline, and the output of bottom is the output pipeline of heavy ends by-product.
  2. 2. The apparatus of claim 1, wherein: the reactor is a gas-liquid reactor, and the gas-liquid reactor is a bubble tower, a stirring kettle or a jet flow bubble reactor.
  3. 3. The apparatus of claim 1, wherein: the device also comprises a gas distributor which is a circular ring-shaped perforated distributor or a disc-shaped distributor and is positioned at the high-pressure CO feeding position at the bottom of the reactor.
  4. 4. The device according to claim 2, wherein the jet bubbling reactor (2) comprises a reaction cylinder, the lower part of the reaction cylinder is provided with a baffle plate (7 ') and a gas distributor (8 ') from bottom to top in sequence, the bottom end of the reaction cylinder is connected with a circulating liquid injection pipe (6 ') through a centrifugal pump (1 ') and a pipeline, the circulating liquid injection pipe (6 ') is positioned in the reaction cylinder, and the bottom of the reaction cylinder is also provided with input ends which are input pipelines of CO gas.
CN201911013437.8A 2019-10-23 2019-10-23 Device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation Pending CN110734371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911013437.8A CN110734371A (en) 2019-10-23 2019-10-23 Device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911013437.8A CN110734371A (en) 2019-10-23 2019-10-23 Device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation

Publications (1)

Publication Number Publication Date
CN110734371A true CN110734371A (en) 2020-01-31

Family

ID=69271040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911013437.8A Pending CN110734371A (en) 2019-10-23 2019-10-23 Device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation

Country Status (1)

Country Link
CN (1) CN110734371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022148162A1 (en) * 2021-01-06 2022-07-14 上海华谊能源化工有限公司 Reaction device, and system and method for synthesizing acetic acid from carbonyl

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111982A (en) * 1976-07-26 1978-09-05 Monsanto Company Coproduction of acetic and propionic acids
US5834622A (en) * 1995-03-08 1998-11-10 Bp Chemicals Limited Process for the carbonylation of a carbonylatable reactant
CN102911035A (en) * 2012-11-02 2013-02-06 江苏索普(集团)有限公司 Method for preparing propionic acid from ethyl acetate through carbonylation
CN102976919A (en) * 2011-09-05 2013-03-20 上海吴泾化工有限公司 Method for co-producing propionic acid during production of acetic acid
CN107074717A (en) * 2014-08-05 2017-08-18 英国石油化学品有限公司 A kind of method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111982A (en) * 1976-07-26 1978-09-05 Monsanto Company Coproduction of acetic and propionic acids
US5834622A (en) * 1995-03-08 1998-11-10 Bp Chemicals Limited Process for the carbonylation of a carbonylatable reactant
CN102976919A (en) * 2011-09-05 2013-03-20 上海吴泾化工有限公司 Method for co-producing propionic acid during production of acetic acid
CN102911035A (en) * 2012-11-02 2013-02-06 江苏索普(集团)有限公司 Method for preparing propionic acid from ethyl acetate through carbonylation
CN107074717A (en) * 2014-08-05 2017-08-18 英国石油化学品有限公司 A kind of method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022148162A1 (en) * 2021-01-06 2022-07-14 上海华谊能源化工有限公司 Reaction device, and system and method for synthesizing acetic acid from carbonyl

Similar Documents

Publication Publication Date Title
KR101206214B1 (en) System For Producing Alcohol From Olefin
US7060853B2 (en) Method for increasing oxidation reactor production capacity
CN101835733B (en) Process and apparatus for oxidizing organic compounds
CN106518608B (en) The continuous preparation method and device of cyclohexanedimethanol
CN111302917B (en) Olefin hydroformylation device and method
CN1894187A (en) Improvements in or relating to hydroformylation
CN101784511B (en) Process and device for the oxidation of organic compounds
CN109180428B (en) Production process of 2, 2-dimethyl-1, 3-propylene glycol
CN102826968B (en) Continuous hydroformylation for preparing aldehydes by adopting liquid-phase circulation way
CN211078980U (en) Device for synthesizing acetic anhydride and co-producing propionic acid through carbonylation
CN110845329B (en) Method for synthesizing acetic anhydride and co-producing propionic acid through carbonylation
CN110734371A (en) Device for synthesizing acetic anhydride and co-producing propionic acid by carbonylation
CN101575272B (en) Process for continuously producing corresponding aldehyde by alkene hydroformylation reaction
RU2738842C2 (en) Method of producing acetic acid
CN202700501U (en) Stirring-free oxidating and deep-oxidating reaction system applicable to KPTA (Kunlun pure terephthalic acid) production
WO2001051443A2 (en) Method for increasing oxidation reactor production capacity
US5608122A (en) Process for preparing wax esters and hydrogenation of wax esters to fatty alcohols
CN102826970A (en) Two-stage reaction method and device of hydroformylation of low-carbon alkene
CN103328429A (en) Eductor-based reactor and pump around loops for production of acetic acid
KR101298343B1 (en) Reactor for the hydroformylation of olefin and method for the hydroformylation using the same
KR101251714B1 (en) Reactor for the hydroformylation of olefin and method for the hydroformylation using the same
CN115650833B (en) Process method for strengthening olefin hydroformylation by microbubble flow
CN101691325B (en) Preparation method and device of raw materials needed in preparing acetic anhydride by carbonylation
CN100450988C (en) Low pressure device for synthesizing acetic acid by methanol carbonylation
CN116102401A (en) Continuous production method for synthesizing tricyclodecane dimethanol by dicyclopentadiene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination