CN110731050B - 控制信号路径的噪声传递函数以减少电荷泵噪声 - Google Patents
控制信号路径的噪声传递函数以减少电荷泵噪声 Download PDFInfo
- Publication number
- CN110731050B CN110731050B CN201880036384.9A CN201880036384A CN110731050B CN 110731050 B CN110731050 B CN 110731050B CN 201880036384 A CN201880036384 A CN 201880036384A CN 110731050 B CN110731050 B CN 110731050B
- Authority
- CN
- China
- Prior art keywords
- digital
- signal
- analog
- signal path
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012546 transfer Methods 0.000 title claims description 17
- 230000004044 response Effects 0.000 claims abstract description 13
- 230000006870 function Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 18
- 230000005236 sound signal Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 238000013139 quantization Methods 0.000 description 7
- 238000007493 shaping process Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000010755 BS 2869 Class G Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 244000038293 primary consumers Species 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/213—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
- H03F1/0222—Continuous control by using a signal derived from the input signal
- H03F1/0227—Continuous control by using a signal derived from the input signal using supply converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0244—Stepped control
- H03F1/025—Stepped control by using a signal derived from the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/181—Low-frequency amplifiers, e.g. audio preamplifiers
- H03F3/183—Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
- H03F3/187—Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0626—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/08—Continuously compensating for, or preventing, undesired influence of physical parameters of noise
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/324—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement
- H03M3/344—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by filtering other than the noise-shaping inherent to delta-sigma modulators, e.g. anti-aliasing
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/368—Continuously compensating for, or preventing, undesired influence of physical parameters of noise other than the quantisation noise already being shaped inherently by delta-sigma modulators
- H03M3/376—Prevention or reduction of switching transients, e.g. glitches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B14/00—Transmission systems not characterised by the medium used for transmission
- H04B14/02—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
- H04B14/04—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse code modulation
- H04B14/046—Systems or methods for reducing noise or bandwidth
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B14/00—Transmission systems not characterised by the medium used for transmission
- H04B14/02—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
- H04B14/06—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
- H04B14/062—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using delta modulation or one-bit differential modulation [1DPCM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03159—Arrangements for removing intersymbol interference operating in the frequency domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4917—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
- H04L25/4927—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes using levels matched to the quantisation levels of the channel
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/03—Indexing scheme relating to amplifiers the amplifier being designed for audio applications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/331—Sigma delta modulation being used in an amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/50—Digital/analogue converters using delta-sigma modulation as an intermediate step
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/10—Earpieces; Attachments therefor ; Earphones; Monophonic headphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2499/00—Aspects covered by H04R or H04S not otherwise provided for in their subgroups
- H04R2499/10—General applications
- H04R2499/11—Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Amplifiers (AREA)
Abstract
一种用于生成输出信号的装置可包括信号路径,该信号路径具有:模拟信号路径部分,其具有模拟幅值下垂;数字信号路径部分,其具有数字幅值下垂;数模转换器,其用于将数字输入信号转换为模拟信号;第一数字补偿滤波器,其用于补偿模拟幅值下垂;第二数字补偿滤波器,其用于补偿数字幅值下垂,使得第一数字补偿滤波器和第二数字补偿滤波器一起补偿信号路径的幅值下垂,以确保信号路径的通带响应基本平坦。
Description
交叉引用和相关申请
本公开要求2017年4月27日提交的美国临时专利申请第62/490,730号、2017年4月27日提交的美国临时专利申请第62/490,922号和2017年6月6日提交的美国临时专利申请第62/515,785号的权益,所述申请的全部内容通过引用并入本文。
技术领域
本公开总体涉及电荷泵电源,包括但不限于个人音频设备诸如无线电话和媒体播放器,并且更具体地,涉及用于调节由电荷泵生成的输出功率以维持电荷泵的输入电流限制的系统和方法。
背景技术
包括无线电话诸如移动/蜂窝电话、无绳电话、mp3播放器的个人音频设备和其他消费音频设备被广泛使用。此类个人音频设备可包括用于驱动一对头戴式耳机或者一个或多个扬声器的电路。此类电路通常包括用于将音频输出信号驱动到头戴式耳机或扬声器的功率放大器。
可影响其适销性和期望性的个人音频设备的一个特定特征是其音频输出信号的动态范围。简而言之,动态范围是音频输出信号的最大值与最小值之间的比。增加动态范围的一种方法是对功率放大器施加高增益。然而,音频输出信号中存在的噪声通常可是功率放大器增益的单调递增函数,使得由于高增益放大器而带来的任何动态范围增加可被信号噪声抵消,其可有效掩盖更低强度的音频信号。
2013年11月19日提交的转让给本公开的申请人(思睿逻辑有限公司(CirrusLogic,Inc.))的标题为“增强音频信号路径的动态范围(Enhancement of Dynamic Rangeof Audio Signal Path)”的美国专利申请第14/083,972号(“’972申请”)公开了用于增强音频信号路径的动态范围的方法和系统。在’972申请中,一种用于向音频换能器提供输出信号的装置包括数字信号路径部分、模拟信号路径部分、在数字信号路径部分与模拟信号路径部分之间接合的数模转换器(DAC),以及控制电路。数字路径部分可具有可选的数字增益,并且可被配置为根据可选的数字增益生成数字音频输出信号,并且DAC可被配置为从数字输出信号生成模拟信号。模拟信号路径部分可具有用于接收模拟信号的音频输入端,用于提供输出信号的音频输出端,以及可选的模拟增益,并且可被配置为基于模拟信号以及根据可选的模拟增益生成输出信号。控制电路可被配置为基于指示输出信号的信号的幅值来选择可选的模拟增益并选择可选的数字增益。
动态范围增强系统的有效操作通常需要信号路径在感兴趣的频率范围内的通带平坦度,因为偏离平坦通带可导致动态范围增强系统的误触发,从而改变可选的模拟增益和可选的数字增益。然而,信号路径的模拟信号路径部分和数字路径部分中的每个均可具有在感兴趣的频率范围内不平坦的传递函数,这种情况通常称为“幅值下垂”。
功率放大器通常可是个人音频设备中功率的主要消耗者,因此,可对个人音频设备的电池寿命产生最大影响。在具有用于输出级的线性功率放大器的设备中,在低信号电平输出期间会浪费功率,因为有源输出晶体管两端的压降加上输出电压将等于恒定电源轨电压。因此,放大器拓扑诸如G类和H类对于减少(一个或多个)输出晶体管两端的压降并由此减少由(一个或多个)输出晶体管的功耗所浪费的功率是可取的。
为向此类功率放大器提供可变的电源电压,可使用电荷泵电源,例如,诸如美国专利8,311,243中所公开的电源,其中在电路输出端处的信号电平的指示用于控制G类拓扑中的电源电压。通常,只要音频源中存在低信号电平的周期,上述拓扑就可以提高音频放大器的效率。通常,在此类拓扑中,多个阈值定义电荷泵电源的输出信号电平相关的工作模式,其中,在每种模式下,电荷泵电源生成不同的电源电压。
发明内容
根据本公开的教导,已经减少或消除了与电荷泵的性能相关联的某些缺点和问题。
根据本公开的实施例,一种用于生成输出信号的装置可包括信号路径,该信号路径具有:模拟信号路径部分,其具有用于接收模拟信号的音频输入端,用于提供输出信号的音频输出端以及可选的模拟增益,并且被配置为基于所述模拟信号并根据所述可选的模拟增益生成输出信号,其中,模拟信号路径部分的传递函数具有模拟幅值下垂;数字信号路径部分,其具有可选的数字增益,并且被配置为接收数字输入信号并根据所述可选的数字增益来处理数字输入信号,其中,所述数字信号路径部分的传递函数具有数字幅值下垂;数模转换器,其用于将由所述数字信号路径部分处理的所述数字输入信号转换为所述模拟信号;第一数字补偿滤波器,其补偿所述模拟幅值下垂;以及第二数字补偿滤波器,其补偿所述数字幅值下垂,使得所述第一数字补偿滤波器和所述第二数字补偿滤波器一起补偿所述信号路径的幅值下垂,以确保所述信号路径的通带响应基本平坦。
根据本公开的这些和其他实施例,一种用于通过信号路径生成输出信号的方法可包括:通过所述信号路径的模拟信号路径部分生成所述输出信号,所述模拟信号路径部分具有用于接收模拟信号的音频输入端,用于提供所述输出信号的音频输出端以及可选的模拟增益,并且被配置为基于所述模拟信号并且根据所述可选的模拟增益生成所述输出信号,其中所述模拟信号路径部分的传递函数具有模拟幅值下垂。该方法还可包括通过所述信号路径的数字信号路径部分根据可选数字增益处理数字输入信号,所述数字信号路径部分具有所述可选数字增益并且被配置为接收数字输入信号并根据所述可选数字增益处理数字输入信号,其中所述数字信号路径部分的传递函数具有数字幅值下垂。该方法可另外包括通过所述信号路径的数模转换器将由所述数字信号路径部分处理的所述数字输入信号转换为模拟信号。该方法还可包括用第一数字补偿滤波器补偿所述模拟幅值下垂,以及用第二数字补偿滤波器补偿所述数字幅值下垂,使得所述第一数字补偿滤波器和所述第二数字补偿滤波器一起补偿信号路径的幅值下垂,以确保信号路径的通带响应基本平坦。
根据本公开的这些和其他实施例,一种装置可包括:用于对数字信号进行量化噪声整形的Δ-Σ调制器,被配置为从数字信号生成模拟信号的数模转换器,以及被配置为放大模拟信号并由电荷泵供电的放大器,其中,所述电荷泵被配置为以近似等于Δ-Σ调制器的调制器噪声传递函数的零点的开关频率操作,使得电荷泵对装置的总谐波失真噪声的影响最小化。
根据本公开的这些和其他实施例,提供了一种用于使装置中的噪声最小化的方法,所述装置包括用于对数字信号进行量化噪声整形的Δ-Σ调制器,被配置为从数字信号生成模拟信号的数模转换器,以及被配置为放大模拟信号并由电荷泵供电的放大器。该方法可包括以近似等于Δ-Σ调制器的调制器噪声传递函数的零点的开关频率来操作电荷泵,使得电荷泵噪声对装置的总谐波失真噪声的影响最小化。
根据本文所包括的附图、说明书和权利要求书,本公开的技术优点对于本领域技术人员而言可以是显而易见的。实施例的目的和优点将至少通过权利要求中具体指出的元件、特征和组合来实现和达到。
应当理解,前面的一般描述和下面的详细描述均为示例和解释性的,并且不限制本公开中提出的权利要求。
附图说明
通过参考以下结合附图进行的描述,可以获得对本发明实施例及其优点的更完整的理解,其中,相同的附图标记指示相同的特征,并且其中:
图1是根据本公开的实施例的示例个人音频设备的图示;
图2是根据本公开的实施例的示例集成电路的所选组件的框图,该示例集成电路可被实现为图1中所描绘的个人音频设备或任何其他合适的设备的音频集成电路;以及
图3是根据本公开的实施例的示例过采样率幅值补偿滤波器的所选组件的框图。
具体实施方式
图1是根据本公开的实施例的示例个人音频设备1的图示。个人音频设备1是其中可采用根据本公开的实施例的技术的设备的示例,但是应当理解,并不需要所图示的个人音频设备1或随后的图示中所描绘的电路中体现的所有元件或配置来实践权利要求中列出的主题。个人音频设备1可包括换能器诸如扬声器5,扬声器5可再现个人音频设备1接收的远距离语音以及其他本地音频事件诸如铃声、存储的音频节目资料,近端语音(即,个人音频设备1的用户的语音)的注入以提供平衡的会话感知,以及其他需要由个人音频设备1进行再现的音频,诸如来自网页的源或个人音频设备1接收的其他网络通信以及音频指示诸如电池电量低指示和其他系统事件通知。另外地或另选地,耳机3可耦合至个人音频设备1以生成音频。如图1所示,耳机3可是一对耳塞式扬声器8A和8B的形式。插头4可提供耳机3到个人音频设备1的电端子的连接。图1中描绘的耳机3和扬声器5仅为示例,并且应当理解,个人音频设备1可与各种音频换能器结合使用,包括但不限于,捕获式或集成扬声器、头戴式耳机、耳塞、入耳式耳机和外部扬声器。
个人音频设备1可使用触摸屏2向用户提供显示器并接收用户输入,或者另选地,可将标准液晶显示器(LCD)与设置在个人音频设备1的表面和/或侧部上的各种按钮、滑块和/或拨盘组合。还如图1所示,个人音频设备1可包括音频集成电路(IC)9,用于生成传输到耳机3、扬声器5和/或其他音频换能器的模拟音频信号。
图2是根据本公开的实施例的示例IC 9的所选组件的框图,示例IC 9可被实现为个人音频设备1或任何其他合适的设备的音频IC 9。如图2所示,数字信号源(例如,处理器、数字信号处理器、微控制器、测试装备或其他合适的数字信号源)可将数字输入信号DIG_IN提供给信号路径的数字路径部分,数字路径部分包括插值滤波器22、动态范围增强块26、过采样率(OSR)幅值补偿滤波器28、调制器/失配整形器30和有限脉冲响应(FIR)滤波器32。数字路径部分可生成数字输出信号到数模转换器(DAC)14,数模转换器(DAC)14继而可将数字输出信号DIG_IN转换成等效的模拟输入信号VIN,并将模拟输入信号VIN传送到功率放大器级16,功率放大器级16可放大或衰减模拟输入信号VIN并提供输出信号VOUT,在数字输入信号DIG_IN、模拟输入信号VIN和输出信号VOUT为音频信号的实施例中,该输出信号VOUT可操作扬声器、耳机换能器和/或线路电平信号输出。然而,如图2中所描绘的IC 9的应用可不限于音频应用。另外,尽管将放大器级16描绘为生成单端音频输出信号VOUT的单端输出,但是在一些实施例中,放大器级16可包括差分输出,并且因此可提供差分音频输出信号VOUT。
电荷泵电源10可向放大器16提供电源电压VSUPPLY的电源轨输入,并且可通常从电池12或其他电源接收电源输入,该电源输入可向电荷泵电源10提供输入电压VBATT。控制电路20可将模式选择信号提供给电荷泵电源10以选择电荷泵电源10的操作模式,以便根据放大器16的输出端处的预期和/或实际信号电平调整电荷泵电源10生成的电源电压VSUPPLY。当在放大器输出端VOUT处存在和/或预期有低信号电平时,模式控制电路20可通过根据输出信号VOUT或指示输出信号VOUT的信号(例如,数字输入信号DIG_IN)改变电源电压VSUPPLY来提高音频IC 9的效率。因此,为维持效率,在任何给定的时间,控制电路20可在多个操作模式中选择一种操作模式,在每种操作模式下,操作电荷泵电源10在不同的电源电压VSUPPLY下,其中一个操作模式下的电源电压VSUPPLY为其他操作模式下的电源电压的合理倍数或比率。
插值滤波器22可包括用于对数字输入信号DIG_IN进行上采样以生成采样率大于数字输入信号DIG_IN的采样率的结果数字信号的任何合适的系统。
由插值滤波器22生成的上采样的数字信号继而可由动态范围增强块26处理,动态范围增强块26可实现用于执行动态范围增强的增益元件。如图2所示,控制电路20可被配置为(例如,除控制电荷泵电源10的模式之外)基于数字音频输入信号DIG_IN(或从其导出的信号)控制动态范围增强块26的可选的数字增益x和放大器级16的可选的模拟增益k/x。
作为音频IC 9的动态范围增强功能的示例,当数字音频输入信号DIG_IN相对于数字音频输入信号的满量程电压等于或接近零分贝(0dB)时,增益控制电路20可为可选的数字增益选择第一数字增益(例如,x1)并且为可选的模拟增益选择第一模拟增益(例如,k/x1)。然而,如果数字音频输入信号DIG_IN的幅值相对于数字音频输入信号DIG_IN的满量程电压在特定的预定阈值幅值以下(例如,-20dB),则增益控制电路20可为可选的数字增益选择大于第一数字增益的第二数字增益(例如,x2)(例如,x2>x1),并且为可选的模拟增益选择小于第一模拟增益的第二模拟增益(例如,k/x2)(例如k/x2<k/x1)。在每种情况下,可选的数字增益和可选的模拟增益的累积路径增益(例如,k)可基本恒定(例如,在音频IC9的制造和/或操作公差内相同)。在一些实施例中,k可近似等于1,使得累积路径增益为单位增益。与其中数字增益和模拟增益为静态的方法相比,数字增益和模拟增益的此类修改可增加音频IC 9的动态范围,因为它可减少注入音频输出信号VOUT的噪声,该噪声通常可为放大器级16的模拟增益的单调递增函数。虽然对于较高幅值音频信号(例如,相对于满量程电压为0dB或接近0dB)此类噪声可忽略不计,但对于低幅值音频信号(例如,相对于满量程电压为-20dB或更低),此类噪声的存在可变得明显。通过在放大器级16处针对较小的信号幅值施加较小的模拟增益,可减少注入音频输出信号VOUT的噪声的量,同时通过将数字增益与模拟增益成反比地施加到动态范围增强块26,可根据数字音频输入信号DIG_IN保持音频输出信号VOUT的信号电平。
动态范围增强块26的输出可由OSR幅值补偿滤波器28接收和处理。如下文更详细地描述,OSR幅值补偿滤波器28可补偿数字路径部分中其他元件而不是OSR幅值补偿滤波器28的频率响应中的幅值下垂。
OSR幅值补偿滤波器28生成的输出继而可由调制器/失配整形器30处理。调制器/失配整形器30可包括任何用于整形其接收的数字信号中存在的量化噪声的系统。在一些实施例中,调制器/失配整形器30可包括用于对此类数字信号进行量化噪声整形的Δ-Σ调制器。
由调制器/失配整形器30生成的输出可由FIR滤波器32进一步处理。FIR滤波器32可包括具有有限持续时间的脉冲响应的任何合适的滤波器。在音频IC 9中,FIR滤波器32可起到一种或多种功能的作用。首先,如本公开中其他地方所述,FIR滤波器32可提供近似等于电荷泵电源10的开关频率的零点,以减少电荷泵噪声。另外地或另选地,FIR滤波器32可减少由调制器/失配整形器30引入的带外噪声,带外噪声可导致放大器为跟踪音频输出信号VOUT而必须支持的转换速率的降低。
如上所述,可将由FIR滤波器32生成的数字信号(即由数字路径部分生成的数字输出信号)通过DAC 14转换为等效的模拟信号(例如VIN),然后放大器级16继而将该模拟信号放大。
如本申请的背景技术部分所述,音频IC 9的信号路径可遭受幅值下垂,其中通带频率响应在感兴趣的频率范围内不是平坦的,并且此类幅值下垂可导致动态范围增强系统的误触发。在许多情况下,信号路径的不同部分可分别导致幅值下垂。例如,数字路径部分(在没有OSR幅值补偿滤波器28的情况下)可具有数字幅值下垂,并且DAC 14和放大器级16可一起具有模拟幅值下垂。
为补偿数字幅值下垂,特别是由插值滤波器22引起的下垂,插值滤波器22可包括补偿数字幅值下垂的基带幅值补偿滤波器24。因此,控制电路20可基于对经下垂校正的数字信号的分析来确定哪个增益适用于动态范围增强块26的可选的数字增益,以及哪个增益适用于放大器级16的可选的模拟增益。
此外,OSR幅值补偿滤波器28可具有传递函数,以补偿模拟幅值下垂和在动态范围增强块26之后的信号路径中引起的下垂。因此,基带幅值补偿滤波器24和OSR幅值补偿滤波器28一起可补偿整个信号路径的幅值下垂,以确保整个信号路径的通带响应基本平坦。此外,在一些实施例中,基带幅值补偿滤波器24和OSR幅值补偿滤波器28可针对较高频率的信号改善信号路径的噪声性能,因为许多未补偿的信号路径的通带平坦度的缺乏可在较高的频率下存在。另外,在这些和其他实施例中,过采样率幅值滤波器28可被配置为改善信号路径的阻带衰减。
在一些实施例中,可针对可选的模拟增益和可选的数字增益的不同增益配置来优化基带幅值补偿滤波器24和OSR幅值补偿滤波器28的滤波器系数。例如,对于其中可选的模拟增益具有第一模拟增益值并且可选的数字增益具有第一数字增益值的第一动态范围增强模式,基带幅值补偿滤波器24和OSR幅值补偿滤波器28的滤波器系数的值可与此类滤波器系数针对第二动态范围增强模式可具有的值不同,在第二动态范围增强模式中,可选的模拟增益具有第二模拟增益值,并且可选的数字增益具有第二数字增益值。在这些实施例中,此类滤波器系数可存储在存储器中,并且可由任何合适的组件(例如,控制电路20)检索,以响应于动态范围增强增益模式的变化而应用该滤波器系数。
图3是根据本公开的实施例的示例OSR幅值补偿滤波器28的所选组件的框图。在一些实施例中,示例OSR幅值补偿滤波器28可包括如图3所示布置的扩展块42,具有增益b0的增益元件44,具有增益-a1的增益元件46,具有增益-a2的增益元件48,饱和/取整块50、52、54、56和58,延迟块60和62以及组合器64和66。图3以标记sx.yy示出各种信号和增益的示例位宽度,其中“s”指示符号位,“x”指示小数点左边的位数,“yy”指示小数点右边的位数。本领域技术人员可认识到,图3中的OSR幅值补偿滤波器可在z域中具有等于b0/(1+a1z-1+a2z-2)的传递函数。因此,可通过改变滤波器系数/增益b0、a1和a2来控制和/或调谐示例性OSR幅值补偿滤波器28的响应,以获得有效补偿模拟下垂的响应。
使OSR幅值补偿滤波器28存在于音频IC 9的信号路径中的一个潜在缺点是,由于执行数字过采样的OSR幅值补偿滤波器28之后是噪声整形调制器/失配整形器30,因此信号路径中存在的量化噪声可被整形使得其在音频带中的贡献减小,但是量化噪声功率可驻留在接近电荷泵电源10的开关频率的较高频率中。信号路径的总谐波失真噪声可对电源电压VSUPPLY上的噪声敏感,电源电压VSUPPLY上的噪声可取决于电荷泵电源10的开关频率。这种由电源引起的噪声可与带外量化噪声混合并折合到音频带中。
为减少或消除此类电荷泵的折返噪声,实现调制器/失配整形器30的至少一部分的Δ-Σ调制器可被配置为具有调制器噪声传递函数,其零点在电荷泵电源10的大约开关频率处,使得电荷泵噪声对信号路径的总谐波失真噪声的影响最小化。在这些或其他实施例中,在Δ-Σ调制器(例如,调制器/失配整形器30)和DAC 14之间接合的FIR滤波器32可具有FIR噪声传递函数,其零点近似等于开关频率,使得电荷泵噪声对信号路径的总谐波失真噪声的影响最小化。
本公开包含本领域普通技术人员将理解的对本文的示例性实施例做出的所有改变、替换、变型、变化和修改。类似地,在适当的情况下,所附权利要求包含本领域普通技术人员将理解的对本文的示例性实施例做出的所有改变、替换、变型、变化和修改。此外,在所附权利要求中提及适于、布置成、能够、配置成、使能、可操作或操作性地执行特定功能的装置或系统或者装置或系统的组件包括该装置、系统或组件,无论其或特定功能是否被激活、打开或解锁,只要该装置、系统或组件被如此适应、布置、能够、配置成、使能、可操作或操作性即可。
本文所述的所有示例和条件语言旨在用于帮助读者理解本发明和发明人为进一步发展领域而提供的构思,并且被解释为不限于这些具体叙述的示例和条件。尽管已经详细描述了本发明的实施例,但是应该理解,在不脱离本发明的精神和范围的情况下,可对其进行各种改变、替换和变化。
Claims (8)
1.一种用于生成输出信号的装置,包括信号路径,所述信号路径具有:
模拟信号路径部分,具有用于接收模拟信号的音频输入,用于提供输出信号的音频输出以及可选的模拟增益,并且被配置为基于所述模拟信号并根据所述可选的模拟增益生成输出信号,其中,所述模拟信号路径部分的传递函数具有模拟幅值下垂;
数字信号路径部分,具有可选的数字增益,并且被配置为接收数字输入信号并根据所述可选的数字增益来处理数字输入信号,其中,所述数字信号路径部分的传递函数具有数字幅值下垂;
数模转换器,用于将由所述数字信号路径部分处理的所述数字输入信号转换为所述模拟信号;
第一数字补偿滤波器,补偿所述模拟幅值下垂;以及
第二数字补偿滤波器,补偿所述数字幅值下垂,使得所述第一数字补偿滤波器和所述第二数字补偿滤波器一起补偿所述信号路径的幅值下垂,以确保所述信号路径的通带响应基本平坦;
其中:
所述第一数字补偿滤波器包括基带幅值补偿滤波器;以及
所述第二数字补偿滤波器包括过采样率幅值补偿滤波器。
2.根据权利要求1所述的装置,其中,所述第一数字补偿滤波器和所述第二数字补偿滤波器针对未补偿的信号路径的通带平坦度缺乏的高频信号改善所述信号路径的噪声性能。
3.根据权利要求1所述的装置,其中,所述输出信号为音频信号。
4.根据权利要求1所述的装置,其中针对可选模拟增益和可选数字增益的多个增益配置来优化所述第一数字补偿滤波器和所述第二数字补偿滤波器的补偿滤波器系数,并将其存储在存储器中。
5.一种用于通过信号路径生成输出信号的方法,包括:
通过所述信号路径的模拟信号路径部分生成所述输出信号,所述模拟信号路径部分具有用于接收模拟信号的音频输入,用于提供所述输出信号的音频输出以及可选的模拟增益,并且被配置为基于所述模拟信号并且根据所述可选的模拟增益生成所述输出信号,其中所述模拟信号路径部分的传递函数具有模拟幅值下垂;
通过所述信号路径的数字信号路径部分根据可选数字增益处理数字输入信号,所述数字信号路径部分具有所述可选数字增益并且被配置为接收所述数字输入信号并根据所述可选数字增益处理所述数字输入信号,其中所述数字信号路径部分的传递函数具有数字幅值下垂;
通过所述信号路径的数模转换器将由所述数字信号路径部分处理的所述数字输入信号转换为模拟信号;
用第一数字补偿滤波器补偿所述模拟幅值下垂;以及
用第二数字补偿滤波器补偿所述数字幅值下垂,使得所述第一数字补偿滤波器和所述第二数字补偿滤波器一起补偿所述信号路径的幅值下垂,以确保所述信号路径的通带响应基本平坦;
其中:
所述第一数字补偿滤波器包括基带幅值补偿滤波器;以及
所述第二数字补偿滤波器包括过采样率幅值补偿滤波器。
6.根据权利要求5所述的方法,还包括通过所述第一数字补偿滤波器和所述第二数字补偿滤波器针对未补偿的信号路径的通带平坦度缺乏的高频信号改善所述信号路径的噪声性能。
7.根据权利要求5所述的方法,其中,所述输出信号为音频信号。
8.根据权利要求5所述的方法,进一步包括针对可选模拟增益和所述可选数字增益的多个增益配置来优化所述第一数字补偿滤波器和所述第二数字补偿滤波器的滤波器系数,并将其存储在存储器中。
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762490730P | 2017-04-27 | 2017-04-27 | |
US201762490922P | 2017-04-27 | 2017-04-27 | |
US62/490,730 | 2017-04-27 | ||
US62/490,922 | 2017-04-27 | ||
US201762515785P | 2017-06-06 | 2017-06-06 | |
US62/515,785 | 2017-06-06 | ||
US15/926,335 US10491997B2 (en) | 2017-04-27 | 2018-03-20 | Controlling noise transfer function of signal path to reduce charge pump noise |
US15/926,335 | 2018-03-20 | ||
PCT/US2018/029126 WO2018200513A1 (en) | 2017-04-27 | 2018-04-24 | Controlling noise transfer function of signal path to reduce charge pump noise |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110731050A CN110731050A (zh) | 2020-01-24 |
CN110731050B true CN110731050B (zh) | 2021-08-24 |
Family
ID=63895003
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880036384.9A Active CN110731050B (zh) | 2017-04-27 | 2018-04-24 | 控制信号路径的噪声传递函数以减少电荷泵噪声 |
CN201880036137.9A Pending CN110692195A (zh) | 2017-04-27 | 2018-04-24 | 控制信号路径的噪声传递函数以减少电荷泵噪声 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880036137.9A Pending CN110692195A (zh) | 2017-04-27 | 2018-04-24 | 控制信号路径的噪声传递函数以减少电荷泵噪声 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10116473B1 (zh) |
KR (2) | KR102374790B1 (zh) |
CN (2) | CN110731050B (zh) |
WO (2) | WO2018200513A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017124046A1 (de) * | 2017-10-16 | 2019-04-18 | Ask Industries Gmbh | Verfahren zur Durchführung eines Morphingvorgangs |
CN113345445B (zh) * | 2020-02-14 | 2024-09-24 | 瑞昱半导体股份有限公司 | 音频编解码电路 |
CN111600605B (zh) * | 2020-05-09 | 2024-04-05 | 山东浪潮科学研究院有限公司 | 一种实现测控板卡dac输出幅值补偿的方法及系统 |
CN113904687B (zh) * | 2021-09-06 | 2024-08-06 | 华中科技大学 | 一种基于delta-sigma调制的模拟信号量化方法及装置 |
CN117135538B (zh) * | 2023-02-21 | 2024-06-28 | 荣耀终端有限公司 | 扬声器驱动电路及电子设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102611449A (zh) * | 2011-01-21 | 2012-07-25 | 马克西姆综合产品公司 | 用于优化数模信号路径中的动态范围的电路和方法 |
US8645445B2 (en) * | 2008-11-06 | 2014-02-04 | St-Ericsson Sa | Filter block for compensating droop in a frequency response of a signal |
US9391576B1 (en) * | 2013-09-05 | 2016-07-12 | Cirrus Logic, Inc. | Enhancement of dynamic range of audio signal path |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5880980A (en) * | 1996-09-30 | 1999-03-09 | Rockwell International Corporation | Distributed decimation sample rate conversion |
US6208225B1 (en) * | 1999-02-25 | 2001-03-27 | Formfactor, Inc. | Filter structures for integrated circuit interfaces |
JP3624186B2 (ja) * | 2002-03-15 | 2005-03-02 | Tdk株式会社 | スイッチング電源装置用の制御回路及びこれを用いたスイッチング電源装置 |
IL165336A0 (en) | 2002-06-27 | 2006-01-15 | Qualcomm Inc | Filtering applicable to digital to analog converter systems |
US6779385B2 (en) * | 2002-07-15 | 2004-08-24 | Michel Belanger | Method and device for monitoring moisture content of an immersed solid dielectric material |
US8000302B2 (en) * | 2005-06-23 | 2011-08-16 | Qualcomm Incorporated | Adaptive multi-channel modem |
US20070094317A1 (en) * | 2005-10-25 | 2007-04-26 | Broadcom Corporation | Method and system for B-spline interpolation of a one-dimensional signal using a fractional interpolation ratio |
KR100801034B1 (ko) * | 2006-02-07 | 2008-02-04 | 삼성전자주식회사 | 지연된 클럭 신호들을 이용하여 시그마-델타 변조시노이즈을 줄이는 방법과 이를 이용한 프랙셔널 분주 방식의위상고정루프 |
US20070252620A1 (en) * | 2006-04-28 | 2007-11-01 | Motorola, Inc. | Phase offset control phase-frequency detector |
US8311243B2 (en) | 2006-08-21 | 2012-11-13 | Cirrus Logic, Inc. | Energy-efficient consumer device audio power output stage |
GB0715254D0 (en) * | 2007-08-03 | 2007-09-12 | Wolfson Ltd | Amplifier circuit |
US8189802B2 (en) * | 2009-03-19 | 2012-05-29 | Qualcomm Incorporated | Digital filtering in a Class D amplifier system to reduce noise fold over |
US9281745B2 (en) * | 2012-11-01 | 2016-03-08 | Stellamar Llc | Digital controller for switch-mode DC-DC converters and method |
US9143157B1 (en) * | 2014-03-02 | 2015-09-22 | Dsp Group Ltd. | Dynamic gain switching digital to analog converter |
US9596537B2 (en) * | 2014-09-11 | 2017-03-14 | Cirrus Logic, Inc. | Systems and methods for reduction of audio artifacts in an audio system with dynamic range enhancement |
JP6737597B2 (ja) * | 2016-01-12 | 2020-08-12 | ローム株式会社 | オーディオ用のデジタル信号処理装置ならびにそれを用いた車載オーディオ装置および電子機器 |
-
2018
- 2018-03-20 US US15/926,395 patent/US10116473B1/en active Active
- 2018-03-20 US US15/926,335 patent/US10491997B2/en active Active
- 2018-04-24 WO PCT/US2018/029126 patent/WO2018200513A1/en active Application Filing
- 2018-04-24 CN CN201880036384.9A patent/CN110731050B/zh active Active
- 2018-04-24 WO PCT/US2018/029137 patent/WO2018200523A1/en active Application Filing
- 2018-04-24 CN CN201880036137.9A patent/CN110692195A/zh active Pending
- 2018-04-24 KR KR1020197034869A patent/KR102374790B1/ko active IP Right Grant
- 2018-04-24 KR KR1020197034863A patent/KR102374789B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8645445B2 (en) * | 2008-11-06 | 2014-02-04 | St-Ericsson Sa | Filter block for compensating droop in a frequency response of a signal |
CN102611449A (zh) * | 2011-01-21 | 2012-07-25 | 马克西姆综合产品公司 | 用于优化数模信号路径中的动态范围的电路和方法 |
US9391576B1 (en) * | 2013-09-05 | 2016-07-12 | Cirrus Logic, Inc. | Enhancement of dynamic range of audio signal path |
Also Published As
Publication number | Publication date |
---|---|
KR102374790B1 (ko) | 2022-03-18 |
WO2018200523A1 (en) | 2018-11-01 |
CN110731050A (zh) | 2020-01-24 |
US10491997B2 (en) | 2019-11-26 |
KR20200003395A (ko) | 2020-01-09 |
WO2018200513A1 (en) | 2018-11-01 |
CN110692195A (zh) | 2020-01-14 |
US20180316525A1 (en) | 2018-11-01 |
KR102374789B1 (ko) | 2022-03-18 |
KR20190141238A (ko) | 2019-12-23 |
US10116473B1 (en) | 2018-10-30 |
US20180317007A1 (en) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110731050B (zh) | 控制信号路径的噪声传递函数以减少电荷泵噪声 | |
CN110417414B (zh) | 可切换次级回放路径 | |
US9391576B1 (en) | Enhancement of dynamic range of audio signal path | |
CN107112965B (zh) | 用动态范围增强来减少音频系统中的音频伪迹的系统及方法 | |
US9955254B2 (en) | Systems and methods for preventing distortion due to supply-based modulation index changes in an audio playback system | |
US10764681B1 (en) | Low-latency audio output with variable group delay | |
CN114006586A (zh) | 双路径脉宽调制系统的校准 | |
WO2018194979A1 (en) | Fully-differential current digital-to-analog converter | |
US10726873B2 (en) | Polymorphic playback system with signal detection filters of different latencies | |
WO2018220347A1 (en) | Audio amplifiers | |
US10594310B2 (en) | Full-scale range enhancement in a dual-path pulse width modulation playback system | |
WO2017184458A1 (en) | Single signal-variant power supply for a plurality of amplifiers | |
US11438697B2 (en) | Low-latency audio output with variable group delay | |
US10313790B1 (en) | Polymorphic playback system with switching oscillation prevention | |
US12009829B2 (en) | Finite impulse response input digital-to-analog converter | |
CN114902557B (zh) | 最小化d类脉宽调制放大器中的空闲信道噪声 | |
WO2023081296A1 (en) | Finite impulse response input digital-to-analog converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |