CN110728744B - 一种体绘制方法、装置及智能设备 - Google Patents

一种体绘制方法、装置及智能设备 Download PDF

Info

Publication number
CN110728744B
CN110728744B CN201810778018.2A CN201810778018A CN110728744B CN 110728744 B CN110728744 B CN 110728744B CN 201810778018 A CN201810778018 A CN 201810778018A CN 110728744 B CN110728744 B CN 110728744B
Authority
CN
China
Prior art keywords
sampling
point
ray
light
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810778018.2A
Other languages
English (en)
Other versions
CN110728744A (zh
Inventor
刘帅
董晓滨
杨宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Visual Technology Co Ltd
Original Assignee
Hisense Visual Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Visual Technology Co Ltd filed Critical Hisense Visual Technology Co Ltd
Priority to CN201810778018.2A priority Critical patent/CN110728744B/zh
Publication of CN110728744A publication Critical patent/CN110728744A/zh
Application granted granted Critical
Publication of CN110728744B publication Critical patent/CN110728744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/06Ray-tracing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Generation (AREA)

Abstract

本发明公开了一种体绘制方法、装置及智能设备,属于计算机图形学领域。该方法包括:在成像平面上确定注视点,并基于注视点在成像平面上确定注视点区域;基于注视点区域,沿多条光线中每条光线的光线方向确定多个采样点,并基于每条光线的光线方向上的多个采样点的纹理坐标,生成二维图像。其中,若某个光线方向的第一个采样点在注视点区域内,则接下来可以采用较小的采样步长进行采样,而若某个光线方向的第一个采样起始点在注视点区域外,则接下来可以采用较大的采样步长进行采样,这样,既可以保证用户关注区域内的图像的真实感,同时又可以减小计算量,提高绘制效率。

Description

一种体绘制方法、装置及智能设备
技术领域
本发明涉及计算机图形学技术领域,特别涉及一种体绘制方法、装置及智能设备。
背景技术
计算机图形学的发展极大的促进了游戏、电影、动画、计算机辅助设计与制造、虚拟现实等产业的更新迭代。在计算机图形学技术领域中,对真实世界的仿真模拟以及抽象数据的可视化一直是研究热点。其中,抽象数据的可视化即需要通过体绘制来完成。具体的,体绘制是指根据三维体数据场中的体素,生成对应的二维图像的一种技术,其中,该二维图像中包含有三维体数据场中的所有体细节。
目前,应用最为广泛的体绘制方法是光线投射方法。在该种方法中,智能设备可以建立立方体模型,并将该立方体模型内的每个点的坐标与三维体数据场中每个体素的空间坐标进行映射。其中,该立方体模型内的每个点的坐标可以称为纹理坐标。之后,智能设备可以将多条光线中每条光线在成像平面上的入射点作为相应光线的起始点,并从多条光线中每条光线的起始点起延相应光线的光线方向按照第一采样步长依次确定多个采样点。其中,该多条光线是将人眼所在的位置点与该立方体模型上朝向人眼的表面上的每个点连接后,依次穿越成像平面和该立方体模型的光线。由于该立方体模型内每个点的纹理坐标与三维体数据场中的每个体素的空间坐标相对应,因此,该多条光线穿越该立方体模型实际上就相当于穿越三维体数据场。之后,智能设备可以基于在每条光线的光线方向上确定的多个采样点的纹理坐标,生成三维体数据场对应的二维图像。
在采用上述方法进行体绘制时,在多条光线中的每条光线的光线方向上,智能设备均是根据第一采样步长来确定得到多个采样点,在这种情况下,当该第一采样步长较小时,计算量将极其庞大,这样,不仅会导致智能设备的GPU(Graphics Processing Unit,图形处理器)的计算功耗过大,而且会导致绘制效率较低。
发明内容
本发明实施例提供了一种体绘制方法、装置及智能设备,可以用于解决体绘制时GPU计算功耗较大,绘制效率低下的问题。所述技术方案如下:
第一方面,提供了一种体绘制方法,所述方法包括:
在成像平面上确定注视点,并基于所述注视点在所述成像平面上确定注视点区域;
基于所述注视点区域,沿多条光线中每条光线的光线方向确定多个采样点;
其中,所述多条光线是将关注所述注视点的人眼所在的位置点与立方体模型中朝向所述人眼的表面上的每个点连接后,依次穿越所述成像平面和所述立方体模型的光线,且所述多条光线中沿光线方向上的第一个采样点位于所述注视点区域内的至少一条光线中每条光线的光线方向上相邻两个采样点之间的采样步长小于或等于第一采样步长,所述多条光线中除所述至少一条光线之外的剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长大于所述第一采样步长;
基于所述多条光线中每条光线的光线方向上的多个采样点的纹理坐标,生成三维体数据场对应的二维图像。
可选地,所述基于所述注视点在所述成像平面上确定注视点区域,包括:
将所述人眼所在的位置点与所述注视点之间的连线确定为第一视线;
基于所述第一视线,确定第二视线,所述第二视线经过所述人眼所在的位置点,且所述第二视线与所述第一视线之间的夹角为第一角度;
确定所述第二视线在所述成像平面上对应的视点;
以所述注视点为圆心,以所述注视点和所述视点之间的距离为半径,在所述成像平面上确定圆形区域,并将所述圆形区域确定为所述注视点区域。
可选地,所述基于所述注视点区域,沿多条光线中每条光线的光线方向确定多个采样点,包括:
从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线;
按照第二采样步长,沿所述至少一条光线中每条光线的光线方向确定多个采样点,并按照第三采样步长,沿所述剩余光线中每条光线的光线方向确定多个采样点,所述第二采样步长小于或等于所述第一采样步长,所述第三采样步长大于所述第一采样步长。
可选地,所述基于所述注视点区域,沿多条光线中每条光线的光线方向确定多个采样点,包括:
从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线;
基于所述至少一条光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离、所述注视点区域的半径和所述第一采样步长,确定所述至少一条光线中每条光线对应的采样步长;
基于所述剩余光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离以及所述第一采样步长,确定所述剩余光线中每条光线对应的采样步长;
其中,每条光线的光线方向上的第一个采样点与注视点之间的距离与相应光线对应的采样步长呈正相关;
按照确定的每条光线对应的采样步长沿每条光线的光线方向确定多个采样点。
可选地,所述从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线,包括:
确定所述多条光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离;
从所述多条光线中确定沿光线方向上的第一个采样点与所述注视点之间的距离不大于所述注视点区域的半径的光线,并将确定的光线作为所述至少一条光线。
可选地,所述按照确定的每条光线对应的采样步长沿每条光线的光线方向确定多个采样点,包括:
确定所述多条光线从所述成像平面起到穿越所述立方体模型的最大穿越距离;
对于所述多条光线中的任一条光线L,令i=1,基于所述第i个采样点的纹理坐标和所述光线L对应的采样步长,沿所述光线L的光线方向确定第i+1个采样点;
确定所述第i+1个采样点与第1个采样点之间的距离;
若所述第i+1个采样点与所述第1个采样点之间的距离不大于所述最大穿越距离,则令所述i=i+1,并返回所述基于所述第i个采样点的纹理坐标和所述光线L对应的采样步长,沿所述光线L的光线方向确定第i+1个采样点的步骤,若所述第i+1个采样点与所述第1个采样点之间的距离大于所述最大穿越距离,则将在所述第i+1个采样点之前确定的i个采样点确定为沿所述光线L的光线方向上的多个采样点。
第二方面,提供了一种体绘制装置,所述装置包括:
确定模块,用于在成像平面上确定注视点,并基于所述注视点在所述成像平面上确定注视点区域;
采样模块,用于基于所述注视点区域,沿所述多条光线中每条光线的光线方向确定多个采样点;
其中,所述多条光线是将关注所述注视点的人眼所在的位置点与立方体模型中朝向所述人眼的表面上的每个点连接后,依次穿越所述成像平面和所述立方体模型的光线,且所述多条光线中沿光线方向上的第一个采样点位于所述注视点区域内的至少一条光线中每条光线的光线方向上相邻两个采样点之间的采样步长小于或等于第一采样步长,所述多条光线中除所述至少一条光线之外的剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长大于所述第一采样步长;
生成模块,用于基于所述多条光线中每条光线的光线方向上的多个采样点的纹理坐标,生成所述三维体数据场对应的二维图像。
可选地,所述确定模块具体用于:
将所述人眼所在的位置点与所述注视点之间的连线确定为第一视线;
基于所述第一视线,确定第二视线,所述第二视线经过所述人眼所在的位置点,且所述第二视线与所述第一视线之间的夹角为第一角度;
确定所述第二视线在所述成像平面上对应的视点;
以所述注视点为圆心,以所述注视点和所述视点之间的距离为半径,在所述成像平面上确定圆形区域,并将所述圆形区域确定为所述注视点区域。
可选地,所述采样模块具体用于:
从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线;
按照第二采样步长,沿所述至少一条光线中每条光线的光线方向确定多个采样点,并按照第三采样步长,沿所述剩余光线中每条光线的光线方向确定多个采样点,所述第二采样步长小于或等于所述第一采样步长,所述第三采样步长大于所述第一采样步长。
可选地,所述采样模块具体用于:
从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线;
基于所述至少一条光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离、所述注视点区域的半径以及所述第一采样步长,确定所述至少一条光线中每条光线对应的采样步长;
基于所述剩余光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离以及所述第一采样步长,确定所述剩余光线中每条光线对应的采样步长;
其中,每条光线的光线方向上的第一个采样点与注视点之间的距离与相应光线对应的采样步长呈正相关;
按照确定的每条光线对应的采样步长沿每条光线的光线方向确定多个采样点。
可选地,所述采样模块具体还用于:
确定所述多条光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离;
从所述多条光线中确定沿光线方向上的第一个采样点与所述注视点之间的距离不大于所述注视点区域的半径的光线,并将确定的光线作为所述至少一条光线。
可选地,所述采样模块具体还用于:
确定所述多条光线从所述成像平面起到穿越所述立方体模型的最大穿越距离;
对于所述多条光线中的任一条光线L,令i=1,基于第i个采样点的纹理坐标和所述光线L对应的采样步长,沿所述光线L的光线方向确定第i+1个采样点;
确定所述第i+1个采样点与第1个采样点之间的距离;
若所述第i+1个采样点与所述第1个采样点之间的距离不大于所述最大穿越距离,则令所述i=i+1,并返回所述基于所述第i个采样点的纹理坐标和所述光线L对应的采样步长,沿所述光线L的光线方向确定第i+1个采样点的步骤,若所述第i+1个采样点与所述第1个采样点之间的距离大于所述最大穿越距离,则将在所述第i+1个采样点之前确定的i个采样点确定为沿所述光线L的光线方向上的多个采样点。
第三方面,提供一种体绘制装置,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为上述第一方面所述的任一项方法的步骤。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,所述指令被处理器执行时实现上述第一方面所述的任一项方法的步骤。
本发明实施例提供的技术方案带来的有益效果是:在成像平面上确定注视点,并基于该注视点在成像平面上确定注视点区域;基于该注视点区域,沿多条光线中每条光线的光线方向确定多个采样点;基于多条光线中每条光线的光线方向上的多个采样点的纹理坐标,生成三维体数据场对应的二维图像。其中,多条光线中沿光线方向上的第一个采样点位于注视点区域内的至少一条光线中每条光线方向上相邻两个采样点之间的采样步长小于第一采样步长,而除此之外剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长则大于第一采样步长。也即,在本发明实施例中,对于注视点区域内的光线,在沿光线方向进行采样时可以采用较小的采样步长,而对于注视点区域外的光线,则可以采用较大的采样步长沿光线方向进行采样,这样,以采样得到的体素值绘制得到二维图像,既可以保证用户关注区域内的图像的真实感,同时又可以减小计算量,提高绘制效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种体绘制方法的流程图;
图2是本发明实施例提供的一种体绘制方法的流程图;
图3是本发明实施例提供的一种确定屏幕坐标系下的注视点区域的示意图;
图4是本发明实施例提供的一种体绘制装置的框图;
图5是本发明实施例提供的一种智能设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在对本发明实施例进行详细的解释说明之前,先对本发明实施例涉及的应用场景予以介绍。
当前,在VR(Virtual Reality,虚拟现实)或AR(Augmented Reality,增强现实)技术中,以高沉浸感所需的高分辨率来呈现图像时,对智能设备的GPU的处理能力提出了极高的要求。而对于用户而言,智能设备绘制图像时的低延时、高帧率、高画质是保证良好的虚拟现实体验的必备条件。例如,对于VR头戴式显示设备而言,低分辨率会限制视场,导致用户体验较差。而若提高VR头戴式显示设备的分辨率,则相应地需要VR头戴式显示设备的GPU具备更高的处理能力。目前,高端GPU仍然无法为用户带来最优的VR或AR体验,因此,如何有效的利用GPU的处理能力,从而为用户提供更加符合人眼感知的高质量VR或AR内容是关键问题。而本发明实施例提供的体绘制方法即可以应用于上述场景中,以在满足用户对图像的高分辨率的要求的同时,减小智能设备的GPU的计算量。
接下来对本发明实施例提供的体绘制方法的具体实现方式进行介绍。
图1是本发明实施例提供的一种体绘制方法,该方法可以用于智能设备中,该智能设备可以是同时集成有图像处理功能以及显示功能的VR头戴式显示设备。或者,该智能设备可以是诸如手机、平板电脑、便携式电脑、台式电脑等终端,且该智能设备可以连接有VR头戴式显示设备或AR头戴式显示设备。如图1所示,该方法包括以下步骤:
步骤101:在成像平面上确定注视点,并基于注视点在成像平面上确定注视点区域。
其中,注视点可以是指人眼当前所关注的点,而注视点区域可以是指以该注视点为中心所形成的一个圆形区域。另外,成像平面是指根据三维体数据场绘制的二维图像所在的平面。
步骤102:基于注视点区域,沿多条光线中每条光线的光线方向确定多个采样点。
其中,多条光线是将关注注视点的人眼所在的位置点与立方体模型中朝向人眼的表面上的每个点连接后,依次穿越成像平面和立方体模型的光线,且多条光线中沿光线方向上的第一个采样点位于注视点区域内的至少一条光线中每条光线的光线方向上相邻两个采样点之间的采样步长小于或等于第一采样步长,多条光线中除至少一条光线之外的剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长大于第一采样步长。
还需要说明的是,立方体模型内的每个点的坐标与三维体数据场中每个体素的空间坐标存在映射关系,且该立方体模型内的每个点的坐标可以称为纹理坐标。
步骤103:基于多条光线中每条光线的光线方向上的多个采样点的纹理坐标,生成三维体数据场对应的二维图像。
在本发明实施例中,智能设备可以在成像平面上确定注视点,并基于该注视点在成像平面上确定注视点区域;基于该注视点区域,沿多条光线中每条光线的光线方向确定多个采样点;基于多条光线中每条光线的光线方向上的多个采样点的纹理坐标,生成三维体数据场对应的二维图像。其中,多条光线中沿光线方向上的第一个采样点位于注视点区域内的至少一条光线中每条光线方向上相邻两个采样点之间的采样步长小于第一采样步长,而除此之外剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长则大于第一采样步长。也即,在本发明实施例中,对于注视点区域内的光线,在沿光线方向进行采样时可以采用较小的采样步长,而对于注视点区域外的光线,则可以采用较大的采样步长沿光线方向进行采样,这样,以采样得到的体素值绘制得到二维图像,既可以保证用户关注区域内的图像的真实感,同时又可以减小计算量,提高绘制效率
图2是本发明实施例提供的一种体绘制方法的流程图,该方法可以用于智能设备中,该智能设备可以是同时集成有图像处理功能以及显示功能的VR头戴式显示设备。或者,该智能设备可以是诸如手机、平板电脑、便携式电脑、台式电脑等终端,且该智能设备可以连接有VR头戴式显示设备或AR头戴式显示设备。如图2所示,该方法包括以下步骤:
步骤201:在成像平面上确定注视点。
其中,注视点是指人眼当前所关注的点。在本发明实施例中,智能设备可以采用眼球追踪技术来对人眼进行追踪,从而得到位于智能设备的显示屏上的第一位置点。在确定第一位置点之后,智能设备可以获取该第一位置点在智能设备的显示屏上的显示坐标,并将获取的显示坐标转换为三维纹理坐标,该三维纹理坐标所标识的点即为成像平面上的注视点。
在成像平面上确定注视点之后,智能设备还可以获取关注该注视点的人眼所在的位置点,并将人眼所在的位置点与立方体模型中朝向人眼的表面上的每个点连接,从而得到依次穿越成像平面和立方体模型的多条光线。由于立方体模型中每个点的坐标与三维体数据场中的体素的空间坐标存在映射关系,因此,多条光线穿越该立方体模型实际上就相当于穿越了三维体数据场。
需要说明的是,待绘制的三维体数据场可以是由CT(Computed Tomography,计算机断层扫描)仪器或MRI(Magnetic Resonance Imaging,磁共振成像)仪器等扫描得到的,也可以是通过有限元模型得到的科学三维数据,例如,模拟得到的流场模拟数据或飓风模拟数据等。本发明实施例不对三维体数据场的具体来源进行限定。
步骤202:基于注视点在成像平面上确定注视点区域。
在本发明实施例中,基于人眼的运动及构造特性可知,人类双眼的水平视角最大可达200°,垂直视角最大可达150°。其中,在人眼的视网膜中央存在一个区域称为中央凹,该区域集中了绝大多数的视锥细胞,因此,该区域是视觉敏锐度最高的区域。而距离该区域的距离越远,成像的清晰度越差。也就是说,人眼注视某个点时,实际上仅能清晰的呈现注视的这个点周围的有限区域内的图像,而在除此之外的区域内的图像则是模糊的。基于此,智能设备可以根据注视点确定人眼能够清晰成像的区域,也即注视点区域,这样,智能设备在后续采样时,可以在该注视点区域内采用较小的步长进行采样,以此为用户提供高分辨率的图像,而在该注视点区域外的则可以采用较大的采样步长进行采样,以此来减小GPU的计算量。
具体的,在本发明实施例中,智能设备可以将人眼所在位置点与注视点之间的连线确定为第一视线,基于第一视线,确定第二视线,第二视线经过人眼所在的位置点,且第二视线与第一视线之间的夹角为第一角度;确定第二视线在成像平面上对应的视点;以该注视点为圆心,以该注视点与该视点之间的距离为半径,在成像平面上确定圆形区域,并将该圆形区域确定为注视点区域。
图3示出了一种确定注视点区域的示意图。如图3中左图所示,假设人眼所在位置点为A点,成像平面为BC,成像平面上的注视点为D,在这种情况下,线段AD所在的射线即为第一视线L1,以该第一视线为基准,确定经过A点且与AD呈第一角度的第二视线L2,其中,该第二视线L2在成像平面上对应的视点为E。以注视点D为圆心,以注视点D与视点E之间的距离,也即线段DE的长度为半径的圆形区域即为该成像平面上的注视点区域。其中,成像平面上的注视点区域的正视图如图3中右图所示。
需要说明的是,第一角度可以根据人眼能够清晰成像的视角确定得到。例如,人眼的中央凹的视角通常在5°左右,也即,在注视点周围5°左右的圆形区域内是人眼高清可视区域,因此,该第一角度可以为5°。再例如,在注视点周围10-30°左右的圆形区域内人眼仍然可以清晰成像,因此,该第一角度也可以为10-30°中的任一数值。
步骤203:基于注视点区域,沿多条光线中每条光线的光线方向确定多个采样点,并基于每条光线的光线方向上的多个采样点的纹理坐标确定相应光线与成像平面的交点的像素值。
在确定注视点区域之后,智能设备可以基于该注视点区域,通过以下两种不同的方式沿多条光线中每条光线的光线方向确定多个采样点。
第一种方式,智能设备可以从多条光线中确定沿光线方向上的第一个采样点位于注视点区域内的至少一条光线,按照第二采样步长,沿至少一条光线中每条光线的光线方向确定多个采样点,并按照第三采样步长,沿剩余光线中每条光线的光线方向确定多个采样点,第二采样步长小于或等于第一采样步长,第三采样步长大于第一采样步长。
其中,智能设备可以将多条光线中每条光线与成像平面的交点确定为相应光线的第一个采样点,并确定每条光线的第一个采样点与成像平面上的注视点之间的距离,若二者之间的距离小于注视点区域的半径,则说明相应光线的第一个采样点位于该注视点区域之内。通过该种方式,智能设备可以从多条光线中确定至少一条对应的第一个采样点位于注视点区域内的光线。
在确定得到至少一条光线之后,对于该至少一条光线中的每条光线,智能设备均可以按照第二采样步长进行采样,而对于除此之外的剩余光线中的每条光线,则均可以均按照第三采样步长进行采样。其中,第二采样步长小于或等于第一采样步长,第三采样步长大于第一采样步长。
第二种方式,智能设备可以从多条光线中确定沿光线方向上的第一个采样点位于注视点区域内的至少一条光线;基于至少一条光线中每条光线的光线方向上的第一个采样点与注视点之间的距离、注视点区域的半径和第一采样步长,确定至少一条光线中每条光线对应的采样步长;基于剩余光线中每条光线的光线方向上的第一个采样点与注视点之间的距离以及第一采样步长,确定剩余光线中每条光线对应的采样步长;其中,每条光线的光线方向上的第一个采样点与注视点之间的距离与相应光线对应的采样步长呈正相关;按照确定的每条光线对应的采样步长沿每条光线的光线方向确定多个采样点。
其中,智能设备从多条光线中确定沿光线方向上的第一个采样点位于注视点区域内的至少一条光线的实现方式可以参考前文所述的相关实现方式,本发明实施例在此不再赘述。
在确定至少一条光线之后,智能设备可以将注视点区域的半径划分为多个连续的数值区间,每个数值区间可以对应一个采样步长,其中,距离注视点越近的数值区间,则对应的采样步长越小,多个连续的数值区间中的最后一个数值区间,也即距离注视点最远的数值区间对应的采样步长可以等于第一采样步长,之后,智能设备可以确定至少一条光线中每条光线的光线方向上的第一个采样点与注视点之间的距离所在的数值区间,并按照该数值区间为每条光线设置对应的采样步长。
而对于除至少一条光线之外的剩余光线,智能设备可以按照剩余光线中每条光线的第一个采样点与注视点之间的距离来为每条光线设置相应地采样步长。其中,每条光线的光线方向上的第一个采样点与注视点之间的距离与相应光线对应的采样步长呈正相关,也即,第一个采样点与注视点之间的距离越小,则相应光线对应的采样步长可以设置的越小。换句话说,随着第一个采样点与注视点之间的距离增大,光线对应的采样步长也在增大。需要说明的是,其中,剩余光线中对应的第一个采样点距离注视点最近的光线的光线方向上的采样步长大于第一采样步长。
通过上述方式,智能设备可以按照每条光线的光线方向上第一个采样点距离注视点的远近,来为每条光线分配相应地采样步长,进而按照分配的采样步长在每条光线的光线方向上确定多个采样点。
当智能设备通过上述介绍的任一种方式沿每条光线的光线方向上确定多个采样点时,每当确定得到一个采样点,智能设备可以根据确定的这个采样点的纹理坐标获取这个采样点对应的体素值,根据获取的这个采样点对应的体素值确定这个采样点的合成颜色值和合成透明度值,直到确定得到最后一个采样点的合成颜色值和合成透明度值时,将最后一个采样点的合成颜色值和合成透明度值确定为相应光线与成像平面的交点的像素值。
示例性的,对于多条光线中的任一条光线L,智能设备可以确定多条光线从成像平面起穿越立方体模型的最大穿越距离,令i=1,基于第i个采样点和光线L对应的采样步长,沿光线L的光线方向确定第i+1个采样点;确定第i+1个采样点与第1个采样点之间的距离,若第i+1个采样点与第1个采样点之间的距离不大于最大穿越距离,则基于第i+1个采样点的纹理坐标获取第i+1个采样点对应的体素值;基于获取的第i+1个采样点的体素值和第i个采样点的合成颜色值和合成透明度值,计算第i+1个采样点的合成颜色值和合成透明度值;若第i+1个采样点的合成透明度值小于1,则令i=i+1,并返回基于第i个采样点的纹理坐标和光线L对应的采样步长,沿光线L的光线方向确定第i+1个采样点的步骤,直到第i+1个采样点的合成透明度值不小于1时,将第i+1个采样点的合成颜色值和合成透明度值确定为光线L与成像平面的交点的像素值。
具体地,智能设备可以确定多条光线中每条光线从成像平面起到穿越立方体模型的穿越距离,并从确定的多个穿越距离中确定最大穿越距离。其中,由于确定每条光线穿越立方体模型时的穿越距离时需要确定每条光线与立方体模型的表面的交点,而考虑到智能设备的GPU在确定光线与立方体模型的交点时的计算量较大,计算过程较为复杂,因此,智能设备可以将立方体模型中朝向人眼的平面以及与该朝向人眼的平面平行的表面之间的距离和成像平面到立方体模型中朝向人眼的平面之间的距离之和确定为最大穿越距离。之后,当i=1时,智能设备可以将光线L穿越成像平面时在该成像平面的入射点作为光线L的光线方向上的第一个采样点。
在确定光线L在光线方向上的第一个采样点之后,智能设备可以获取第一个采样点的纹理坐标,并根据第一个采样点的纹理坐标获取第一采样点对应的体素值。由于第一个采样点实际上并不在立方体模型之内,也即第一个采样点并不对应有体素值,因此,第一个采样点的体素值为0。之后,智能设备可以基于第一个采样点的体素值,通过传输函数计算得到第一个采样点的颜色采样值和透明度采样值。由于第一个采样点之前没有其他采样点,因此,可以将计算得到的第一个采样点的颜色采样值和透明度采样值,作为该第一个采样点的合成颜色值和合成透明度值。
在确定第一个采样点的合成颜色值和合成透明度值之后,智能设备可以基于第一个采样点的纹理坐标和光线L对应的采样步长确定第二个采样点。
其中,若采用第一种方式,当光线L为前述的确定的至少一条光线中的任一条光线时,光线L对应的采样步长将为第二采样步长,若光线L为前述确定的除至少一条光线之外的剩余光线中的任一条时,则光线L对应的采样步长将为第三采样步长,其中,第二采样步长可以是当前分辨率的最小步长,第三采样步长可以大于第二采样步长且大于第一采样步长,其中,第一采样步长可以是用户设置的大于或等于第二采样步长的采样步长,或者是根据GPU的处理能力设置的大于第二采样步长的步长,或者是根据当前三维体数据场的数据量确定的大于或等于第二采样步长的步长,或者是综合考虑GPU的处理能力、三维体数据场的数据量的大小以及其他诸多因素设置的大于或等于第二采样步长的步长。若采用第二种方式,则对于不同的光线L,可能对应有不同的采样步长。
在确定第二个采样点之后,智能设备可以确定第二个采样点与第一个采样点之间的距离,并判断第二个采样点与第一个采样点之间的距离是否大于最大穿越距离,以此来判断光线L是否已穿出该立方体模型。
若第二个采样点与第一个采样点之间的距离大于最大穿越距离,则说明光线L已经穿出该立方体模型,也即,第二个采样点已经位于该立方体模型之外,而第一个采样点即为该光线L的光线方向上的最后一个采样点,此时,智能设备可以将第一个采样点的合成颜色值和合成透明度值确定为光线L与成像平面的交点的像素值。
若第二个采样点与第一个采样点之间的距离不大于最大穿越距离,则说明光线L还未穿出该立方体模型。此时,智能设备可以基于第二个采样点的纹理坐标获取第二个采样点对应的体素值,并基于第二个采样点的体素值,通过传输函数确定第二个采样点的颜色采样值和透明度采样值。之后,智能设备可以根据第二个采样点的颜色采样值、第二个采样点的前一个采样点的合成颜色值和合成透明度值,通过下述公式(1)计算第二个采样点的合成颜色值,根据第二个采样点的透明度采样值和第二个采样点的前一个采样点的合成透明度值,通过下述公式(2)计算得到第二个采样点的合成透明度值。其中,第二个采样点的前一个采样点也即第一个采样点。
其中,为第二个采样点的合成颜色值,/>为第一个采样点的合成透明度值,C2为第二个采样点的颜色采样值,/>为第一个采样点的合成颜色值,/>为第二个采样点的合成透明度值,A2为第二个采样点的透明度采样值。
在确定第二个采样点的合成颜色值和合成透明度值之后,智能设备还可以进一步的判断第二个采样点的合成透明度值是否小于1,若第二个采样点的合成透明度值小于1,则智能设备可以参考前述根据第一个采样点确定第二个采样点以及计算第二个采样点的合成颜色值和合成透明度值的方法,根据第二个采样点确定第三个采样点并计算第三个采样点的合成颜色值和合成透明度值,以此类推,直到根据第i个采样点确定的第i+1个采样点与第一个采样点之间的距离大于最大穿越距离,也即,直到第i+1个采样点位于立方体模型之外时,或者,直到根据第i个采样点计算的第i+1个采样点的合成透明度值不小于1时,智能设备停止计算,并将确定的第i个采样点的合成颜色值和合成透明度值确定为光线L与成像平面的交点的像素值。
上述主要介绍了智能设备可以在每确定一个采样点时,即对采样点进行采样获取体素值,以确定每个采样点的像素值,进而得到每条光线与成像平面的交点的像素值的实现方式,可选地,在一种可能的实现方式中,智能设备也可以在沿每条光线的光线方向确定得到多个采样点之后,再按照采样顺序依次计算多个采样点中每个采样点的合成颜色值和合成透明度值。本发明实施例对此不再赘述。
步骤204:基于多条光线中每条光线与成像平面的交点的像素值,生成三维体数据场对应的二维图像。
当确定多条光线中每条光线与成像平面的交点的像素值之后,智能设备可以将多条光线与成像平面的多个交点作为多个像素点,以此生成三维体数据场对应的二维图像。其中,每个像素点的像素值也就是前述确定的相应地像素值。
在本发明实施例中,智能设备可以在成像平面上确定注视点,并基于该注视点在成像平面上确定注视点区域;基于该注视点区域,沿多条光线中每条光线的光线方向确定多个采样点,并基于每条光线的光线方向上的多个采样点的纹理坐标确定相应光线与成像平面的交点的像素值;基于确定的多条光线中每条光线与成像平面的交点的像素值,生成三维体数据场对应的二维图像。其中,多条光线中沿光线方向上的第一个采样点位于注视点区域内的至少一条光线中每条光线的光线方向上相邻两个采样点之间的采样步长小于或等于第一采样步长,多条光线中除至少一条光线之外的剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长大于第一采样步长。也即,在本发明实施例中,若某条光线的光线方向上的第一个采样点位于注视点区域内,则智能设备接下来可以采用较小的采样步长在该光线的光线方向上进行采样,而一旦某个采样点位于注视点区域外,则接下来智能设备可以采用较大的采样步长在该光线的光线方向上进行采样,这样,以采样得到的体素值绘制得到二维图像,既可以保证用户关注区域内的图像的真实感,同时又可以减小计算量,提高绘制效率。
另外,对于用户而言,当用户注视某个点时,这个点周边的一定区域内的图像会变得清晰,而离这个点更远的区域内的图像则会变模糊,正是如此,用户看物体才会有空间感。如果在用户的视线转移的过程中,也即,如果随着用户的注视点发生变化,图像的各个部分的清晰度均相同,且不发生变化,那么,用户的眼睛会有“不适应感”,并且,用户的眼睛会因为处理过多的信息而疲劳,甚至发生眩晕。而在本发明实施例中,由于本发明实施例是根据注视点确定注视点区域后,根据注视点区域来确定采样步长,进而采样体绘制来绘制二维图像的,这样,当注视点发生变化时,绘制的二维图像中清晰的区域和模糊的区域也会相应地发生变化,也即是,本发明实施例中根据注视点来进行体绘制,可以更真实的模拟人眼视觉,从而有效的减轻用户的视疲劳、眩晕等生理性不适。
接下来对本发明实施例提供的体绘制装置进行介绍。
图4是本发明实施例提供的一种体绘制装置400,该装置400可以集成于前述实施例中所述的智能设备中,参见图4,该装置400包括:
确定模块401,用于在成像平面上确定注视点,并基于注视点在成像平面上确定注视点区域;
采样模块402,用于基于注视点区域,沿多条光线中每条光线的光线方向确定多个采样点;
其中,多条光线是将关注所述注视点的人眼所在的位置点与立方体模型中朝向人眼的表面上的每个点连接后,依次穿越成像平面和立方体模型的光线,且多条光线中沿光线方向上的第一个采样点位于注视点区域内的至少一条光线中每条光线的光线方向上相邻两个采样点之间的采样步长小于或等于第一采样步长,多条光线中除至少一条光线之外的剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长大于第一采样步长;
生成模块403,用于基于多条光线中每条光线的光线方向上多个采样点的纹理坐标,生成三维体数据场对应的二维图像。
可选地,确定模块401具体用于:
将人眼所在的位置点与注视点之间的连线确定为第一视线;
基于第一视线,确定第二视线,第二视线经过人眼所在的位置点,且第二视线与第一视线之间的夹角为第一角度;
确定第二视线在成像平面上对应的视点;
以注视点为圆心,以注视点和视点之间的距离为半径,确定圆形区域,并将该圆形区域确定为注视点区域。
可选地,采样模块402具体用于:
从多条光线中确定沿光线方向上的第一个采样点位于注视点区域内的至少一条光线;
基于至少一条光线中每条光线的光线方向上的第一个采样点与注视点之间的距离、注视点区域的半径以及第一采样步长,确定至少一条光线中每条光线对应的采样步长;
基于剩余光线中每条光线的光线方向上的第一个采样点与注视点之间的距离以及第一采样步长,确定剩余光线中每条光线对应的采样步长;
其中,每条光线的光线方向上的第一个采样点与注视点之间的距离与相应光线对应的采样步长呈正相关;
按照确定的每条光线对应的采样步长沿每条光线的光线方向确定多个采样点。
可选地,采样模块402具体还用于:
确定多条光线中每条光线的光线方向上的第一个采样点与注视点之间的距离;
从多条光线中确定沿光线方向上的第一个采样点与注视点之间的距离不大于注视点区域的半径的光线,并将确定的光线作为至少一条光线。
可选地,采样模块402具体还用于:
确定多条光线从成像平面起到穿越立方体模型的最大穿越距离;
对于多条光线中的任一条光线L,令i=1,基于第i个采样点的纹理坐标和光线L对应的采样步长,沿光线L的光线方向确定第i+1个采样点;
确定第i+1个采样点与第1个采样点之间的距离;
若第i+1个采样点与第1个采样点之间的距离不大于最大穿越距离,则令i=i+1,并返回基于第i个采样点的纹理坐标和光线L对应的采样步长,沿光线L的光线方向确定第i+1个采样点的步骤,若第i+1个采样点与第1个采样点之间的距离大于最大穿越距离,则将在第i+1个采样点之前确定的i个采样点确定为沿光线L的光线方向上的多个采样点。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
在本发明实施例中,在成像平面上确定注视点,并基于该注视点在成像平面上确定注视点区域;基于该注视点区域,沿多条光线中每条光线的光线方向确定多个采样点,并基于每条光线的光线方向上的多个采样点的纹理坐标确定相应光线与成像平面的交点的像素值;基于确定的多条光线中每条光线与成像平面的交点的像素值,生成三维体数据场对应的二维图像。其中,多条光线中沿光线方向上的第一个采样点位于注视点区域内的至少一条光线中每条光线的光线方向上相邻两个采样点之间的采样步长小于或等于第一采样步长,多条光线中除至少一条光线之外的剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长大于第一采样步长。也即,在本发明实施例中,若某条光线的光线方向上的第一个采样点位于注视点区域内,则智能设备接下来可以采用较小的采样步长在该光线的光线方向上进行采样,而一旦某个采样点位于注视点区域外,则接下来智能设备可以采用较大的采样步长在该光线的光线方向上进行采样,这样,以采样得到的体素值绘制得到二维图像,既可以保证用户关注区域内的图像的真实感,同时又可以减小计算量,提高绘制效率。
需要说明的是:上述实施例提供的体绘制装置在进行体绘制时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的体绘制装置与体绘制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图5示出了本发明一个示例性实施例提供的智能设备500的结构框图。其中,该智能设备500可以是:笔记本电脑、台式电脑、智能手机或平板电脑等。智能设备500还可能被称为用户设备、便携式终端、膝上型终端、台式终端等。
通常,智能设备500包括有:处理器501和存储器502。
处理器501可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器501可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器501也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central ProcessingUnit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器501可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器501还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器502可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器502还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器502中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器501所执行以实现本申请中方法实施例提供的体绘制方法。
在一些实施例中,智能设备500还可选包括有:外围设备接口503和至少一个外围设备。处理器501、存储器502和外围设备接口503之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口503相连。具体地,外围设备包括:射频电路504、触摸显示屏505、摄像头506、音频电路507、定位组件508和电源509中的至少一种。
外围设备接口503可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器501和存储器502。在一些实施例中,处理器501、存储器502和外围设备接口503被集成在同一芯片或电路板上;在一些其他实施例中,处理器501、存储器502和外围设备接口503中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
射频电路504用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路504通过电磁信号与通信网络以及其他通信设备进行通信。射频电路504将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路504包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。射频电路504可以通过至少一种无线通信协议来与其它终端进行通信。该无线通信协议包括但不限于:万维网、城域网、内联网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或WiFi(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路504还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。
显示屏505用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏505是触摸显示屏时,显示屏505还具有采集在显示屏505的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器501进行处理。此时,显示屏505还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏505可以为一个,设置智能设备500的前面板;在另一些实施例中,显示屏505可以为至少两个,分别设置在智能设备500的不同表面或呈折叠设计;在再一些实施例中,显示屏505可以是柔性显示屏,设置在智能设备500的弯曲表面上或折叠面上。甚至,显示屏505还可以设置成非矩形的不规则图形,也即异形屏。显示屏505可以采用LCD(Liquid Crystal Display,液晶显示屏)、OLED(Organic Light-Emitting Diode,有机发光二极管)等材质制备。
摄像头组件506用于采集图像或视频。可选地,摄像头组件506包括前置摄像头和后置摄像头。通常,前置摄像头设置在终端的前面板,后置摄像头设置在终端的背面。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及VR(Virtual Reality,虚拟现实)拍摄功能或者其它融合拍摄功能。在一些实施例中,摄像头组件506还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以用于不同色温下的光线补偿。
音频电路507可以包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器501进行处理,或者输入至射频电路504以实现语音通信。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在智能设备500的不同部位。麦克风还可以是阵列麦克风或全向采集型麦克风。扬声器则用于将来自处理器501或射频电路504的电信号转换为声波。扬声器可以是传统的薄膜扬声器,也可以是压电陶瓷扬声器。当扬声器是压电陶瓷扬声器时,不仅可以将电信号转换为人类可听见的声波,也可以将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路507还可以包括耳机插孔。
定位组件508用于定位智能设备500的当前地理位置,以实现导航或LBS(LocationBased Service,基于位置的服务)。定位组件508可以是基于美国的GPS(GlobalPositioning System,全球定位系统)、中国的北斗系统或欧盟的伽利略系统的定位组件。
电源509用于为智能设备500中的各个组件进行供电。电源509可以是交流电、直流电、一次性电池或可充电电池。当电源509包括可充电电池时,该可充电电池可以是有线充电电池或无线充电电池。有线充电电池是通过有线线路充电的电池,无线充电电池是通过无线线圈充电的电池。该可充电电池还可以用于支持快充技术。
在一些实施例中,智能设备500还包括有一个或多个传感器510。该一个或多个传感器510包括但不限于:加速度传感器511、陀螺仪传感器512、压力传感器513、指纹传感器514、光学传感器515以及接近传感器516。
加速度传感器511可以检测以智能设备500建立的坐标系的三个坐标轴上的加速度大小。比如,加速度传感器511可以用于检测重力加速度在三个坐标轴上的分量。处理器501可以根据加速度传感器511采集的重力加速度信号,控制触摸显示屏505以横向视图或纵向视图进行用户界面的显示。加速度传感器511还可以用于游戏或者用户的运动数据的采集。
陀螺仪传感器512可以检测智能设备500的机体方向及转动角度,陀螺仪传感器512可以与加速度传感器511协同采集用户对智能设备500的3D动作。处理器501根据陀螺仪传感器512采集的数据,可以实现如下功能:动作感应(比如根据用户的倾斜操作来改变UI)、拍摄时的图像稳定、游戏控制以及惯性导航。
压力传感器513可以设置在智能设备500的侧边框和/或触摸显示屏505的下层。当压力传感器513设置在智能设备500的侧边框时,可以检测用户对智能设备500的握持信号,由处理器501根据压力传感器513采集的握持信号进行左右手识别或快捷操作。当压力传感器513设置在触摸显示屏505的下层时,由处理器501根据用户对触摸显示屏505的压力操作,实现对UI界面上的可操作性控件进行控制。可操作性控件包括按钮控件、滚动条控件、图标控件、菜单控件中的至少一种。
指纹传感器514用于采集用户的指纹,由处理器501根据指纹传感器514采集到的指纹识别用户的身份,或者,由指纹传感器514根据采集到的指纹识别用户的身份。在识别出用户的身份为可信身份时,由处理器501授权该用户执行相关的敏感操作,该敏感操作包括解锁屏幕、查看加密信息、下载软件、支付及更改设置等。指纹传感器514可以被设置智能设备500的正面、背面或侧面。当智能设备500上设置有物理按键或厂商Logo时,指纹传感器514可以与物理按键或厂商Logo集成在一起。
光学传感器515用于采集环境光强度。在一个实施例中,处理器501可以根据光学传感器515采集的环境光强度,控制触摸显示屏505的显示亮度。具体地,当环境光强度较高时,调高触摸显示屏505的显示亮度;当环境光强度较低时,调低触摸显示屏505的显示亮度。在另一个实施例中,处理器501还可以根据光学传感器515采集的环境光强度,动态调整摄像头组件506的拍摄参数。
接近传感器516,也称距离传感器,通常设置在智能设备500的前面板。接近传感器516用于采集用户与智能设备500的正面之间的距离。在一个实施例中,当接近传感器516检测到用户与智能设备500的正面之间的距离逐渐变小时,由处理器501控制触摸显示屏505从亮屏状态切换为息屏状态;当接近传感器516检测到用户与智能设备500的正面之间的距离逐渐变大时,由处理器501控制触摸显示屏505从息屏状态切换为亮屏状态。
也即是,本发明实施例不仅提供了一种体绘制装置,该装置可以应用于上述智能设备500中,包括处理器和用于存储处理器可执行指令的存储器,其中,处理器被配置为执行图1和图2所示的实施例中体绘制方法,而且,本发明实施例还提供了一种计算机可读存储介质,该存储介质内存储有计算机程序,该计算机程序被处理器执行时可以实现图1和图2所示的实施例中体绘制方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种体绘制方法,其特征在于,所述方法包括:
将人眼所在的位置点与成像平面上的注视点之间的连线确定为第一视线;
基于所述第一视线,确定第二视线,所述第二视线经过所述人眼所在的位置点,且所述第二视线与所述第一视线之间的夹角为第一角度;
确定所述第二视线在所述成像平面上对应的视点;
以所述注视点为圆心,以所述注视点与所述视点之间的距离为半径,在所述成像平面上确定圆形区域,并将所述圆形区域确定为注视点区域;
基于所述注视点区域,沿多条光线中每条光线的光线方向确定多个采样点;
其中,所述多条光线是将关注所述注视点的人眼所在的位置点与立方体模型中朝向所述人眼的表面上的每个点连接后,依次穿越所述成像平面和所述立方体模型的光线,且所述多条光线中沿光线方向上的第一个采样点位于所述注视点区域内的至少一条光线中每条光线的光线方向上相邻两个采样点之间的采样步长小于或等于第一采样步长,所述多条光线中除所述至少一条光线之外的剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长大于所述第一采样步长;
基于所述多条光线中每条光线的光线方向上的多个采样点的纹理坐标,生成三维体数据场对应的二维图像。
2.根据权利要求1所述的方法,其特征在于,所述基于所述注视点区域,沿多条光线中每条光线的光线方向确定多个采样点,包括:
从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线;
按照第二采样步长,沿所述至少一条光线中每条光线的光线方向确定多个采样点,并按照第三采样步长,沿所述剩余光线中每条光线的光线方向确定多个采样点,所述第二采样步长小于或等于所述第一采样步长,所述第三采样步长大于所述第一采样步长。
3.根据权利要求1所述的方法,其特征在于,所述基于所述注视点区域,沿多条光线中每条光线的光线方向确定多个采样点,包括:
从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线;
基于所述至少一条光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离、所述注视点区域的半径和所述第一采样步长,确定所述至少一条光线中每条光线对应的采样步长;
基于所述剩余光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离以及所述第一采样步长,确定所述剩余光线中每条光线对应的采样步长;
其中,每条光线的光线方向上的第一个采样点与注视点之间的距离与相应光线对应的采样步长呈正相关;
按照确定的每条光线对应的采样步长沿每条光线的光线方向确定多个采样点。
4.根据权利要求2或3所述的方法,其特征在于,所述从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线,包括:
确定所述多条光线中每条光线的光线方向上的第一个采样点与所述注视点之间的距离;
从所述多条光线中确定沿光线方向上的第一个采样点与所述注视点之间的距离不大于所述注视点区域的半径的光线,并将确定的光线作为所述至少一条光线。
5.根据权利要求3所述的方法,其特征在于,所述按照确定的每条光线对应的采样步长沿每条光线的光线方向确定多个采样点,包括:
确定所述多条光线从所述成像平面起到穿越所述立方体模型的最大穿越距离;
对于所述多条光线中的任一条光线L,令i=1,基于第i个采样点的纹理坐标和所述光线L对应的采样步长,沿所述光线L的光线方向确定第i+1个采样点;
确定所述第i+1个采样点与第1个采样点之间的距离;
若所述第i+1个采样点与所述第1个采样点之间的距离不大于所述最大穿越距离,则令所述i=i+1,并返回所述基于所述第i个采样点的纹理坐标和所述光线L对应的采样步长,沿所述光线L的光线方向确定第i+1个采样点的步骤,若所述第i+1个采样点与所述第1个采样点之间的距离大于所述最大穿越距离,则将在所述第i+1个采样点之前确定的i个采样点确定为沿所述光线L的光线方向上的多个采样点。
6.一种体绘制装置,其特征在于,所述装置包括:
确定模块,用于将人眼所在的位置点与成像平面上的注视点之间的连线确定为第一视线;基于所述第一视线,确定第二视线,所述第二视线经过所述人眼所在的位置点,且所述第二视线与所述第一视线之间的夹角为第一角度;确定所述第二视线在所述成像平面上对应的视点;以所述注视点为圆心,以所述注视点与所述视点之间的距离为半径,在所述成像平面上确定圆形区域,并将所述圆形区域确定为注视点区域;
采样模块,用于基于所述注视点区域,沿多条光线中每条光线的光线方向确定多个采样点;
其中,所述多条光线是将关注所述注视点的人眼所在的位置点与立方体模型中朝向所述人眼的表面上的每个点连接后,依次穿越所述成像平面和所述立方体模型的光线,且所述多条光线中沿光线方向上的第一个采样点位于所述注视点区域内的至少一条光线中每条光线的光线方向上相邻两个采样点之间的采样步长小于或等于第一采样步长,所述多条光线中除所述至少一条光线之外的剩余光线中每条光线的光线方向上相邻两个采样点之间的采样步长大于所述第一采样步长;
生成模块,用于基于所述多条光线中每条光线的光线方向上的多个采样点的纹理坐标,生成三维体数据场对应的二维图像。
7.根据权利要求6所述的装置,其特征在于,所述采样模块具体用于:
从所述多条光线中确定沿光线方向上的第一个采样点位于所述注视点区域内的所述至少一条光线;
按照第二采样步长,沿所述至少一条光线中每条光线的光线方向确定多个采样点,并按照第三采样步长,沿所述剩余光线中每条光线的光线方向确定多个采样点,所述第二采样步长小于或等于所述第一采样步长,所述第三采样步长大于所述第一采样步长。
8.一种智能设备,其特征在于,所述智能设备包括:
处理器,所述处理器包括图像处理器GPU;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为权利要求1-5任一项所述的方法的步骤。
CN201810778018.2A 2018-07-16 2018-07-16 一种体绘制方法、装置及智能设备 Active CN110728744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810778018.2A CN110728744B (zh) 2018-07-16 2018-07-16 一种体绘制方法、装置及智能设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810778018.2A CN110728744B (zh) 2018-07-16 2018-07-16 一种体绘制方法、装置及智能设备

Publications (2)

Publication Number Publication Date
CN110728744A CN110728744A (zh) 2020-01-24
CN110728744B true CN110728744B (zh) 2023-09-19

Family

ID=69217258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810778018.2A Active CN110728744B (zh) 2018-07-16 2018-07-16 一种体绘制方法、装置及智能设备

Country Status (1)

Country Link
CN (1) CN110728744B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739121B (zh) * 2020-06-08 2024-06-18 北京联想软件有限公司 画虚拟线条的方法、装置、设备及存储介质
WO2022121655A1 (zh) * 2020-12-08 2022-06-16 上海米哈游天命科技有限公司 确定透明度的方法、装置、电子设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021909A1 (en) * 1995-01-10 1996-07-18 Försvarets Forskningsanstalt Method for reducing computer calculations when generating virtual images
JP2002183746A (ja) * 2000-11-30 2002-06-28 Terarecon Inc ボリュームデータ集合のレンダリング方法
CN101178816A (zh) * 2007-12-07 2008-05-14 桂林电子科技大学 基于面采样的体绘制可视化方法
CN101783025A (zh) * 2010-02-02 2010-07-21 冯前进 一种基于等值面的保留上下文环境体绘制方法
CN101794460A (zh) * 2010-03-09 2010-08-04 哈尔滨工业大学 基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法
CN101937578A (zh) * 2010-09-08 2011-01-05 宁波大学 一种虚拟视点彩色图像绘制方法
CN103295259A (zh) * 2013-05-31 2013-09-11 浙江工业大学 一种自适应采样的最小梯度夹角预积分光照方法
CN103679718A (zh) * 2013-12-06 2014-03-26 河海大学 一种基于显著性的快速场景分析方法
JP2016009374A (ja) * 2014-06-25 2016-01-18 株式会社東芝 情報処理装置、方法及びプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021909A1 (en) * 1995-01-10 1996-07-18 Försvarets Forskningsanstalt Method for reducing computer calculations when generating virtual images
JP2002183746A (ja) * 2000-11-30 2002-06-28 Terarecon Inc ボリュームデータ集合のレンダリング方法
CN101178816A (zh) * 2007-12-07 2008-05-14 桂林电子科技大学 基于面采样的体绘制可视化方法
CN101783025A (zh) * 2010-02-02 2010-07-21 冯前进 一种基于等值面的保留上下文环境体绘制方法
CN101794460A (zh) * 2010-03-09 2010-08-04 哈尔滨工业大学 基于光线投射体绘制算法的人体心脏三维解剖组织结构模型可视化方法
CN101937578A (zh) * 2010-09-08 2011-01-05 宁波大学 一种虚拟视点彩色图像绘制方法
CN103295259A (zh) * 2013-05-31 2013-09-11 浙江工业大学 一种自适应采样的最小梯度夹角预积分光照方法
CN103679718A (zh) * 2013-12-06 2014-03-26 河海大学 一种基于显著性的快速场景分析方法
JP2016009374A (ja) * 2014-06-25 2016-01-18 株式会社東芝 情報処理装置、方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李春民 等.基于移动立方体法的矿体三维绘制技术.《矿业研究与开发》.2006,第第26卷卷(第第3期期),第71-73页. *

Also Published As

Publication number Publication date
CN110728744A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
CN109712224B (zh) 虚拟场景的渲染方法、装置及智能设备
US11288807B2 (en) Method, electronic device and storage medium for segmenting image
US20210158021A1 (en) Method for processing images and electronic device
US11403763B2 (en) Image segmentation method and apparatus, computer device, and storage medium
CN110488977B (zh) 虚拟现实显示方法、装置、系统及存储介质
CN110059744B (zh) 训练神经网络的方法、图像处理的方法、设备及存储介质
CN110992493B (zh) 图像处理方法、装置、电子设备及存储介质
CN111324250B (zh) 三维形象的调整方法、装置、设备及可读存储介质
CN111028144B (zh) 视频换脸方法及装置、存储介质
WO2020151594A1 (zh) 视角转动的方法、装置、设备及存储介质
CN113763228B (zh) 图像处理方法、装置、电子设备及存储介质
WO2020233403A1 (zh) 三维角色的个性化脸部显示方法、装置、设备及存储介质
CN112581358B (zh) 图像处理模型的训练方法、图像处理方法及装置
CN110956580B (zh) 图像换脸的方法、装置、计算机设备以及存储介质
CN110796083B (zh) 图像显示方法、装置、终端及存储介质
CN111784841B (zh) 重建三维图像的方法、装置、电子设备及介质
US20240212114A1 (en) Method, apparatus, and device for processing image, and storage medium
CN110853128A (zh) 虚拟物体显示方法、装置、计算机设备及存储介质
CN110728744B (zh) 一种体绘制方法、装置及智能设备
CN113160031B (zh) 图像处理方法、装置、电子设备及存储介质
CN109685881B (zh) 一种体绘制方法、装置及智能设备
WO2018192455A1 (zh) 一种生成字幕的方法及装置
CN112967261B (zh) 图像融合方法、装置、设备及存储介质
CN109472855B (zh) 一种体绘制方法、装置及智能设备
WO2021218926A1 (zh) 图像显示方法、装置和计算机设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 266555 Qingdao economic and Technological Development Zone, Shandong, Hong Kong Road, No. 218

Applicant after: Hisense Visual Technology Co., Ltd.

Address before: 266555 Qingdao economic and Technological Development Zone, Shandong, Hong Kong Road, No. 218

Applicant before: QINGDAO HISENSE ELECTRONICS Co.,Ltd.

GR01 Patent grant
GR01 Patent grant