CN110723718A - A kind of preparation method of nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion battery - Google Patents
A kind of preparation method of nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion battery Download PDFInfo
- Publication number
- CN110723718A CN110723718A CN201911048791.4A CN201911048791A CN110723718A CN 110723718 A CN110723718 A CN 110723718A CN 201911048791 A CN201911048791 A CN 201911048791A CN 110723718 A CN110723718 A CN 110723718A
- Authority
- CN
- China
- Prior art keywords
- lithium
- preparation
- source
- composite material
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 43
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 37
- 239000002131 composite material Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000006185 dispersion Substances 0.000 claims description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 24
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 14
- 229910052744 lithium Inorganic materials 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims description 12
- 239000011574 phosphorus Substances 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 8
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 8
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 8
- 239000008103 glucose Substances 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- PVFSDGKDKFSOTB-UHFFFAOYSA-K iron(3+);triacetate Chemical compound [Fe+3].CC([O-])=O.CC([O-])=O.CC([O-])=O PVFSDGKDKFSOTB-UHFFFAOYSA-K 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 3
- 239000005955 Ferric phosphate Substances 0.000 claims description 2
- 229930091371 Fructose Natural products 0.000 claims description 2
- 239000005715 Fructose Substances 0.000 claims description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- REKWWOFUJAJBCL-UHFFFAOYSA-L dilithium;hydrogen phosphate Chemical compound [Li+].[Li+].OP([O-])([O-])=O REKWWOFUJAJBCL-UHFFFAOYSA-L 0.000 claims description 2
- 229940032958 ferric phosphate Drugs 0.000 claims description 2
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 2
- 239000011790 ferrous sulphate Substances 0.000 claims description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 2
- 229910000399 iron(III) phosphate Inorganic materials 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 2
- 235000011007 phosphoric acid Nutrition 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 2
- 239000007774 positive electrode material Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 15
- 239000002033 PVDF binder Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 239000011267 electrode slurry Substances 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000006258 conductive agent Substances 0.000 description 4
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 239000004254 Ammonium phosphate Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 2
- 235000019289 ammonium phosphates Nutrition 0.000 description 2
- 238000003837 high-temperature calcination Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/22—Electronic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于复合材料领域,具体涉及一种用于锂离子电池的氮掺杂石墨烯/磷酸铁锂复合材料的制备方法。The invention belongs to the field of composite materials, in particular to a method for preparing a nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion batteries.
背景技术Background technique
锂离子电池是新一代的绿色高能电池。锂离子电池自商品化以来,正极材料导电性的研究一直是电池领域研究的热点,目前用于锂离子电池的正极活性材料多为过渡金属氧化物或者过渡金属磷酸盐,它们大部分都是半导体或者绝缘体,导电性能较差,因此需要加入导电剂来改善导电性,在活性物质之间、活性物质与集流体中起到收集微电流的作用,以减小电极的接触电阻,同时也能有效地提高锂离子在电池材料中的迁移率,从而提高电池的充放电倍率性能。Lithium-ion batteries are a new generation of green high-energy batteries. Since the commercialization of lithium-ion batteries, the research on the conductivity of cathode materials has always been a hot spot in the battery field. At present, the cathode active materials used in lithium-ion batteries are mostly transition metal oxides or transition metal phosphates, most of which are semiconductors. Or insulators have poor electrical conductivity, so it is necessary to add conductive agents to improve electrical conductivity, and play a role in collecting microcurrent between active materials, active materials and current collectors to reduce the contact resistance of electrodes, and also effectively Therefore, the mobility of lithium ions in the battery material can be greatly improved, thereby improving the charge-discharge rate performance of the battery.
CN 106992301A公开了一种氮掺杂石墨烯导电剂及其制备方法,采用化学气相沉积法制备氮掺杂石墨烯并应用于锂离子电池中,虽然该方法成功制备了导电性高的导电剂,但在浆料制备过程中存在导电剂分散问题,石墨烯容易团聚使电池内阻变大,从而降低电池的性能。CN 109103442A公开了一种石墨烯包覆磷酸铁锂正极材料的制备方法,采用微波水热法制备石墨烯包覆磷酸铁锂材料,通过包覆解决了石墨烯分散的问题,但是该方法制备的石墨烯导电性不高,因此在改善磷酸铁锂电池性能方面效果并不理想。CN 106992301A discloses a nitrogen-doped graphene conductive agent and a preparation method thereof. The nitrogen-doped graphene is prepared by chemical vapor deposition and applied to a lithium ion battery. Although the method successfully prepares a conductive agent with high conductivity, However, there is a problem of dispersion of the conductive agent during the preparation of the slurry, and the graphene is easy to agglomerate, which increases the internal resistance of the battery, thereby reducing the performance of the battery. CN 109103442A discloses a preparation method of graphene-coated lithium iron phosphate positive electrode material. The graphene-coated lithium iron phosphate material is prepared by microwave hydrothermal method, and the problem of graphene dispersion is solved by coating. Graphene is not very conductive, so it is not ideal for improving the performance of lithium iron phosphate batteries.
发明内容SUMMARY OF THE INVENTION
为解决现有技术的不足,本发明提供了一种用于锂离子电池的氮掺杂石墨烯/磷酸铁锂复合材料的制备方法,该复合材料的制备方法包括采用溶胶凝胶法制备磷酸铁锂与碳源复合材料的前驱体,之后在氨气气氛下采用高温煅烧法得到氮掺杂石墨烯/磷酸铁锂复合材料。既解决了石墨烯分散不均匀的问题,还通过对石墨烯进行氮改性进一步提高材料的导电性。In order to solve the deficiencies of the prior art, the present invention provides a preparation method of nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion battery, the preparation method of the composite material includes preparing iron phosphate by a sol-gel method The precursor of the lithium and carbon source composite material is then calcined at a high temperature in an ammonia atmosphere to obtain a nitrogen-doped graphene/lithium iron phosphate composite material. It not only solves the problem of uneven dispersion of graphene, but also further improves the conductivity of the material by nitrogen modification of graphene.
为实现本发明的目的,本发明的技术方案是:For realizing the purpose of the present invention, the technical scheme of the present invention is:
一种用于锂离子电池的氮掺杂石墨烯/磷酸铁锂复合材料的制备方法,以碳源、锂源、磷源和铁源为原料,通过溶胶凝胶法和高温煅烧法制备氮掺杂石墨烯/磷酸铁锂复合材料,具体包括以下步骤:A method for preparing nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion batteries, using carbon source, lithium source, phosphorus source and iron source as raw materials, and preparing nitrogen-doped graphene through a sol-gel method and a high-temperature calcination method The heterographene/lithium iron phosphate composite material specifically includes the following steps:
(1)将锂源、磷源、铁源以及碳源加入到去离子水中分散,制备成分散液;(1) adding lithium source, phosphorus source, iron source and carbon source into deionized water to disperse, and prepare a dispersion liquid;
(2)在步骤(1)的分散液加入柠檬酸并使用氨水调节pH至11,搅拌均匀;(2) add citric acid in the dispersion of step (1) and use ammoniacal liquor to adjust pH to 11, stir evenly;
(3)在一定温度下进行水浴加热,搅拌至出现凝胶;(3) heating in a water bath at a certain temperature, stirring until gel appears;
(4) 在氨气气氛下,对步骤(3)得到的凝胶进行高温煅烧,得到氮掺杂石墨烯/磷酸铁锂复合材料。(4) In an ammonia atmosphere, the gel obtained in step (3) is calcined at high temperature to obtain a nitrogen-doped graphene/lithium iron phosphate composite material.
进一步地,步骤(1)所述的锂源、磷源、铁源、碳源之间的摩尔比为0.8-1.2:1-1.5:1-1.5:0.5-3。Further, the molar ratio among the lithium source, phosphorus source, iron source and carbon source described in step (1) is 0.8-1.2:1-1.5:1-1.5:0.5-3.
进一步地,步骤(1)所述的制备分散液的方法为大功率超声分散,功率在800W-1000W。Further, the method for preparing the dispersion described in step (1) is high-power ultrasonic dispersion, and the power is 800W-1000W.
进一步地,步骤(1)中所述的锂源为氢氧化锂、碳酸锂、磷酸氢锂中的一种。Further, the lithium source described in step (1) is one of lithium hydroxide, lithium carbonate and lithium hydrogen phosphate.
进一步地,步骤(1)中所述的磷源为磷酸铵、磷酸氢二铵、磷酸一氢铵、磷酸中的一种。Further, the phosphorus source described in step (1) is one of ammonium phosphate, diammonium hydrogen phosphate, ammonium monohydrogen phosphate, and phosphoric acid.
进一步地,步骤(1)所述的铁源为硫酸亚铁、磷酸铁、氧化铁、氯化铁、乙酸铁中的一种。Further, the iron source described in step (1) is one of ferrous sulfate, ferric phosphate, ferric oxide, ferric chloride, and ferric acetate.
进一步地,步骤(1)所述的碳源为葡萄糖、果糖、蔗糖中的一种。Further, the carbon source in step (1) is one of glucose, fructose and sucrose.
进一步地,步骤(3)中所述的水浴加热温度为80-100 ℃。Further, the heating temperature of the water bath described in step (3) is 80-100 °C.
进一步地,步骤(4)中所述的氨气为高纯氨气。Further, the ammonia gas described in step (4) is high-purity ammonia gas.
进一步地,步骤(4)中所述的煅烧过程分为两段,第一段在600℃保温3-5h,第二段在750-900℃保温3-5h,升温速率为3-5℃/min。Further, the calcination process described in step (4) is divided into two stages, the first stage is kept at 600°C for 3-5h, the second stage is kept at 750-900°C for 3-5h, and the heating rate is 3-5°C/ min.
相较于现有技术,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供的氮掺杂石墨烯/磷酸铁锂复合材料,该复合材料的制备方法包括采用溶胶凝胶法制备磷酸铁锂与碳源复合材料的前驱体,之后在氨气气氛下采用高温煅烧法得到氮掺杂石墨烯/磷酸铁锂复合材料。通过高温煅烧,将葡萄糖热解还原成氮掺杂石墨烯,凝胶干燥成磷酸铁锂,并且在还原过程中氮掺杂石墨烯与磷酸铁锂复合。该制备工艺简单,通过该方法既能解决石墨烯在正极浆料中分散不均匀的问题,又在石墨烯的基础上对其进行氮改性,进一步提高其导电性,从而提高磷酸铁锂电池的充放电以及倍率性能。The nitrogen-doped graphene/lithium iron phosphate composite material provided by the present invention, the preparation method of the composite material includes preparing the precursor of the lithium iron phosphate and carbon source composite material by a sol-gel method, and then calcining at a high temperature in an ammonia gas atmosphere The nitrogen-doped graphene/lithium iron phosphate composite material was obtained by the method. Through high-temperature calcination, glucose is pyrolytically reduced to nitrogen-doped graphene, the gel is dried to form lithium iron phosphate, and the nitrogen-doped graphene is recombined with lithium iron phosphate during the reduction process. The preparation process is simple, and the method can not only solve the problem of uneven dispersion of graphene in the positive electrode slurry, but also carry out nitrogen modification on the basis of graphene to further improve its conductivity, thereby improving the lithium iron phosphate battery. charge-discharge and rate performance.
附图说明Description of drawings
图1为实施例1的锂离子电池在1C下循环100次后容量保持率;1 shows the capacity retention rate of the lithium-ion battery of Example 1 after being cycled 100 times at 1C;
图2为氮掺杂石墨烯/磷酸铁锂复合材料SEM图。Figure 2 is a SEM image of nitrogen-doped graphene/lithium iron phosphate composite material.
具体实施方式Detailed ways
结合实施例,对本发明具体较优实施作进一步说明:In conjunction with the embodiments, the specific preferred implementation of the present invention will be further described:
实施例1Example 1
一种氮掺杂石墨烯/磷酸铁锂复合材料制备方法,包括如下步骤:A method for preparing nitrogen-doped graphene/lithium iron phosphate composite material, comprising the following steps:
(1)按照锂源:磷源:铁源=1:1:1:1的摩尔比,称取0.01mol氢氧化锂、0.01mol磷酸氢二铵、0.01mol氯化铁与0.01mol葡萄糖加入去离子水中通过高功率分散制备分散液;(1) According to the molar ratio of lithium source: phosphorus source: iron source = 1:1:1:1, weigh 0.01mol lithium hydroxide, 0.01mol diammonium hydrogen phosphate, 0.01mol ferric chloride and 0.01mol glucose and add to Dispersion is prepared by high-power dispersion in ionized water;
(2)搅拌过程中加入0.06mol柠檬酸,并且加入氨水调节PH至11;(2) Add 0.06mol citric acid during stirring, and add ammonia water to adjust pH to 11;
(3)在80℃下水浴加热,搅拌至呈凝胶状,得到磷酸铁锂/石墨烯复合材料前驱体;(3) Heating in a water bath at 80°C and stirring until gel-like to obtain the precursor of lithium iron phosphate/graphene composite material;
(4)将步骤(3)得到的材料转入真空加热炉中,通入高纯氨气,以3℃/min的升温速率,升温至600℃保温3h后再将温度提升至750℃保温3h,最后冷却至室温得到氮掺杂石墨烯/磷酸铁锂复合材料。(4) Transfer the material obtained in step (3) into a vacuum heating furnace, pass in high-purity ammonia gas, heat up to 600 °C for 3 hours at a heating rate of 3 °C/min, and then raise the temperature to 750 °C for 3 hours. , and finally cooled to room temperature to obtain nitrogen-doped graphene/lithium iron phosphate composites.
将所得复合材料分散于N-甲基吡咯烷酮(NMP)中得到分散液。按PVDF:NMP=5:95质量比混合得到PVDF粘结剂,将粘结剂与分散液按照1:8比例混合搅拌,得到锂离子电池正极浆料。The obtained composite material was dispersed in N-methylpyrrolidone (NMP) to obtain a dispersion. The PVDF binder is obtained by mixing the PVDF:NMP=5:95 mass ratio, and the binder and the dispersion liquid are mixed and stirred according to the ratio of 1:8 to obtain the positive electrode slurry of the lithium ion battery.
实施例2Example 2
一种氮掺杂石墨烯/磷酸铁锂复合材料制备方法,包括如下步骤:A method for preparing nitrogen-doped graphene/lithium iron phosphate composite material, comprising the following steps:
(1)按照锂源:磷源:铁源=1:1:1:2的摩尔比,称取0.01mol乙酸锂、0.01mol磷酸铵、0.01mol乙酸铁与0.02mol葡萄糖加入去离子水中通过高功率分散制备分散液;(1) According to the molar ratio of lithium source: phosphorus source: iron source = 1:1:1:2, weigh 0.01mol lithium acetate, 0.01mol ammonium phosphate, 0.01mol ferric acetate and 0.02mol glucose into deionized water and pass through high Power dispersion to prepare dispersion;
(2)搅拌过程中加入0.06mol柠檬酸,并且加入氨水调节PH至11;(2) Add 0.06mol citric acid during stirring, and add ammonia water to adjust pH to 11;
(3)在90℃下水浴加热,搅拌至呈凝胶状,得到磷酸铁锂/石墨烯复合材料前驱体;(3) Heating in a water bath at 90°C and stirring until gel-like to obtain the precursor of lithium iron phosphate/graphene composite material;
(4)将步骤(3)得到的材料转入真空加热炉中,通入高纯氨气,以4℃/min的升温速率,升温至600℃保温3h后再将温度提升至700℃保温3h,最后冷却至室温得到氮掺杂石墨烯/磷酸铁锂复合材料。(4) Transfer the material obtained in step (3) into a vacuum heating furnace, pass in high-purity ammonia gas, heat up to 600°C for 3 hours at a heating rate of 4°C/min, and then raise the temperature to 700°C for 3 hours , and finally cooled to room temperature to obtain nitrogen-doped graphene/lithium iron phosphate composites.
将所得复合材料分散于N-甲基吡咯烷酮(NMP)中得到分散液。按PVDF:NMP=5:95质量比混合得到PVDF粘结剂,将粘结剂与分散液按照1:8比例混合搅拌,得到锂离子电池正极浆料。The obtained composite material was dispersed in N-methylpyrrolidone (NMP) to obtain a dispersion. The PVDF binder is obtained by mixing the PVDF:NMP=5:95 mass ratio, and the binder and the dispersion liquid are mixed and stirred according to the ratio of 1:8 to obtain the positive electrode slurry of the lithium ion battery.
实施例3Example 3
一种氮掺杂石墨烯/磷酸铁锂复合材料制备方法,包括如下步骤:A method for preparing nitrogen-doped graphene/lithium iron phosphate composite material, comprising the following steps:
(1)按照锂源:磷源:铁源=1:1:1:3的摩尔比,称取0.01mol乙酸锂、0.01mol磷酸一氢铵、0.01mol乙酸铁与0.03mol葡萄糖加入去离子水中通过高功率分散制备分散液;(1) According to the molar ratio of lithium source: phosphorus source: iron source = 1:1:1:3, weigh 0.01mol lithium acetate, 0.01mol ammonium monohydrogen phosphate, 0.01mol iron acetate and 0.03mol glucose into deionized water Preparation of dispersions by high power dispersion;
(2)搅拌过程中加入0.06mol柠檬酸,并且加入氨水调节PH至11;(2) Add 0.06mol citric acid during stirring, and add ammonia water to adjust pH to 11;
(3)100℃下水浴加热,搅拌至呈凝胶状,得到磷酸铁锂/石墨烯复合材料前驱体;(3) Heating in a water bath at 100°C, stirring until gel-like, to obtain the precursor of lithium iron phosphate/graphene composite material;
(4)将步骤(3)得到的材料转入真空加热炉中,通入高纯氨气,以5℃/min的升温速率,升温至600℃保温3h后再将温度提升至800℃保温3h,最后冷却至室温得到氮掺杂石墨烯/磷酸铁锂复合材料。(4) Transfer the material obtained in step (3) into a vacuum heating furnace, pass in high-purity ammonia gas, heat up to 600°C for 3 hours at a heating rate of 5°C/min, and then raise the temperature to 800°C for 3 hours , and finally cooled to room temperature to obtain nitrogen-doped graphene/lithium iron phosphate composites.
将所得复合材料分散于N-甲基吡咯烷酮(NMP)中得到分散液。按PVDF:NMP=5:95质量比混合得到PVDF粘结剂,将粘结剂与分散液按照1:8比例混合搅拌,得到锂离子电池正极浆料。The obtained composite material was dispersed in N-methylpyrrolidone (NMP) to obtain a dispersion. The PVDF binder is obtained by mixing the PVDF:NMP=5:95 mass ratio, and the binder and the dispersion liquid are mixed and stirred according to the ratio of 1:8 to obtain the positive electrode slurry of the lithium ion battery.
实施例4Example 4
一种氮掺杂石墨烯/磷酸铁锂复合材料制备方法,包括如下步骤:A method for preparing nitrogen-doped graphene/lithium iron phosphate composite material, comprising the following steps:
(1)按照锂源:磷源:铁源=1:1:1:1的摩尔比,称取0.01mol乙酸锂、0.01mol磷酸一氢铵、0.01mol乙酸铁与0.01mol葡萄糖加入去离子水中通过高功率分散制备分散液;(1) According to the molar ratio of lithium source: phosphorus source: iron source = 1:1:1:1, weigh 0.01mol lithium acetate, 0.01mol ammonium monohydrogen phosphate, 0.01mol iron acetate and 0.01mol glucose into deionized water Preparation of dispersions by high power dispersion;
(2)搅拌过程中加入0.06mol柠檬酸,并且加入氨水调节PH至11;(2) Add 0.06mol citric acid during stirring, and add ammonia water to adjust pH to 11;
(3)80℃下水浴加热,搅拌至呈凝胶状,得到磷酸铁锂/石墨烯复合材料前驱体;(3) Heating in a water bath at 80°C, stirring until gel-like, to obtain the precursor of lithium iron phosphate/graphene composite material;
(4)将步骤(3)得到的材料转入真空加热炉中,通入高纯氨气,以5℃/min的升温速率,升温至600℃保温3h后再将温度提升至900℃保温3h,最后冷却至室温得到氮掺杂石墨烯/磷酸铁锂复合材料。(4) Transfer the material obtained in step (3) into a vacuum heating furnace, pass in high-purity ammonia gas, heat up to 600°C for 3 hours at a heating rate of 5°C/min, and then raise the temperature to 900°C for 3 hours , and finally cooled to room temperature to obtain nitrogen-doped graphene/lithium iron phosphate composites.
将所得复合材料分散于N-甲基吡咯烷酮(NMP)中得到分散液。按PVDF:NMP=5:95质量比混合得到PVDF粘结剂,将粘结剂与分散液按照1:8比例混合搅拌,得到锂离子电池正极浆料。The obtained composite material was dispersed in N-methylpyrrolidone (NMP) to obtain a dispersion. The PVDF binder is obtained by mixing the PVDF:NMP=5:95 mass ratio, and the binder and the dispersion liquid are mixed and stirred according to the ratio of 1:8 to obtain the positive electrode slurry of the lithium ion battery.
实施例5Example 5
一种氮掺杂石墨烯/磷酸铁锂复合材料制备方法,包括如下步骤:A method for preparing nitrogen-doped graphene/lithium iron phosphate composite material, comprising the following steps:
(1)按照锂源:磷源:铁源=1:1:1:1的摩尔比,称取0.01mol乙酸锂、0.01mol磷酸一氢铵、0.01mol乙酸铁与0.01mol葡萄糖加入去离子水中通过高功率分散制备分散液;(1) According to the molar ratio of lithium source: phosphorus source: iron source = 1:1:1:1, weigh 0.01mol lithium acetate, 0.01mol ammonium monohydrogen phosphate, 0.01mol iron acetate and 0.01mol glucose into deionized water Preparation of dispersions by high power dispersion;
(2)搅拌过程中加入0.06mol柠檬酸,并且加入氨水调节PH至11;(2) Add 0.06mol citric acid during stirring, and add ammonia water to adjust pH to 11;
(3)90℃下水浴加热,搅拌至呈凝胶状,得到磷酸铁锂/石墨烯复合材料前驱体;(3) Heating in a water bath at 90°C, stirring until gel-like, to obtain a precursor of lithium iron phosphate/graphene composite material;
(4)将步骤(3)得到的材料转入真空加热炉中,通入高纯氨气,以5℃/min的升温速率,升温至600℃保温3h后再将温度提升至900℃保温3h,最后冷却至室温得到氮掺杂石墨烯/磷酸铁锂复合材料。(4) Transfer the material obtained in step (3) into a vacuum heating furnace, pass in high-purity ammonia gas, heat up to 600°C for 3 hours at a heating rate of 5°C/min, and then raise the temperature to 900°C for 3 hours , and finally cooled to room temperature to obtain nitrogen-doped graphene/lithium iron phosphate composites.
将所得复合材料分散于N-甲基吡咯烷酮(NMP)中得到分散液。按PVDF:NMP=5:95质量比混合得到PVDF粘结剂,将粘结剂与分散液按照0.5:9比例混合搅拌,得到锂离子电池正极浆料。The obtained composite material was dispersed in N-methylpyrrolidone (NMP) to obtain a dispersion. The PVDF binder is obtained by mixing the PVDF:NMP=5:95 mass ratio, and the binder and the dispersion liquid are mixed and stirred according to the ratio of 0.5:9 to obtain the positive electrode slurry of the lithium ion battery.
将实例1-5制备的正极浆料,中间相碳微球作为负极材料,应用于锂电中,组装成扣式电池。The positive electrode slurry prepared in Examples 1-5 and the mesophase carbon microspheres were used as negative electrode materials, which were applied to lithium batteries and assembled into a button battery.
表1 各实施例氮掺杂石墨烯/磷酸铁锂复合材料1 C下100次循环后的放电容量以及库伦效率Table 1 The discharge capacity and coulombic efficiency of nitrogen-doped graphene/lithium iron phosphate composites of each embodiment after 100 cycles at 1 C
表1可以看出,使用所述方法制备的氮掺杂石墨烯/磷酸铁锂复合材料制备成正极导电浆料应用于锂离子电池(1-5)在高倍率下具有更高的容量保持率以及库伦效率,并且实例1在低倍率(0.5C)下比容量达到 165mAh/g,接近理论比容量;图1为实例1在1C电流密度下循环100次的循环图,使用该制备方法制备的复合材料在多次循环后仍能保持较高的容量保持率。It can be seen from Table 1 that the nitrogen-doped graphene/lithium iron phosphate composite material prepared by the method is prepared as a positive electrode conductive paste and applied to lithium ion batteries (1-5), which has a higher capacity retention rate at high rates and Coulombic efficiency, and the specific capacity of Example 1 reaches 165mAh/g at low rate (0.5C), which is close to the theoretical specific capacity; Figure 1 is the cycle diagram of Example 1 under 1C current density for 100 cycles, prepared using this preparation method The composites maintained high capacity retention after multiple cycles.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911048791.4A CN110723718B (en) | 2019-10-31 | 2019-10-31 | Preparation method of nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911048791.4A CN110723718B (en) | 2019-10-31 | 2019-10-31 | Preparation method of nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110723718A true CN110723718A (en) | 2020-01-24 |
CN110723718B CN110723718B (en) | 2022-09-06 |
Family
ID=69222645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911048791.4A Active CN110723718B (en) | 2019-10-31 | 2019-10-31 | Preparation method of nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110723718B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113072052A (en) * | 2021-03-29 | 2021-07-06 | 山东大学 | Waste lithium iron phosphate lithium supplement repair method and application |
CN114122406A (en) * | 2022-01-25 | 2022-03-01 | 成都特隆美储能技术有限公司 | Preparation method of graphene modified lithium iron phosphate and lithium iron phosphate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120021183A (en) * | 2010-08-31 | 2012-03-08 | 삼성에스디아이 주식회사 | Cathode active material, preparation method thereof, and cathode and lithium battery containing the material |
CN103441268A (en) * | 2013-07-09 | 2013-12-11 | 国家纳米科学中心 | Carbon-coated lithium ion battery positive electrode material lithium iron phosphate and preparation method thereof |
CN105514366A (en) * | 2015-12-04 | 2016-04-20 | 齐鲁工业大学 | Preparation method of nitrogen-doped graphene composite LiFePO4 lithium ion battery cathode material |
CN106252635A (en) * | 2016-09-30 | 2016-12-21 | 合肥国轩高科动力能源有限公司 | Graphene-coated lithium iron phosphate cathode material and preparation method thereof |
CN107068990A (en) * | 2016-12-26 | 2017-08-18 | 苏州高通新材料科技有限公司 | Graphene composite lithium iron phosphate cathode material and preparation method and application |
-
2019
- 2019-10-31 CN CN201911048791.4A patent/CN110723718B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120021183A (en) * | 2010-08-31 | 2012-03-08 | 삼성에스디아이 주식회사 | Cathode active material, preparation method thereof, and cathode and lithium battery containing the material |
CN103441268A (en) * | 2013-07-09 | 2013-12-11 | 国家纳米科学中心 | Carbon-coated lithium ion battery positive electrode material lithium iron phosphate and preparation method thereof |
CN105514366A (en) * | 2015-12-04 | 2016-04-20 | 齐鲁工业大学 | Preparation method of nitrogen-doped graphene composite LiFePO4 lithium ion battery cathode material |
CN106252635A (en) * | 2016-09-30 | 2016-12-21 | 合肥国轩高科动力能源有限公司 | Graphene-coated lithium iron phosphate cathode material and preparation method thereof |
CN107068990A (en) * | 2016-12-26 | 2017-08-18 | 苏州高通新材料科技有限公司 | Graphene composite lithium iron phosphate cathode material and preparation method and application |
Non-Patent Citations (1)
Title |
---|
常龙娇 等: "《锂离子电池磷酸盐系材料》", 30 September 2019, 冶金工业出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113072052A (en) * | 2021-03-29 | 2021-07-06 | 山东大学 | Waste lithium iron phosphate lithium supplement repair method and application |
CN113072052B (en) * | 2021-03-29 | 2022-06-28 | 山东大学 | A kind of waste lithium iron phosphate supplementary lithium repair method and application |
CN114122406A (en) * | 2022-01-25 | 2022-03-01 | 成都特隆美储能技术有限公司 | Preparation method of graphene modified lithium iron phosphate and lithium iron phosphate |
Also Published As
Publication number | Publication date |
---|---|
CN110723718B (en) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105161705B (en) | A kind of lithium manganese phosphate cladding nickel-cobalt lithium manganate cathode material and preparation method thereof | |
CN106058202A (en) | Carbon-coated metal ion-doped sodium vanadium phosphate composite cathode material prepared by freeze drying method, as well as preparation method and application thereof | |
CN113526483B (en) | Ferro-phosphorus sodalite type cathode material and preparation method and application thereof | |
CN108376767A (en) | A kind of red phosphorus/nitrogen-doped graphene composite negative pole material and its preparation method and application | |
CN101222044A (en) | Novel conductive agent doped/coated lithium iron phosphate material and preparation method | |
CN105514366B (en) | A kind of preparation method of the compound LiFePO4 anode material for lithium-ion batteries of nitrogen-doped graphene | |
CN102148371A (en) | Graphene/phosphoric acid iron-lithium composite material with sandwich structure and preparation method thereof | |
CN107845801B (en) | A kind of synergistically modified lithium cobalt fluorophosphate cathode material and preparation method thereof | |
CN103227324A (en) | Preparation method of iron oxide cathode material for lithium ion battery | |
CN108963235A (en) | Graphene enhances carbon coating titanium phosphate manganese sodium micron ball electrode material and its preparation method and application | |
CN111244465A (en) | Preparation of a nitrogen-doped metal carbide material | |
CN110723718B (en) | Preparation method of nitrogen-doped graphene/lithium iron phosphate composite material for lithium ion battery | |
CN106099092A (en) | A kind of preparation method of the copper vanadate for lithium ion battery negative material | |
CN104393275A (en) | Preparation method of carbon-coated lithium titanate battery material | |
CN117525549A (en) | Carbon-coated mixed phosphate positive electrode material, and preparation method and application thereof | |
CN110980720B (en) | Nitrogen-doped graphite material and preparation method and application thereof | |
CN103693632B (en) | A kind of preparation method of lithium vanadyl phosphate positive material for lithium ion battery | |
WO2019127031A1 (en) | Energy composite material for lithium battery and preparation method therefor | |
CN114388738B (en) | Silicon-based anode material and preparation method and application thereof | |
CN108461740A (en) | A kind of LiVOPO4Nickelic tertiary cathode material of lithium ion battery of cladding and its preparation method and application | |
CN114455563B (en) | Modified lithium iron phosphate material and preparation method and application thereof | |
CN117088348A (en) | A method of carbon coating modified lithium iron phosphate cathode | |
CN113816425B (en) | MoS 2 Nitrogen-doped carbon/modified activated carbon sodium ion battery negative electrode material and preparation method thereof | |
CN116111071A (en) | A modified porous lithium iron phosphate and its preparation method and application | |
CN110085809A (en) | Graphene nano tape base composite ferric lithium phosphate material, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |