CN110721465B - 一种实时动态追踪的游戏手套 - Google Patents

一种实时动态追踪的游戏手套 Download PDF

Info

Publication number
CN110721465B
CN110721465B CN201910822750.XA CN201910822750A CN110721465B CN 110721465 B CN110721465 B CN 110721465B CN 201910822750 A CN201910822750 A CN 201910822750A CN 110721465 B CN110721465 B CN 110721465B
Authority
CN
China
Prior art keywords
palm
axis
motion
module
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910822750.XA
Other languages
English (en)
Other versions
CN110721465A (zh
Inventor
刘礼
冉孟元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201910822750.XA priority Critical patent/CN110721465B/zh
Publication of CN110721465A publication Critical patent/CN110721465A/zh
Application granted granted Critical
Publication of CN110721465B publication Critical patent/CN110721465B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/212Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1012Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals involving biosensors worn by the player, e.g. for measuring heart beat, limb activity

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种实时动态追踪的游戏手套,主要包括手套本体、感知模块、控制模块、通信模块、供电模块和游戏主机;感知模块主要包括弯曲传感器和九轴惯性传感器;控制模块对接收到的手指部弯曲信号和手掌部运动信号进行数据预处理和姿态解算,得到姿态解算结果,从而实时监测手套本体的姿态变化,并将姿态解算结果发送至游戏主机;控制模块通过通信模块接收游戏主机的指令信号。本发明能实时地感知手指和手掌的姿态变化,追踪手部移动轨迹,从而实现基于手套的高效精确游戏控制。

Description

一种实时动态追踪的游戏手套
技术领域
本发明涉及游戏设备领域,具体是一种实时动态追踪的游戏手套。
背景技术
目前大部分游戏控制方式为手柄、鼠标等。随着游戏产业和硬件水平的发展,为了提高用户的沉浸感和体验性,出现了许多可穿戴设备用于游戏控制。该专利可以实时动态追踪用户移动轨迹、识别手部姿态,实现精准高效的游戏控制。
目前可穿戴设备存在高延迟、操作难等问题,不能提高玩家的体验感,甚至会在游戏中增加不适感。
另外现有动作游戏主要操作方式为手柄和鼠标,这些操作方式游戏代入感差、操作复杂。
发明内容
本发明的目的是解决现有技术中存在的问题。
为实现本发明目的而采用的技术方案是这样的,一种实时动态追踪的游戏手套,主要包括手套本体、感知模块、控制模块、通信模块、供电模块和游戏主机。
所述手套本体包括手掌部和手指部。
所述感知模块实时监测手套本体的姿态变化。
所述感知模块主要包括弯曲传感器和九轴惯性传感器。
所述弯曲传感器设置在手指部,监测手指部的弯曲程度,得到手指部弯曲信号,并发送至控制模块。
所述九轴惯性传感器设置在手掌部,监测手掌部的运动状态,得到手掌部运动信号,并发送至控制模块。
进一步,所述弯曲传感器在手指部范围内可移动。
所述九轴惯性传感器在手掌部范围内可移动。
所述弯曲传感器和九轴惯性传感器可拆卸。
所述控制模块对接收到的手指部弯曲信号和手掌部运动信号进行数据预处理和姿态解算,得到姿态解算结果,并将姿态解算结果发送至游戏主机。
进一步,控制模块对接收到的手掌部运动信号进行姿态解算的主要步骤如下:
1)基于卡尔曼滤波对手掌部运动信号进行滤波,主要步骤如下:
1.1)通过上一时刻手掌部运动状态X(k-1|k-1)预测当前的手掌部运动状态X(k|k-1),即:
X(k|k-1)=A·X(k-1|k-1)+B·U(k) (1)
式中,A和B为卡尔曼滤波系统参数。U(k)为当前手掌部运动状态的控制量。
当前的手掌部运动状态X(k|k-1)的协方差P(k|k-1)如下所示:
P(k|k-1)=A·P(k-1|k-1)AT+Q (2)
式中,P(k-1|k-1)是上一时刻手掌部运动状态X(k-1|k-1)的协方差。AT是A的转置矩阵。Q是卡尔曼滤波系统的噪声。
1.2)估计参考测量值X(k|k),即:
X(k|k)=X(k|k-1)+kg(k)·(Z(k)-H·X(k|k-1)) (3)
式中,kg(k)是卡尔曼增益。H是测量系统的参数。Z(k)为k时刻待滤波信号。
卡尔曼增益kg(k)如下所示:
kg(k)=P(k|K-1)·HT/(H·P(k|k-1)·HT+R) (4)
式中,R为k时刻测量噪声协方差。
参考测量值X(k|k)的协方差P(k|k)如下所示:
P(k|k)=(1-kg(k)·H)·P(k|k-1) (5)
1.3)重复步骤1.1至步骤1.2,直至所有手掌部运动信号滤波完毕。
2)利用三轴加速度传感器和三轴地磁传感器对手掌部运动信号进行初始姿态解算,主要步骤如下:
2.1)设定地磁北极方向为参考坐标系的X轴正方向,重力方向为参考坐标系的Z轴正方向。以方向余弦矩阵表示手掌部运动姿态。
2.2)以三轴地磁传感器读数
Figure BDA0002188081190000021
为方向余弦矩阵的第一列,参考坐标系的Z轴读数为第二列,三轴加速度传感器的读数
Figure BDA0002188081190000022
为方向余弦矩阵第三列,以元素
Figure BDA0002188081190000031
为方向余弦矩阵第二列,建立方向余弦矩阵。参考坐标系的Z轴读数通过与三轴地磁传感器读数
Figure BDA0002188081190000032
正交计算得到。
方向余弦矩阵
Figure BDA0002188081190000033
如下所示:
Figure BDA0002188081190000034
3)利用三轴陀螺仪进行姿态更新,主要步骤如下:
3.1)采用四元数表示三轴陀螺仪更新后的姿态,即:
Figure BDA0002188081190000035
式中,
Figure BDA0002188081190000036
表示手掌部运动姿态。
Figure BDA0002188081190000037
为三轴陀螺仪测量得到的角速度。t为采样时间。q为更新前手掌部运动姿态。
3.2)对手掌部运动姿态
Figure BDA0002188081190000038
进行归一化,即:
Figure BDA0002188081190000039
式中,qn为当前手掌部运动姿态归一化值。qn-1为上一时刻手掌部运动姿态归一化值。n表示时刻。
4)对方向余弦矩阵进行误差补偿,主要步骤如下:
4.1)将方向余弦矩阵转化为四元数形式,即:
qAM=a+bi+cj+dK
式中,a、b、c和d为转换参数。i、j和K表示虚数单位。
转换参数a、转换参数b、转换参数c、转换参数d分别如下所示:
Figure BDA00021880811900000310
Figure BDA00021880811900000311
Figure BDA00021880811900000312
Figure BDA00021880811900000313
转换后,方向余弦矩阵DCM如下所示:
Figure BDA00021880811900000314
4.2)计算四元数qAM与四元数qg之间的差
Figure BDA0002188081190000041
即:
Figure BDA0002188081190000042
式中,其中qAM为三轴地磁传感器和三轴加速度传感器数据构成的方向余弦矩阵所转化成的四元数,qg为三轴陀螺仪数据积分后表示姿态变化的四元数。
4.3)计算坐标系方向的单位向量
Figure BDA0002188081190000043
和旋转角度
Figure BDA0002188081190000044
即:
Figure BDA0002188081190000045
Figure BDA0002188081190000046
式中,re表示实部,im表示虚部。
4.4)建立虚拟角速度矢量
Figure BDA0002188081190000047
即:
Figure BDA0002188081190000048
式中,S(*)表示函数。
5)利用公式(6)、公式(7)和公式(16)对四元数进行更新,从而实时表示手掌部运动姿态,并发送至游戏主机。
6)游戏主机获取姿态数据后,利用存储在游戏主机可读存储介质内的钟摆模型计算手掌部的运动轨迹,即所述钟摆模型利用三角函数,将手掌部的旋转角度转化为移动的距离,实现运动轨迹的实时追踪。
控制模块对接收到的手指部弯曲信号进行姿态解算的主要步骤如下:
1)设定弯曲阈值ε。
2)弯曲传感器串联定值电阻。
3)测量弯曲传感器两端电压值U,并判断电压U≥ε是否成立,若成立,则判断手指弯曲,若不成立,则判断手指未弯曲。
进一步,所述游戏主机主要包括电脑、游戏机和手机。
所述游戏主机获取姿态数据后,利用存储在游戏主机可读存储介质内的钟摆模型计算手掌部的运动轨迹。
所述控制模块通过通信模块接收游戏主机的指令信号。
进一步,所述通信模块为无线通信模块或有线串口通信模块。
所述供电模块为感知模块、控制模块和通信模块供电。
进一步,所述供电模块包括稳压模块和锂电池。
所述锂电池的电压经过稳压模块稳压后为感知模块、控制模块和通信模块供电。
本发明的技术效果是毋庸置疑的。本发明提供了一种有线/无线双模的实时动态追踪的游戏手套,将多个传感器融入手套中,配合低延时,高识别率的态势感知算法,能实时地感知手指和手掌的姿态变化,追踪手部移动轨迹,从而实现基于手套的高效精确游戏控制。
附图说明
图1为实时动态追踪的游戏手套的结构框图;
图2为实施例4中实时动态追踪的游戏手套的结构示意图;
图3为实施例4中实时动态追踪的游戏手套的使用状态示意图I;
图4为实施例4中实时动态追踪的游戏手套的使用状态示意图II;
图5为实施例4中实时动态追踪的游戏手套的使用状态示意图III;
图6为实施例4中实时动态追踪的游戏手套的使用状态示意图IV;
图中:手套本体1、感知模块2、控制模块3、通信模块4和供电模块5。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
参见图1,一种实时动态追踪的游戏手套,主要包括手套本体1、感知模块2、控制模块3、通信模块4、供电模块5和游戏主机。
所述手套本体1包括手掌部和至少一个手指部。
进一步,手套本体1设有总开关。
开启总开关,实时动态追踪的游戏手套开始工作。
所述感知模块2实时监测手套本体1的姿态变化。
所述感知模块2主要包括弯曲传感器和九轴惯性传感器。
所述弯曲传感器设置在手指部,监测手指部的弯曲程度,得到手指部弯曲信号,并发送至控制模块3。
所述九轴惯性传感器设置在手掌部,监测手掌部的运动状态,得到手掌部运动信号,并发送至控制模块3。
进一步,九轴惯性传感器包括三轴陀螺仪、三轴加速度传感器和三轴地磁传感器。
进一步,所述弯曲传感器在手指部范围内可移动。
所述九轴惯性传感器在手掌部范围内可移动。
所述弯曲传感器和九轴惯性传感器可拆卸。
因此,感知模块2可以针对不同用户手型大小进行调整。
所述控制模块3对接收到的手指部弯曲信号和手掌部运动信号进行数据预处理和姿态解算,得到姿态解算结果,从而实时监测手套本体1的姿态变化,并将姿态解算结果发送至游戏主机,提高控制的响应效率。
进一步,控制模块对接收到的手掌部运动信号进行姿态解算的主要步骤如下:
1)基于卡尔曼滤波对手掌部运动信号进行滤波,主要步骤如下:
1.1)通过上一时刻手掌部运动状态X(k-1|k-1)预测当前的手掌部运动状态X(k|k-1),即:
X(k|k-1)=A·X(k-1|k-1)+B·U(k) (1)
式中,A和B为卡尔曼滤波系统参数。U(k)为当前手掌部运动状态的控制量。
当前的手掌部运动状态X(k|k-1)的协方差P(k|k-1)如下所示:
P(k|k-1)=A·P(k-1|k-1)AT+Q (2)
式中,P(k-1|k-1)是上一时刻手掌部运动状态X(k-1|k-1)的协方差。AT是A的转置矩阵。Q是卡尔曼滤波系统的噪声。
1.2)估计参考测量值X(k|k),即:
X(k|k)=X(k|k-1)+kg(k)·(Z(k)-H·X(k|k-1)) (3)
式中,kg(k)是卡尔曼增益。H是测量系统的参数。Z(k)为k时刻待滤波信号。
卡尔曼增益kg(k)如下所示:
kg(k)=P(k|K-1)·HT/(H·P(k|k-1)·HT+R) (4)
式中,R为k时刻测量噪声协方差。
参考测量值X(k|k)的协方差P(k|k)如下所示:
P(k|k)=(1-kg(k)·H)·P(k|k-1) (5)
1.3)重复步骤1.1至步骤1.2,直至所有手掌部运动信号滤波完毕。
2)利用三轴加速度传感器和三轴地磁传感器对手掌部运动信号进行初始姿态解算,主要步骤如下:
2.1)设定地磁北极方向为参考坐标系的X轴正方向,重力方向为参考坐标系的Z轴正方向。以方向余弦矩阵表示手掌部运动姿态。
2.2)以三轴地磁传感器读数
Figure BDA0002188081190000071
为方向余弦矩阵的第一列,参考坐标系的Z轴读数为第二列,三轴加速度传感器的读数
Figure BDA0002188081190000072
为方向余弦矩阵第三列,以元素
Figure BDA0002188081190000073
为方向余弦矩阵第二列,建立方向余弦矩阵。参考坐标系的Z轴读数通过与三轴地磁传感器读数
Figure BDA0002188081190000074
正交计算得到。
方向余弦矩阵
Figure BDA0002188081190000075
如下所示:
Figure BDA0002188081190000076
3)利用三轴陀螺仪进行姿态更新,主要步骤如下:
3.1)采用四元数表示三轴陀螺仪更新后的姿态,即:
Figure BDA0002188081190000077
式中,
Figure BDA0002188081190000081
表示手掌部运动姿态。
Figure BDA0002188081190000082
为三轴陀螺仪测量得到的角速度。t为采样时间。
3.2)对手掌部运动姿态
Figure BDA0002188081190000083
进行归一化,即:
Figure BDA0002188081190000084
式中,qn为当前手掌部运动姿态归一化值。qn-1为上一时刻手掌部运动姿态归一化值。n表示时刻。
4)对方向余弦矩阵进行误差补偿,主要步骤如下:
4.1)将方向余弦矩阵转化为四元数形式,即:
qAM=a+bi+cj+dK
式中,a、b、c和d为转换参数。i、j和K表示虚数单位。
转换参数a、转换参数b、转换参数c、转换参数d分别如下所示:
Figure BDA0002188081190000085
Figure BDA0002188081190000086
Figure BDA0002188081190000087
Figure BDA0002188081190000088
转换后,方向余弦矩阵DCM如下所示:
Figure BDA0002188081190000089
m11、m12、m13、m21、m22、m23、m31、m32、m33表示方向余弦矩阵DCM中的元素,下标分别表示行号和列号。
4.2)计算四元数qAM与四元数qg之间的差
Figure BDA00021880811900000810
即:
Figure BDA00021880811900000811
式中,其中qAM为三轴地磁传感器和三轴加速度传感器数据构成的方向余弦矩阵所转化成的四元数,qg为三轴陀螺仪数据积分后表示姿态变化的四元数。上标-1表示逆,上标T表示转置。
4.3)计算坐标系方向的单位向量
Figure BDA0002188081190000091
和旋转角度
Figure BDA0002188081190000092
即:
Figure BDA0002188081190000093
Figure BDA0002188081190000094
式中,re表示实部,im表示虚部。
4.4)建立虚拟角速度矢量
Figure BDA0002188081190000095
即:
Figure BDA0002188081190000096
式中,S(*)表示角度函数。
5)利用公式(6)、公式(7)和公式(16)对四元数进行更新,从而实时表示手掌部运动姿态,并发送至游戏主机。
6)游戏主机获取姿态数据后,利用存储在游戏主机可读存储介质内的钟摆模型计算手掌部的运动轨迹,即所述钟摆模型利用三角函数,将手掌部的旋转角度转化为移动的距离,实现运动轨迹的实时追踪。
控制模块对接收到的手指部弯曲信号进行姿态解算的主要步骤如下:
1)设定弯曲阈值ε。
2)弯曲传感器串联定值电阻。
3)测量弯曲传感器两端电压值U,并判断电压U≥ε是否成立,若成立,则判断手指弯曲,若不成立,则判断手指未弯曲。
进一步,所述游戏主机主要包括电脑、游戏机和手机。
所述游戏主机获取姿态数据后,利用存储在游戏主机可读存储介质内的钟摆模型计算手掌部的运动轨迹。
所述控制模块3通过通信模块4接收游戏主机的指令信号。
进一步,所述通信模块4为基于蓝牙4.0BLE协议的高速低功耗通信模块或有线串口通信模块。
所述供电模块5为感知模块2、控制模块3和通信模块4供电。
进一步,所述供电模块5包括稳压模块和锂电池。
所述锂电池的电压经过稳压模块稳压后为感知模块2、控制模块3和和通信模块4供电。
实施例2:
一种无线实时动态追踪的游戏手套,主要包括手套本体1、感知模块2、控制模块3、通信模块4、供电模块5和游戏主机。
所述手套本体1包括手掌部和手指部。
手套本体1设有总开关和蓝牙开关。
所述感知模块2主要包括弯曲传感器和九轴惯性传感器。
所述弯曲传感器设置在手指部,监测手指部的弯曲程度,得到手指部弯曲信号,并发送至控制模块3。
所述九轴惯性传感器设置在手掌部,监测手掌部的运动状态,得到手掌部运动信号,并发送至控制模块3。
所述控制模块3对接收到的手指部弯曲信号和手掌部运动信号进行数据预处理和姿态解算,得到姿态解算结果,从而实时监测手套本体1的姿态变化,并将姿态解算结果发送至游戏主机。
所述控制模块3通过通信模块4接收游戏主机的指令信号。
进一步,通信模块4为基于蓝牙4.0BLE协议的高速低功耗通信模块。
通信模块4具有指示灯。
在无线模式下,需要先打开手套上的总开关和蓝牙开关,进行蓝牙配对,连接成功后通信模块上指示灯由闪烁变为常亮。
所述游戏主机获取姿态数据后,利用存储在游戏主机可读存储介质内的钟摆模型计算手掌部的运动轨迹。
所述供电模块5为感知模块2、控制模块3和通信模块4供电。
实施例3:
一种有线实时动态追踪的游戏手套,主要包括手套本体1、感知模块2、控制模块3、通信模块4、供电模块5和游戏主机。
所述手套本体1包括手掌部和手指部。
手套本体1设有总开关。
所述感知模块2主要包括弯曲传感器和九轴惯性传感器。
所述弯曲传感器设置在手指部,监测手指部的弯曲程度,得到手指部弯曲信号,并发送至控制模块3。
所述九轴惯性传感器设置在手掌部,监测手掌部的运动状态,得到手掌部运动信号,并发送至控制模块3。
所述控制模块3对接收到的手指部弯曲信号和手掌部运动信号进行数据预处理和姿态解算,得到姿态解算结果,从而实时监测手套本体1的姿态变化,并将姿态解算结果发送至游戏主机。
所述控制模块3通过通信模块4接收游戏主机的指令信号。
进一步,通信模块4为有线串口通信模块。
在有线模式下,将游戏手套通过数据线与游戏主机连接即可使用。
所述供电模块5为感知模块2、控制模块3和通信模块4供电。
实施例4:
进一步,一种有线实时动态追踪的游戏手套,主要结构见实施例2,其中,控制模块对接收到的手掌部运动信号进行姿态解算的主要步骤如下:
1)基于卡尔曼滤波对手掌部运动信号进行滤波,主要步骤如下:
1.1)并通过上一时刻状态X(k-1|k-1)预测当前的状态X(k|k-1),即:
X(k|k-1)=A·X(k-1|k-1)+B·U(k) (1)
式中,A和B为卡尔曼滤波系统参数。U(k)为当前状态的控制量。
当前的状态X(k|k-1)的协方差P(k|k-1)如下所示:
P(k|k-1)=A·P(k-1|k-1)AT+Q (2)
式中,P(k-1|k-1)是上一时刻状态X(k-1|k-1)的协方差。AT是A的转置矩阵。Q是卡尔曼滤波系统的噪声。
1.2)估计参考测量值X(k|k),即:
X(k|k)=X(k|k-1)+kg(k)·(Z(k)-H·X(k|k-1)) (3)
式中,kg是卡尔曼增益。H是测量系统的参数。
卡尔曼增益kg如下所示:
kg(k)=P(k|K-1)·HT/(H·P(k|k-1)·HT+R) (4)
参考测量值X(k|k)的协方差P(k|k)如下所示:
P(k|k)=(1-kg(k)·H)·P(k|k-1) (5)
1.3)重复步骤1.1至步骤1.2,直至所有手掌部运动信号滤波完毕。
2)利用三轴加速度传感器和三轴地磁传感器对手掌部运动信号进行初始姿态解算,主要步骤如下:
2.1)设定地磁北极方向为参考坐标系的X轴正方向,重力方向为参考坐标系的Z轴正方向。以方向余弦矩阵表示手掌部运动姿态。
2.2)以三轴地磁传感器读数
Figure BDA0002188081190000121
为方向余弦矩阵的第一列,参考坐标系的Z轴读数为第二列,三轴加速度传感器的读数
Figure BDA0002188081190000122
为方向余弦矩阵第三列,以元素
Figure BDA0002188081190000123
为方向余弦矩阵第二列,建立方向余弦矩阵。参考坐标系的Z轴读数通过与三轴地磁传感器读数
Figure BDA0002188081190000124
正交计算得到。
方向余弦矩阵
Figure BDA0002188081190000125
如下所示:
Figure BDA0002188081190000126
3)利用三轴陀螺仪进行姿态更新,主要步骤如下:
3.1)采用四元数表示三轴陀螺仪更新后的姿态,即:
Figure BDA0002188081190000127
式中,
Figure BDA0002188081190000128
表示手掌部运动姿态。
Figure BDA0002188081190000129
为三轴陀螺仪测量得到的角速度。t为采样时间。
3.2)对手掌部运动姿态
Figure BDA00021880811900001210
进行归一化,即:
Figure BDA00021880811900001211
式中,qn为当前手掌部运动姿态归一化值。qn-1为上一时刻手掌部运动姿态归一化值。
4)对方向余弦矩阵进行误差补偿,主要步骤如下:
4.1)将方向余弦矩阵转化为四元数形式,即:
qAM=a+bi+cj+dK
式中,a、b、c和d为转换参数。
转换参数a、转换参数b、转换参数c、转换参数d分别如下所示:
Figure BDA0002188081190000131
Figure BDA0002188081190000132
Figure BDA0002188081190000133
Figure BDA0002188081190000134
转换后,方向余弦矩阵DCM如下所示:
Figure BDA0002188081190000135
4.2)计算四元数qAM与四元数qg之间的差
Figure BDA0002188081190000136
即:
Figure BDA0002188081190000137
4.3)计算坐标系方向的单位向量
Figure BDA0002188081190000138
和旋转角度
Figure BDA0002188081190000139
即:
Figure BDA00021880811900001310
Figure BDA00021880811900001311
4.4)建立虚拟角速度矢量
Figure BDA00021880811900001312
即:
Figure BDA00021880811900001313
5)利用公式(6)、公式(7)和公式(16)对四元数进行更新,从而实时表示手掌部运动姿态,并发送至游戏主机。
6)游戏主机获取姿态数据后,利用存储在游戏主机可读存储介质内的钟摆模型计算手掌部的运动轨迹,即所述钟摆模型利用三角函数,将手掌部的旋转角度转化为移动的距离,实现运动轨迹的实时追踪。
控制模块对接收到的手指部弯曲信号进行姿态解算的主要步骤如下:
1)设定弯曲阈值ε。
2)弯曲传感器串联定值电阻。
3)测量弯曲传感器两端电压值U,并判断电压U≥ε是否成立,若成立,则判断手指弯曲,若不成立,则判断手指未弯曲。
实施例5:
参见图2至图6,一种使用实时动态追踪的游戏手套的示例,主要如下:
选取第一人称视角射击游戏,图2为实时动态追踪的游戏手套示意图,其中,I、II、III、IV和V表示弯曲传感器,VI和VII表示九轴惯性传感器。
图3为游戏的开始和瞄准手势,此手势为中指、无名指和小拇指弯曲。在此手势下开始进行游戏并处于瞄准状态,游戏视角随手的移动轨迹移动。图4为游戏的移动手势,此手势为中指、无名指弯曲,小拇指伸直。在此手势下处于移动状态,移动方向随手的移动轨迹变化。5为游戏的射击手势,此手势为食指弯曲一次,类似扣动扳机。图6为游戏的开关镜切换,此手势为大拇指弯曲一次。

Claims (7)

1.一种实时动态追踪的游戏手套,其特征在于,主要包括手套本体(1)、感知模块(2)、控制模块(3)、通信模块(4)、供电模块(5)和游戏主机;
所述手套本体(1)包括手掌部和手指部;
所述感知模块(2)实时监测手套本体(1)的姿态变化;
所述感知模块(2)主要包括弯曲传感器和九轴惯性传感器;
所述弯曲传感器设置在手指部,监测手指部的弯曲程度,得到手指部弯曲信号,并发送至控制模块(3);
所述九轴惯性传感器设置在手掌部,监测手掌部的运动状态,得到手掌部运动信号,并发送至控制模块(3);
所述控制模块(3)对接收到的手指部弯曲信号和手掌部运动信号进行数据预处理和姿态解算,得到姿态解算结果,并将姿态解算结果发送至游戏主机;
控制模块(3)对接收到的手掌部运动信号进行姿态解算的主要步骤如下:
1)基于卡尔曼滤波对手掌部运动信号进行滤波,主要步骤如下:
1.1)通过上一时刻手掌部运动状态X(k-1|k-1)预测当前的手掌部运动状态X(k|k-1),即:
X(k|k-1)=A·X(k-1|k-1)+B·U(k) (1)
式中,A和B为卡尔曼滤波系统参数;U(k)为当前手掌部运动状态的控制量;
当前的手掌部运动状态X(k|k-1)的协方差P(k|k-1)如下所示:
P(k|k-1)=A·P(k-1|k-1)AT+Q (2)
式中,P(k-1|k-1)是上一时刻手掌部运动状态X(k-1|k-1)的协方差;AT是A的转置矩阵;Q是卡尔曼滤波系统的噪声;
1.2)估计参考测量值X(k|k),即:
X(k|k)=X(k|k-1)+kg(k)·(Z(k)-H·X(k|k-1)) (3)
式中,kg(k)是k时刻卡尔曼增益;H是测量系统的参数;Z(k)为k时刻待滤波信号;
卡尔曼增益kg(k)如下所示:
kg(k)=P(k|K-1)·HT/(H·P(k|k-1)·HT+R) (4)
式中,R为k时刻测量噪声协方差;
参考测量值X(k|k)的协方差P(k|k)如下所示:
P(k|k)=(1-kg(k)·H)·P(k|k-1) (5)
1.3)重复步骤1.1至步骤1.2,直至所有手掌部运动信号滤波完毕;
2)利用三轴加速度传感器和三轴地磁传感器对手掌部运动信号进行初始姿态解算,主要步骤如下:
2.1)设定地磁北极方向为参考坐标系的X轴正方向,重力方向为参考坐标系的Z轴正方向;以方向余弦矩阵表示手掌部运动姿态;
2.2)以三轴地磁传感器读数
Figure FDA0002545586400000021
为方向余弦矩阵的第一列,参考坐标系的Z轴读数为第二列,三轴加速度传感器的读数
Figure FDA0002545586400000022
为方向余弦矩阵第三列,以元素
Figure FDA0002545586400000023
为方向余弦矩阵第二列,建立方向余弦矩阵;参考坐标系的Z轴读数通过与三轴地磁传感器读数
Figure FDA0002545586400000024
正交计算得到;
方向余弦矩阵
Figure FDA0002545586400000025
如下所示:
Figure FDA0002545586400000026
3)利用三轴陀螺仪进行姿态更新,主要步骤如下:
3.1)采用四元数表示三轴陀螺仪更新后的姿态,即:
Figure FDA0002545586400000027
式中,
Figure FDA0002545586400000028
表示更新后手掌部运动姿态;
Figure FDA0002545586400000029
为三轴陀螺仪测量得到的角速度;t为采样时间;q为更新前手掌部运动姿态;
3.2)对手掌部运动姿态
Figure FDA00025455864000000210
进行归一化,即:
Figure FDA00025455864000000211
式中,qn为当前手掌部运动姿态归一化值;qn-1为上一时刻手掌部运动姿态归一化值;n表示时刻;
4)对方向余弦矩阵进行误差补偿,主要步骤如下:
4.1)将方向余弦矩阵转化为四元数形式,即:
qAM=a+bi+cj+dK
式中,a、b、c和d为转换参数;i、j和K表示虚数单位;
转换参数a、转换参数b、转换参数c、转换参数d分别如下所示:
Figure FDA0002545586400000031
Figure FDA0002545586400000032
Figure FDA0002545586400000033
Figure FDA0002545586400000034
转换后,方向余弦矩阵DCM如下所示:
Figure FDA0002545586400000035
4.2)计算四元数qAM与四元数qg之间的差
Figure FDA0002545586400000036
即:
Figure FDA0002545586400000037
式中,其中qAM为三轴地磁传感器和三轴加速度传感器数据构成的方向余弦矩阵所转化成的四元数,qg为三轴陀螺仪数据积分后表示姿态变化的四元数;
4.3)计算坐标系方向的单位向量
Figure FDA0002545586400000038
和旋转角度
Figure FDA0002545586400000039
即:
Figure FDA00025455864000000310
Figure FDA00025455864000000311
式中,re表示实部,im表示虚部;
4.4)建立虚拟角速度矢量
Figure FDA00025455864000000312
即:
Figure FDA00025455864000000313
式中,S(*)表示函数;
5)利用公式(6)、公式(7)和公式(16)对四元数进行更新,从而实时表示手掌部运动姿态,并发送至游戏主机;
6)游戏主机获取姿态数据后,利用存储在游戏主机可读存储介质内的钟摆模型计算手掌部的运动轨迹,即所述钟摆模型利用三角函数,将手掌部的旋转角度转化为移动的距离,实现运动轨迹的实时追踪;
所述游戏主机获取姿态数据后,利用存储在游戏主机可读存储介质内的钟摆模型计算手掌部的运动轨迹;
所述供电模块(5)为感知模块(2)、控制模块(3)和通信模块(4)供电。
2.根据权利要求1所述的一种实时动态追踪的游戏手套,其特征在于:所述通信模块(4)为无线通信模块或有线串口通信模块。
3.根据权利要求1所述的一种实时动态追踪的游戏手套,其特征在于:所述游戏主机主要包括电脑、游戏机和手机。
4.根据权利要求1所述的一种实时动态追踪的游戏手套,其特征在于:所述供电模块(5)包括稳压模块和锂电池;
所述锂电池的电压经过稳压模块稳压后为感知模块(2)、控制模块(3)和通信模块(4)供电。
5.根据权利要求1或2所述的一种实时动态追踪的游戏手套,其特征在于:所述弯曲传感器在手指部范围内可移动;
所述九轴惯性传感器在手掌部范围内可移动;
所述弯曲传感器和九轴惯性传感器可拆卸。
6.根据权利要求1所述的一种实时动态追踪的游戏手套,其特征在于:九轴惯性传感器包括三轴陀螺仪、三轴加速度传感器和三轴地磁传感器。
7.根据权利要求1所述的一种实时动态追踪的游戏手套,其特征在于,控制模块(3)对接收到的手指部弯曲信号进行姿态解算的主要步骤如下:
1)设定弯曲阈值ε;
2)弯曲传感器串联定值电阻;
3)测量弯曲传感器两端电压值U,并判断电压U≥ε是否成立,若成立,则判断手指弯曲,若不成立,则判断手指未弯曲。
CN201910822750.XA 2019-09-02 2019-09-02 一种实时动态追踪的游戏手套 Active CN110721465B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910822750.XA CN110721465B (zh) 2019-09-02 2019-09-02 一种实时动态追踪的游戏手套

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910822750.XA CN110721465B (zh) 2019-09-02 2019-09-02 一种实时动态追踪的游戏手套

Publications (2)

Publication Number Publication Date
CN110721465A CN110721465A (zh) 2020-01-24
CN110721465B true CN110721465B (zh) 2020-08-18

Family

ID=69218808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910822750.XA Active CN110721465B (zh) 2019-09-02 2019-09-02 一种实时动态追踪的游戏手套

Country Status (1)

Country Link
CN (1) CN110721465B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113268136B (zh) * 2020-02-14 2024-05-17 京东科技信息技术有限公司 拇指与手掌间自由度解算方法、装置及数据手套
CN113467599B (zh) * 2020-03-31 2024-05-17 京东科技信息技术有限公司 手指与手掌间屈伸自由度解算方法、装置及数据手套
CN111708433B (zh) * 2020-05-22 2023-08-18 重庆大学 手势数据采集手套及基于手势数据采集手套的手语手势识别方法
CN112860066A (zh) * 2021-02-07 2021-05-28 北京中电智博科技有限公司 一种电子设备和生成手部动作信息的方法
CN113238661B (zh) * 2021-07-09 2021-09-17 呜啦啦(广州)科技有限公司 一种数据手套用数据处理方法、系统、电子设备及介质
CN113892942B (zh) * 2021-08-24 2023-09-19 重庆大学 一种实时追踪人体下肢运动的穿戴设备
CN115070797B (zh) * 2022-07-21 2023-03-24 广东海洋大学 一种基于仿生机械臂的水下控制装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486112A (en) * 1991-10-03 1996-01-23 Troudet; Farideh Autonomous wearable computing device and method of artistic expression using same
CN102063825B (zh) * 2010-12-15 2012-07-25 北京理工大学 一种基于数据手套的手语识别装置
CN103226398B (zh) * 2013-03-25 2016-05-04 上海交通大学 基于微惯性传感器网络技术的数据手套
CN104544640A (zh) * 2015-01-29 2015-04-29 重庆墨希科技有限公司 一种智能手套
CN106896796B (zh) * 2017-02-13 2020-09-04 上海交通大学 基于数据手套的工业机器人主从式示教编程方法

Also Published As

Publication number Publication date
CN110721465A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
CN110721465B (zh) 一种实时动态追踪的游戏手套
US10534431B2 (en) Tracking finger movements to generate inputs for computer systems
US10860091B2 (en) Motion predictions of overlapping kinematic chains of a skeleton model used to control a computer system
US10838495B2 (en) Devices for controlling computers based on motions and positions of hands
AU2020273327B2 (en) Systems and methods of swimming analysis
CN104536558B (zh) 一种智能指环和控制智能设备的方法
CN102184549B (zh) 一种运动参数确定方法、装置和运动辅助设备
US11474593B2 (en) Tracking user movements to control a skeleton model in a computer system
KR100948095B1 (ko) 컴퓨팅 단말용 동작 입력 장치 및 그 작동방법
US8696763B2 (en) Prosthetic apparatus and control method
Fang et al. Development of a wearable device for motion capturing based on magnetic and inertial measurement units
CN103370672A (zh) 用于跟踪用户方位的方法和装置
EP2939402B1 (en) Method and device for sensing orientation of an object in space in a fixed frame of reference
CN104871120A (zh) 使用磁场传感器来确定用户输入的电气设备
US11009964B2 (en) Length calibration for computer models of users to generate inputs for computer systems
CN108279773B (zh) 一种基于marg传感器和磁场定位技术的数据手套
US10152052B1 (en) Portable single-handed remote control system for unmanned aerial vehicle
US20220155866A1 (en) Ring device having an antenna, a touch pad, and/or a charging pad to control a computing device based on user motions
US20200319721A1 (en) Kinematic Chain Motion Predictions using Results from Multiple Approaches Combined via an Artificial Neural Network
WO2019061513A1 (zh) 一种姿态矩阵的计算方法及设备
Keir et al. Gesture-recognition with non-referenced tracking
WO2020009715A2 (en) Tracking user movements to control a skeleton model in a computer system
KR20120037739A (ko) 손동작 기반 사용자 인터페이스 장치 및 그 방법
CN112753006A (zh) 电磁跟踪的三维空中鼠标
US20210318759A1 (en) Input device to control a computing device with a touch pad having a curved surface configured to sense touch input

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant