CN110718748A - A metamaterial unit for encoding metamaterial antennas - Google Patents
A metamaterial unit for encoding metamaterial antennas Download PDFInfo
- Publication number
- CN110718748A CN110718748A CN201911003979.7A CN201911003979A CN110718748A CN 110718748 A CN110718748 A CN 110718748A CN 201911003979 A CN201911003979 A CN 201911003979A CN 110718748 A CN110718748 A CN 110718748A
- Authority
- CN
- China
- Prior art keywords
- metamaterial
- unit
- substrate
- encoding
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
Landscapes
- Waveguide Aerials (AREA)
Abstract
本发明公开一种用于编码超材料天线的超材料单元,包括谐振单元、背腔和传输线结构;谐振单元,包括谐振基板,谐振基板中部开设有贯穿且内部设置有片状导体的避空槽,片状导体与谐振基板之间形成连接缝隙,连接缝隙内设置有两个二极管;背腔,包括背腔基板,背腔基板中部开设有贯穿的矩形槽,矩形槽的四个内壁分别贴附有金属膜;传输线结构,包括波导基板,金属层的中部开设有波导缝隙。本发明导行波从传输线结构的波导缝隙进入,经背腔的耦合作用实现对谐振单元的间接馈电,直接隔离了传输线结构和谐振单元的电流通路,进而抑制了流经二极管的电流并降低了二极管导通时的欧姆损耗,从而提高超材料单元用于编码超材料天线的整体性能。
The invention discloses a metamaterial unit for coding a metamaterial antenna, which includes a resonance unit, a back cavity and a transmission line structure; the resonance unit includes a resonance substrate, the middle of the resonance substrate is provided with a hollow slot that runs through and is provided with a sheet conductor inside. , a connection gap is formed between the sheet conductor and the resonant substrate, and two diodes are arranged in the connection gap; the back cavity includes a back cavity substrate, and a rectangular slot is formed in the middle of the back cavity substrate, and the four inner walls of the rectangular slot are respectively attached There is a metal film; the transmission line structure includes a waveguide substrate, and a waveguide slot is opened in the middle of the metal layer. The guided wave of the invention enters from the waveguide slot of the transmission line structure, realizes the indirect feeding of the resonance unit through the coupling effect of the back cavity, directly isolates the current path of the transmission line structure and the resonance unit, thereby suppressing the current flowing through the diode and reducing The ohmic loss when the diode is turned on is reduced, thereby improving the overall performance of the metamaterial unit used to encode the metamaterial antenna.
Description
技术领域technical field
本发明属于超材料技术领域,具体是一种用于编码超材料天线的超材料单元。The invention belongs to the technical field of metamaterials, in particular to a metamaterial unit used for coding metamaterial antennas.
背景技术Background technique
超材料技术是一个前沿性交叉科技,其涉及的技术领域包括了电磁、微波、太赫兹、光子、先进的工程设计体系、通信、半导体等范畴。应用了超材料单元的超材料天线相比于移相网络的相控阵天线极大地降低了系统复杂度、体积重量及造价,具有重要的应用价值。由于它的辐射性能直接由超材料单元的辐射性能决定,研究性能优良的超材料单元对于更好地研究超材料天线具有重大意义。Metamaterial technology is a cutting-edge interdisciplinary technology, and its technical fields include electromagnetics, microwaves, terahertz, photonics, advanced engineering design systems, communications, semiconductors and other fields. Compared with the phased array antenna of the phase-shift network, the metamaterial antenna using the metamaterial unit greatly reduces the system complexity, volume weight and cost, and has important application value. Since its radiation performance is directly determined by the radiation performance of the metamaterial unit, the study of metamaterial units with excellent performance is of great significance for better research on metamaterial antennas.
目前用于编码超材料天线的超材料单元的结构为:具有PIN二极管的矩形CELC谐振单元直接构建在传输线结构的上导体表面,导行波经过CELC谐振单元就能够动态辐射形成波束。然而,由于传输线的上导体表面存在较强的电流,如果直接将单元构建在上导体表面,当二极管导通时,较大的电流直接流经二极管的寄生电阻,这将会引起较高的欧姆损耗,导致天线整体上效率较低。The structure of the metamaterial unit currently used to encode the metamaterial antenna is as follows: a rectangular CELC resonant unit with a PIN diode is directly constructed on the upper conductor surface of the transmission line structure, and the guided wave can be dynamically radiated through the CELC resonant unit to form a beam. However, since there is a strong current on the upper conductor surface of the transmission line, if the unit is built directly on the upper conductor surface, when the diode is turned on, a larger current flows directly through the parasitic resistance of the diode, which will cause a higher ohmic loss, resulting in an overall lower efficiency of the antenna.
美国科学家Dr.Smith于2016年提出了一种改进型椭圆结构的CELC谐振单元,能够在一定程度上减小欧姆损耗。其结构原理相比于传统矩形CELC谐振单元,椭圆结构拓宽了金属电路回路,使得电流流经的金属部分电阻明显减小。该设计减小了金属部分的欧姆损耗,但却没有解决二极管导通时带来的欧姆损耗。American scientist Dr. Smith proposed an improved elliptical structure CELC resonant unit in 2016, which can reduce the ohmic loss to a certain extent. Compared with the traditional rectangular CELC resonant unit, the elliptical structure widens the metal circuit loop, so that the resistance of the metal part through which the current flows is significantly reduced. This design reduces the ohmic losses in the metal part, but does not address the ohmic losses when the diode is turned on.
因此,有必要在上述基础上设计一种进一步解决二极管导通时带来的欧姆损耗问题的新型超材料单元。Therefore, it is necessary to design a new metamaterial unit that further solves the ohmic loss problem caused by diode conduction on the basis of the above.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种新型超材料单元,解决的是用于编码超材料天线的传统超材料单元损耗大、效率低的问题。The purpose of the present invention is to provide a novel metamaterial unit, which solves the problems of large loss and low efficiency of the traditional metamaterial unit used for coding metamaterial antennas.
为了解决上述技术问题,本发明是通过以下技术方案实现的:一种用于编码超材料天线的超材料单元,包括从上而下依次叠置且均呈板状结构的谐振单元、背腔和传输线结构,其中,In order to solve the above technical problems, the present invention is achieved through the following technical solutions: a metamaterial unit for coding a metamaterial antenna, including resonant units, a back cavity and a plate-like structure stacked in sequence from top to bottom transmission line structure, where,
谐振单元,包括谐振基板,所述谐振基板中部开设有贯穿厚度方向的避空槽,所述避空槽内具有片状导体,所述片状导体与所述谐振基板之间形成连接缝隙,所述连接缝隙内位于所述避空槽的短轴两端对称设置有两个二极管,所述二极管的正负极分别与所述片状导体和谐振基板电连接;The resonant unit includes a resonant substrate, the middle of the resonant substrate is provided with an escape groove that runs through the thickness direction, the air escape groove has a sheet conductor, and a connection gap is formed between the sheet conductor and the resonance substrate, so Two diodes are symmetrically arranged at both ends of the short axis of the hollow slot in the connection gap, and the positive and negative electrodes of the diodes are respectively electrically connected to the sheet conductor and the resonant substrate;
背腔,包括背腔基板,所述背腔基板中部开设有贯穿厚度方向的矩形槽,所述矩形槽的四个内壁分别贴附有金属膜,四个所述金属膜围合形成金属腔体,所述金属腔体靠近所述谐振单元的一端抵靠所述谐振基板、远离所述谐振单元的一端抵靠所述传输线结构;A back cavity, including a back cavity substrate, a rectangular groove running through the thickness direction is opened in the middle of the back cavity substrate, four inner walls of the rectangular groove are respectively attached with metal films, and the four metal films are enclosed to form a metal cavity , one end of the metal cavity close to the resonance unit abuts the resonance substrate, and one end away from the resonance unit abuts the transmission line structure;
传输线结构,包括由介质层和金属层固定贴合形成的波导基板,所述金属层抵靠所述背腔,所述金属层的中部开设有波导缝隙,用于通过由微波源产生的导行波;The transmission line structure includes a waveguide substrate formed by fixedly bonding a dielectric layer and a metal layer, the metal layer abuts against the back cavity, and a waveguide slot is opened in the middle of the metal layer for passing the guide generated by the microwave source. Wave;
所述避空槽的几何中心、矩形槽的几何中心和波导缝隙的几何中心重合。The geometric center of the hollow slot, the geometric center of the rectangular slot and the geometric center of the waveguide slot coincide.
进一步的,所述片状导体包括一金属片,所述金属片为长轴两端各具有一个凹槽的椭圆形结构,所述金属片短轴端点距离所述避空槽短轴端点的距离d_gap为0.15mm-0.47mm,所述凹槽最靠近所述金属片中心的点距离所述避空槽长轴端点的距离d_cut为0.7mm-1mm。Further, the sheet conductor includes a metal sheet, the metal sheet is an elliptical structure with a groove at each end of the long axis, and the distance between the short axis end point of the metal sheet and the short axis end point of the hollow groove d_gap is 0.15mm-0.47mm, and the distance d_cut between the point of the groove closest to the center of the metal sheet and the end point of the long axis of the void groove is 0.7mm-1mm.
进一步的,所述金属层贴附于所述介质层靠近所述背腔的一面或所述介质层的两面,所述金属层的几何中心与介质层的几何中心重合。Further, the metal layer is attached to one side of the dielectric layer close to the back cavity or both sides of the dielectric layer, and the geometric center of the metal layer coincides with the geometric center of the dielectric layer.
进一步的,所述谐振单元、背腔和传输线结构相互平行。Further, the resonance unit, the back cavity and the transmission line structure are parallel to each other.
进一步的,所述避空槽的长轴距离2r2为4mm-5.6mm、短轴距离2r1为3.2mm-4.8mm。Further, the long-axis distance 2r 2 of the hollow groove is 4 mm-5.6 mm, and the short-axis distance 2r 1 is 3.2 mm-4.8 mm.
进一步的,所述背腔基板为采用RT6035HTC基板材料制作而成的厚度均匀的板材,所述介质层为采用PCB、FR4或铁氟龙任意一种或多种材料混合制作而成的厚度均匀的板材。Further, the back cavity substrate is a plate with a uniform thickness made of RT6035HTC substrate material, and the dielectric layer is a uniform thickness made of any one or more materials of PCB, FR4 or Teflon. plate.
进一步的,所述谐振基板、金属膜和金属层的材质为铜或银。Further, the resonant substrate, the metal film and the metal layer are made of copper or silver.
进一步的,所述谐振单元为CELC谐振单元。Further, the resonance unit is a CELC resonance unit.
进一步的,所述波导缝隙呈矩形结构,其长边与所述避空槽的长轴平行、短边与所述避空槽的短轴平行。Further, the waveguide slot has a rectangular structure, the long side of which is parallel to the long axis of the hollow slot, and the short side is parallel to the short axis of the hollow slot.
本发明还提供一种用于编码超材料天线馈电结构的等效电路,包括电阻、电感以及如前面所述的用于编码超材料天线的超材料单元;所述电阻、用于编码超材料天线的超材料单元和电感依次串联,当二极管断开时,所述等效电路由电阻、电感以及一组电容串联组成;当二极管导通时,所述等效电路由电阻和电感串联组成。The present invention also provides an equivalent circuit for encoding a metamaterial antenna feed structure, including a resistance, an inductance, and a metamaterial unit for encoding a metamaterial antenna as described above; the resistance, for encoding a metamaterial The metamaterial unit of the antenna and the inductor are connected in series in sequence. When the diode is disconnected, the equivalent circuit consists of a resistor, an inductor and a set of capacitors connected in series; when the diode is turned on, the equivalent circuit consists of a resistor and an inductor connected in series.
与现有技术相比,本发明的有益之处是:Compared with the prior art, the benefits of the present invention are:
本发明所述的一种用于编码超材料天线的超材料单元在保证超材料单元原有的谐振特性的同时,导行波从传输线结构的波导缝隙进入,经背腔的耦合作用实现对谐振单元的间接馈电,直接隔离了传输线结构和谐振单元的电流通路,进而抑制了流经二极管的电流并降低了二极管导通时的欧姆损耗,超材料天线的总辐射效率得到明显提高,从而提高超材料单元用于编码超材料天线的整体性能。The metamaterial unit used for coding the metamaterial antenna according to the present invention ensures the original resonance characteristics of the metamaterial unit, and at the same time, the guided traveling wave enters from the waveguide slot of the transmission line structure, and realizes the resonance through the coupling effect of the back cavity. The indirect feeding of the unit directly isolates the current path of the transmission line structure and the resonant unit, thereby suppressing the current flowing through the diode and reducing the ohmic loss when the diode is turned on. The total radiation efficiency of the metamaterial antenna is significantly improved, thereby improving the The metamaterial unit is used to encode the overall performance of the metamaterial antenna.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.
下面结合附图对本发明进一步说明:Below in conjunction with accompanying drawing, the present invention is further described:
图1是本发明所述一种用于编码超材料天线的超材料单元的整体图;1 is an overall diagram of a metamaterial unit for coding a metamaterial antenna according to the present invention;
图2是图1的组成结构分解图;Fig. 2 is the composition structure exploded view of Fig. 1;
图3是谐振单元的结构示意图;Fig. 3 is the structural representation of resonance unit;
图4是背腔的结构示意图;Fig. 4 is the structural representation of back cavity;
图5是波导缝隙的结构示意图;FIG. 5 is a schematic structural diagram of a waveguide slot;
图6是一种用于编码超材料天线馈电结构的等效电路的结构示意图;6 is a schematic structural diagram of an equivalent circuit for encoding a metamaterial antenna feed structure;
图7是一种用于编码超材料天线馈电结构的等效电路的电路图;7 is a circuit diagram of an equivalent circuit for encoding a metamaterial antenna feed structure;
图8是传统馈电结构在关闭状态下的各种损耗和辐射功率结果图;Figure 8 is a graph of various losses and radiated power results of a conventional feed structure in a closed state;
图9是本发明馈电结构在关闭状态下的各种损耗和辐射功率结果图;Fig. 9 is the result graph of various losses and radiation power of the feeding structure of the present invention in the closed state;
图10是对电流流经本发明二极管电流的仿真示意图;Fig. 10 is the simulation schematic diagram of the current flowing through the diode of the present invention;
1、谐振单元;2、背腔;3、传输线结构;4、电阻;5、电感;11、谐振基板;12、避空槽;13、片状导体;14、连接缝隙;15、二极管;21、背腔基板;22、矩形槽;23、金属膜;31、波导基板;32、波导缝隙。1. Resonant unit; 2. Back cavity; 3. Transmission line structure; 4. Resistor; 5. Inductance; 11. Resonant substrate; 12. Avoidance slot; 13. Sheet conductor; 14. Connection gap; 15. Diode; 21 , back cavity substrate; 22, rectangular slot; 23, metal film; 31, waveguide substrate; 32, waveguide slot.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that all directional indications (such as up, down, left, right, front, back, etc.) in the embodiments of the present invention are only used to explain the relationship between various components under a certain posture (as shown in the accompanying drawings). The relative positional relationship, the movement situation, etc., if the specific posture changes, the directional indication also changes accordingly.
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, descriptions such as "first", "second", etc. in the present invention are only for descriptive purposes, and should not be construed as indicating or implying their relative importance or implicitly indicating the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是物理连接或无线通信连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "connected", "fixed" and the like should be understood in a broad sense, for example, "fixed" may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection, an electrical connection, a physical connection or a wireless communication connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction between the two elements. unless otherwise expressly qualified. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, the technical solutions between the various embodiments of the present invention can be combined with each other, but must be based on the realization by those of ordinary skill in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of technical solutions does not exist and is not within the scope of protection claimed by the present invention.
实施例一Example 1
如附图1-图2和图6所示的一种用于编码超材料天线的超材料单元,包括从上而下依次叠置的谐振单元1、背腔2和传输线结构3,为了方便安装,将谐振单元1、背腔2和传输线结构3设计成相互平行且均呈板状结构,其中:As shown in Fig. 1-Fig. 2 and Fig. 6, a metamaterial unit for coding a metamaterial antenna includes a
如图3所示的谐振单元1,包括谐振基板11,所述谐振基板11中部开设有贯穿厚度方向的避空槽12,所述避空槽12内设置有片状导体13,所述片状导体13与所述谐振基板11之间形成连接缝隙14,所述连接缝隙14内位于所述避空槽12的短轴两端对称设置有两个二极管15,所述二极管15的正负极分别与所述片状导体13和谐振基板11电连接,在本实施例中,所述避空槽12为椭圆槽;进一步的,所述谐振单元1为CELC谐振单元;本实施例所述的CELC谐振单元结构原理参照美国科学家Dr.Smith提出的一种改进型椭圆结构的CELC谐振单元,相比于传统矩形CELC谐振单元,椭圆结构拓宽了金属电路回路,使得电流流经的金属部分电阻明显减小;The
如图4所示的背腔2,包括背腔基板21,所述背腔基板21中部开设有贯穿厚度方向的矩形槽22,所述矩形槽22的四个内壁分别贴附有金属膜23,四个所述金属膜23围合形成金属腔体,所述金属腔体沿所述背腔基板21厚度方向的长度大于背腔基板21的厚度,并分别向两侧伸出一定距离,靠近所述谐振单元1的一端抵靠所述谐振基板11、远离所述谐振单元1的一端抵靠所述传输线结构3,从而形成一个用于对导行波进行耦合的空间;The
如图5所示的传输线结构3,是微波电路中的基本结构,包括由介质层和金属层固定贴合形成的波导基板31,所述金属层贴附于所述介质层靠近所述背腔2一面或在介质层的两面同时贴附金属层,可以采用胶粘或者螺栓固定的方式连接,为了方便安装,所述金属层的几何中心与介质层的几何中心重合,所述金属层的中部开设有波导缝隙32,用于通过由微波源产生的导行波,导行波从介质层经波导缝隙向背腔2和谐振单元1传播,从而完成间接馈电;The
为了确保馈电的顺畅和结构的整体性,所述避空槽12的几何中心、矩形槽22的几何中心和波导缝隙32的几何中心重合。In order to ensure smooth feeding and structural integrity, the geometric center of the
更具体的,所述片状导体13包括一金属片,所述金属片为长轴两端具有两个凹槽的椭圆形结构,所述金属片短轴端点距离所述避空槽12短轴端点的距离d_gap为0.15mm-0.47mm,所述凹槽最靠近所述金属片中心的点距离所述避空槽12长轴端点的距离d_cut为0.7mm-1mm,所述避空槽12的长轴距离2r2为4mm-5.6mm、短轴距离2r1为3.2mm-4.8mm。More specifically, the
作为优选,所述背腔基板21为采用RT6035HTC基板材料制作而成的厚度均匀的板材,具有高导热、低损耗的特点,所述介质层为采用PCB、FR4或铁氟龙任意一种或多种材料混合制作而成的厚度均匀的板材,用于保持各层之间的绝缘性。Preferably, the
作为优选,所述谐振基板11、金属膜23和金属层的材质为铜或银,进一步优选为铜,在保证较高传导率的前提下降低了成本。Preferably, the
作为优选,所述波导缝隙32呈矩形结构,在本实施例中波导缝隙32的尺寸为5.5mm*1.7mm,其长边与所述避空槽12的长轴平行、短边与所述避空槽12的短轴平行,实现波导缝隙32与谐振单元1的极化一致,以实现更好的馈电。Preferably, the
为了进一步说明本实施例的性能和效果,通过对超材料天线的能量损耗、辐射功率以及电流流经二极管电流进行仿真:In order to further illustrate the performance and effect of this embodiment, the energy loss, radiated power and current flowing through the diode of the metamaterial antenna are simulated:
如图8所示为传统超材料单元在谐振单元关闭状态下各种损耗和辐射功率的结果图,从图中可以看出:随着频率的不断升高,介质损耗、金属损耗和辐射均处于低位水平,但是二极管的损耗也随着相应升高;Figure 8 shows the results of various losses and radiated power of the traditional metamaterial unit when the resonance unit is turned off. It can be seen from the figure that with the increasing frequency, the dielectric loss, metal loss and radiation are all in low level, but the loss of the diode also increases accordingly;
如图9所示为本实施例的超材料单元在谐振单元关闭状态下的各种损耗和辐射功率的结果图,从图中可以看出,随着频率的不断升高,介质损耗、金属损耗、辐射和二极管均处于低位水平;Figure 9 shows the results of various losses and radiated power of the metamaterial unit in this embodiment when the resonance unit is turned off. It can be seen from the figure that as the frequency increases, the dielectric loss, metal loss , radiation and diodes are at low levels;
由此可见,本实施例的超材料单元可以明显抑制在谐振单元关闭状态下二极管带来的欧姆损耗。It can be seen that the metamaterial unit of this embodiment can obviously suppress the ohmic loss caused by the diode when the resonance unit is turned off.
如图10所示为传统超材料单元和本实施例的超材料单元在谐振单元开启状态下对电流流经二极管电流仿真的结果图,从图中可以看出:二极管导通时,传统超材料单元中的二极管的电流约为0.16A,而本实施例的超材料单元中的二极管的电流约为0.01A,由此可见,本实施例的超材料单元可以减小欧姆阻抗,使得通过二极管的电流极小,从而确保低欧姆损耗,保持超材料天线的高效率。Figure 10 shows the results of the simulation of the current flowing through the diode in the traditional metamaterial unit and the metamaterial unit of this embodiment when the resonant unit is turned on. It can be seen from the figure that when the diode is turned on, the traditional metamaterial unit is The current of the diode in the unit is about 0.16A, while the current of the diode in the metamaterial unit of this embodiment is about 0.01A. It can be seen that the metamaterial unit of this embodiment can reduce the ohmic impedance, so that the The current is extremely small, ensuring low ohmic losses and maintaining the high efficiency of the metamaterial antenna.
经过仿真分析,这种新型超材料单元的欧姆损耗最低可以减小到传统超材料单元的1/25。由于它并没有改变超材料单元的形状,而是提出了一种新型的馈电结构,对于其他超材料结构也同样是适用的,因此具有广泛的应用前景。After simulation analysis, the minimum ohmic loss of this new metamaterial unit can be reduced to 1/25 of the traditional metamaterial unit. Since it does not change the shape of the metamaterial unit, it proposes a new type of feeding structure, which is also applicable to other metamaterial structures, so it has broad application prospects.
本实施例所述的一种用于编码超材料天线的超材料单元的具体使用过程是:在改进型椭圆结构的CELC谐振单元与传输线结构3之间增加一个中间层即背腔2,将传输线结构3上的金属层与谐振单元1隔开,从而直接隔离了传输线结构3与波导缝隙32之间的电流通路,进而抑制了流经二极管15的电流并降低了二极管15导通时的能量损耗。The specific use process of a metamaterial unit for coding a metamaterial antenna described in this embodiment is as follows: an intermediate layer, that is, a
通过在CELC单元中心和四周金属结构之间加载直流偏置电压可以实现对二极管的导通、断开两种状态的控制,从而实现本实施例的可重构功能。By applying a DC bias voltage between the center of the CELC unit and the surrounding metal structures, the on-state and off-state control of the diode can be realized, thereby realizing the reconfigurable function of this embodiment.
实施例二
如图6-7所示的一种用于编码超材料天线馈电结构的等效电路,包括电阻4、电感5以及如实施例一所述的用于编码超材料天线的超材料单元;所述电阻4、用于编码超材料天线的超材料单元和电感5依次串联,当二极管15断开时,所述等效电路由电阻4、电感5以及一组电容串联组成,一组电容为片状导体13、连接缝隙14和二极管15并联形成;当二极管15导通时,所述等效电路由电阻4和电感5串联组成。As shown in Figure 6-7, an equivalent circuit for coding a metamaterial antenna feeding structure includes a
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above descriptions are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Under the inventive concept of the present invention, the equivalent structural transformations made by the contents of the description and drawings of the present invention, or the direct/indirect application Other related technical fields are included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911003979.7A CN110718748B (en) | 2019-10-22 | 2019-10-22 | Metamaterial unit for encoding metamaterial antenna and equivalent circuit of feed structure of metamaterial unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911003979.7A CN110718748B (en) | 2019-10-22 | 2019-10-22 | Metamaterial unit for encoding metamaterial antenna and equivalent circuit of feed structure of metamaterial unit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110718748A true CN110718748A (en) | 2020-01-21 |
CN110718748B CN110718748B (en) | 2021-01-29 |
Family
ID=69213038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911003979.7A Active CN110718748B (en) | 2019-10-22 | 2019-10-22 | Metamaterial unit for encoding metamaterial antenna and equivalent circuit of feed structure of metamaterial unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110718748B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112993578A (en) * | 2021-01-19 | 2021-06-18 | 中国人民解放军国防科技大学 | Polarization coding phased array amplitude limiting antenna |
CN113328242A (en) * | 2021-06-08 | 2021-08-31 | 湖北汽车工业学院 | High-preparation-performance hexagram-shaped element metamaterial coating type microstrip antenna and design method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101420066A (en) * | 2008-11-21 | 2009-04-29 | 中国电子科技集团公司第三十八研究所 | Wideband single layer microstrip patch antenna |
US20150222014A1 (en) * | 2014-01-31 | 2015-08-06 | Ryan A. Stevenson | Waveguide feed structures for reconfigurable antenna |
US20150288063A1 (en) * | 2014-04-07 | 2015-10-08 | Mikala C. Johnson | Beam shaping for reconfigurable holographic antennas |
CN106099342A (en) * | 2016-07-04 | 2016-11-09 | 西安电子科技大学 | A kind of Meta Materials coating double frequency phased-array antenna |
US20170062943A1 (en) * | 2015-07-08 | 2017-03-02 | Drexel University | Miniaturized Reconfigurable CRLH Metamaterial Leaky-Wave Antenna Using Complementary Split-Ring Resonators |
CN108539426A (en) * | 2018-04-02 | 2018-09-14 | 上海航天电子有限公司 | The lens and method of multimode vortex electromagnetic wave are generated based on a bit transmission-type digital coding Meta Materials |
CN109586038A (en) * | 2018-12-04 | 2019-04-05 | 中国人民解放军国防科技大学 | An ultra-wideband switching absorber based on PIN diode |
CN109672021A (en) * | 2019-02-27 | 2019-04-23 | 中国电子科技集团公司第五十四研究所 | A kind of back chamber slot-coupled paster antenna |
CN209249705U (en) * | 2018-09-12 | 2019-08-13 | 北京超材信息科技有限公司 | A kind of restructural beam scanning antennas |
-
2019
- 2019-10-22 CN CN201911003979.7A patent/CN110718748B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101420066A (en) * | 2008-11-21 | 2009-04-29 | 中国电子科技集团公司第三十八研究所 | Wideband single layer microstrip patch antenna |
US20150222014A1 (en) * | 2014-01-31 | 2015-08-06 | Ryan A. Stevenson | Waveguide feed structures for reconfigurable antenna |
US20150288063A1 (en) * | 2014-04-07 | 2015-10-08 | Mikala C. Johnson | Beam shaping for reconfigurable holographic antennas |
US20170062943A1 (en) * | 2015-07-08 | 2017-03-02 | Drexel University | Miniaturized Reconfigurable CRLH Metamaterial Leaky-Wave Antenna Using Complementary Split-Ring Resonators |
CN106099342A (en) * | 2016-07-04 | 2016-11-09 | 西安电子科技大学 | A kind of Meta Materials coating double frequency phased-array antenna |
CN108539426A (en) * | 2018-04-02 | 2018-09-14 | 上海航天电子有限公司 | The lens and method of multimode vortex electromagnetic wave are generated based on a bit transmission-type digital coding Meta Materials |
CN209249705U (en) * | 2018-09-12 | 2019-08-13 | 北京超材信息科技有限公司 | A kind of restructural beam scanning antennas |
CN109586038A (en) * | 2018-12-04 | 2019-04-05 | 中国人民解放军国防科技大学 | An ultra-wideband switching absorber based on PIN diode |
CN109672021A (en) * | 2019-02-27 | 2019-04-23 | 中国电子科技集团公司第五十四研究所 | A kind of back chamber slot-coupled paster antenna |
Non-Patent Citations (3)
Title |
---|
TIMOTHY SLEASMAN等: "Waveguide-Fed Tunable Metamaterial Element for Dynamic Apertures", 《 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS》 * |
WEI LI等: "PIN tuned phase-gradient-metasurface transmitarray for beam steering application", 《2016 11TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY (ISAPE)》 * |
YOUFEI ZHANG等: "Transforming Surface Wave to Propagating OAM Vortex Wave via Flat Dispersive Metasurface in Radio Frequency", 《IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112993578A (en) * | 2021-01-19 | 2021-06-18 | 中国人民解放军国防科技大学 | Polarization coding phased array amplitude limiting antenna |
CN112993578B (en) * | 2021-01-19 | 2022-04-26 | 中国人民解放军国防科技大学 | Polarization coding phased array amplitude limiting antenna |
CN113328242A (en) * | 2021-06-08 | 2021-08-31 | 湖北汽车工业学院 | High-preparation-performance hexagram-shaped element metamaterial coating type microstrip antenna and design method thereof |
CN113328242B (en) * | 2021-06-08 | 2024-02-02 | 湖北汽车工业学院 | High-preparation-property eight-diagram-type element metamaterial cladding microstrip antenna and design method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110718748B (en) | 2021-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108649325B (en) | A broadband high-gain millimeter-wave dielectric resonant antenna array | |
KR20200070120A (en) | Ridge gap waveguide and multilayer antenna array including the same | |
CN110265787A (en) | Cavity-backed slot circularly polarized millimeter-wave antenna based on substrate-integrated waveguide SIW | |
US8717245B1 (en) | Planar multilayer high-gain ultra-wideband antenna | |
CN105552544A (en) | End-fire type artificial surface plasmon antenna | |
CN105006631A (en) | Electric control zero crossing scanning waveguide leaky-wave antenna based on liquid crystal | |
CN102117972A (en) | Frequency-scanning antenna array based on CRLH-TL | |
JPWO2011152055A1 (en) | Structure | |
CN114843775A (en) | Novel Palm Leaf Coplanar Vivaldi Array Antenna and Unit Design | |
CN109149117A (en) | A kind of composite left-and-right-hand leaky-wave antenna | |
CN110718748A (en) | A metamaterial unit for encoding metamaterial antennas | |
CN108493603B (en) | Electromagnetic wave polarization reconfigurable antenna housing | |
CN210092348U (en) | A circularly polarized substrate integrated dielectric antenna | |
CN209169379U (en) | A kind of millimeter wave circular polarized antenna for mobile terminal | |
CN110729555A (en) | Multi-frequency conformal antenna with headspace zero and working method | |
US8253641B1 (en) | Wideband wide scan antenna matching structure using electrically floating plates | |
JP6035673B2 (en) | Multilayer transmission line plate and antenna module having electromagnetic coupling structure | |
CN102751590A (en) | Fractal yagi printed antenna of coplanar waveguide feed | |
CN114221105B (en) | A signal crossover circuit structure and integrated circuit | |
CN102683838A (en) | Composite right/left handed circularly-polarized electronically-scanning phase-control leaky wave antenna | |
CN208173795U (en) | A kind of polarization of ele reconfigurable antenna cover | |
US10840609B1 (en) | Low-profile rectangular to circular transition | |
CN113794060A (en) | Dual-polarization ultra-wideband three-dimensional electromagnetic wave absorber | |
CN209056604U (en) | A millimeter-wave dual-polarized antenna for mobile terminals | |
CN114976671A (en) | A metasurface-based broadband dual-frequency functional switchable polarization converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |