CN110716328B - 一种产生涡旋自旋波的方法 - Google Patents

一种产生涡旋自旋波的方法 Download PDF

Info

Publication number
CN110716328B
CN110716328B CN201911162075.9A CN201911162075A CN110716328B CN 110716328 B CN110716328 B CN 110716328B CN 201911162075 A CN201911162075 A CN 201911162075A CN 110716328 B CN110716328 B CN 110716328B
Authority
CN
China
Prior art keywords
vortex
spin
field
wave
dispersion relation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911162075.9A
Other languages
English (en)
Other versions
CN110716328A (zh
Inventor
蒋媛媛
严鹏
袁怀洋
李志雄
王振宇
曹云姗
孟皓
刘波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201911162075.9A priority Critical patent/CN110716328B/zh
Publication of CN110716328A publication Critical patent/CN110716328A/zh
Application granted granted Critical
Publication of CN110716328B publication Critical patent/CN110716328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明涉及一种产生涡旋自旋波的方法,包括以下步骤:根据铁磁圆柱纳米线内,磁矩的动力学LLG方程、偶极场对应的静磁方程以及磁矩和偶极场需满足的边界条件,获得自旋波的色散关系;或者在铁磁圆柱纳米线中施加激发场激发出不同频率、不同模式的涡旋自旋波,采用布里渊光散射装置,获得自旋波的色散关系;根据所述色散关系获得目标模式的自旋波对应的目标频率;在铁磁圆柱纳米线中施加目标频率的涡旋光场,激发出目标模式的涡旋自旋波。本发明可以得到固定频率、固定模式的涡旋自旋波,可用于操控磁孤子,如磁斯格明子、磁涡旋、磁泡等,对自旋波的应用有极大的益处。

Description

一种产生涡旋自旋波的方法
技术领域
本发明属于自旋电子学技术领域,具体涉及一种产生涡旋自旋波的方法。
背景技术
在过去的几十年中,作为基础与应用物理学的附加自由度,具有空间扭曲相结构的波场的量化轨道角动量(OAM)在光子、声波、电子束和中子等领域已被广泛研究。轨道角动量(OAM)可与(准)粒子围绕固定轴旋转相联系,其在螺旋相位分布的波函数,可由方位角的相位角φ和非零拓扑电荷l(整数)构成的exp(ilφ)表示,并且在中心处等于零。与自波极化的自旋角动量(SAM)不同,OAM在旋转轴方向上的分量具有量化值
Figure BDA0002286397740000011
(
Figure BDA0002286397740000012
为约化普朗克常数)。扭曲的OAM态在轴上具有相位错位,该相位错位有时被称为(光学的,声的和/或电子的)涡旋,当粒子与其环境的相互作用具有旋转对称性时,OAM被保留。我们可以使用螺旋相位板,计算机生成的全息图,模式转换和空间调制器等来实现具有高OAM的涡旋。然而,作为有序磁振子中的基本激发,自旋波的OAM态很少受到人们的关注,其实际意义也从未被提及,尽管它们的线性动量和SAM自由度已经在布里渊光散射光谱、拓扑自旋结构的磁振子驱动动力学、玻色-爱因斯坦磁振子凝聚态中得到了广泛的探讨。
自旋波作为信息的传递载体,具有其独特的传播特性:在信息传递过程中不会使电子发生移动。利用自旋波来传递信息能够避免焦耳热的问题,更加有效的减小信息传输过程中的损耗。并且由于自旋波的波长很短,比同频率的电磁波的波长小很多,这样顺应了器件的微小型化的发展趋势。同时,自旋波具有易于激发,易于检测,信息存储密度大,功耗小,易耦合等特点,自旋波成为了继现代以电子、光为信息载体的下一代信息技术的理想信息载体。具有轨道角动量的自旋波即涡旋自旋波,不仅具有以上特点,还可用于操控磁孤子,如磁斯格明子、磁涡旋、磁泡等,这对自旋电子器件的发展具有很大的益处。因此,如何产生涡旋自旋波成为了本领域亟待解决的技术问题。
发明内容
本发明所要解决的技术问题是针对现有技术存在的问题,提供一种产生涡旋自旋波的方法。
为解决上述技术问题,本发明实施例提供一种产生涡旋自旋波的方法,包括以下步骤:
根据铁磁圆柱纳米线内,磁矩的动力学LLG方程、偶极场对应的静磁方程以及磁矩和偶极场需满足的边界条件,获得自旋波的色散关系;
根据所述色散关系获得目标模式的自旋波对应的目标频率;
在铁磁圆柱纳米线中施加目标频率的涡旋光场,激发出目标模式的涡旋自旋波。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步的,根据铁磁圆柱纳米线内,磁矩的动力学LLG方程、偶极场对应的静磁方程和以及磁矩和偶极场需满足的边界条件,获得自旋波的色散关系,包括,根据如下公式(1)和公式(2)确定所述自旋波的色散关系:
Figure BDA0002286397740000021
Figure BDA0002286397740000022
其中,H0为外加磁强度,Ms为饱和磁化强度,k为轴向波矢,k为径向方向波矢,
Figure BDA0002286397740000023
γ为旋磁比,μ0为真空磁导率,ω为自旋波的角频率,
Figure BDA0002286397740000024
A为交换常数,k1,k2,κ3分别为公式1解出的三个不同的径向方向波矢的值。
进一步的,所述涡旋光场为拉盖尔-高斯型涡旋光场。
进一步的,利用人工表面等离激元产生所述拉盖尔-高斯型涡旋光场。
进一步的,在考虑焦平面z=0的情况下,所述涡旋光场根据如下公式(4)确定:
Figure BDA0002286397740000031
其中,柱坐标中(ρ,φ,t)的ρ为极坐标,φ为方位角,t为时间,w为光腰的大小,B0为常数,用以调节光场的幅值,
Figure BDA0002286397740000032
为广义拉盖尔函数;p为涡旋光径向上节点的数目;f为光场的频率;l为直角坐标下的轨道角动量子数;ex为光场的方向。
为解决上述技术问题,本发明实施例还提供了另一种产生涡旋自旋波的方法,包括以下步骤:
在铁磁圆柱纳米线中施加激发场激发出不同频率、不同模式的涡旋自旋波;
采用布里渊光散射装置,获得自旋波的色散关系;
根据所述色散关系获得目标模式的自旋波对应的目标频率;
在铁磁圆柱纳米线中施加目标频率的涡旋光场,激发出目标模式的涡旋自旋波。
进一步的,所述在铁磁圆柱纳米线中施加激发场激发出不同频率的自旋波,包括:根据如下公式(3)确定所述激发场:
Figure BDA0002286397740000033
其中,B0为场强,fB为截止频率,t为时间,l为直角坐标下的轨道角动量子数,φ为方位角。
进一步的,所述采用布里渊光散射装置,获得自旋波的色散关系,包括,采用布里渊光散射装置,测量铁磁圆柱纳米线中自旋波的波矢与频率,获得自旋波的色散关系。
进一步的,所述布里渊光散射装置包括串联式法布里-拍罗干涉仪、单模固体激光器、温控滤光器和磁铁。
进一步的,所述涡旋光场为拉盖尔-高斯型涡旋光场。
进一步的,利用人工表面等离激元产生所述拉盖尔-高斯型涡旋光场。
进一步的,在考虑焦平面z=0的情况下,所述涡旋光场根据如下公式(4)确定:
Figure BDA0002286397740000034
其中,柱坐标中(ρ,φ,t)的ρ为极坐标,φ为方位角,t为时间,w为光腰的大小,B0为常数,用以调节光场的幅值,
Figure BDA0002286397740000041
为广义拉盖尔函数;p为涡旋光径向上节点的数目;f为光场的频率;l为直角坐标下的轨道角动量子数;ex为光场的方向。
本发明的有益效果是:本发明可以通过理论计算或仿真实验获得自旋波的色散关系,根据获得的色散关系确定所需自旋波模式对应的频率,然后施加对应频率的涡旋光场产生所需涡旋自旋波,从而得到固定所需模式的涡旋自旋波,可用于操控磁孤子,如磁斯格明子、磁涡旋、磁泡等,对自旋波的应用有很大的益处。
附图说明
图1为本发明第一实施例获得的频率和行列式的绝对值的关系曲线;
图2为本发明第一实施例和第二实施例提供的自旋波的色散关系仿真图;
图3为本发明第二实施例提供的圆柱截面上磁矩mx分量采样点信号分析仿真图;
图4为本发明第二实施例提供的磁矩在截面上的分布仿真图;
图5为本发明第二实施例提供的加场频率为63.5GHz时的圆柱截面上磁矩mx分量采样点信号分析仿真图;
图6为本发明第二实施例提供的加场频率为63.5GHz时的磁矩在截面上的分布仿真图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
本发明第一实施例提供的一种产生涡旋自旋波的方法,包括以下步骤:
根据铁磁圆柱纳米线内,磁矩的动力学LLG方程、偶极场对应的静磁方程以及磁矩和偶极场需满足的边界条件,获得自旋波的色散关系;
根据所述色散关系获得目标模式的自旋波对应的目标频率;
在铁磁圆柱纳米线中施加目标频率的涡旋光场,激发出目标模式的涡旋自旋波。
可选地,根据铁磁圆柱纳米线内,磁矩的动力学LLG方程、偶极场对应的静磁方程以及磁矩和偶极场需满足的边界条件,获得自旋波的色散关系,包括,根据如下公式(1)和公式(2)确定所述自旋波的色散关系:
Figure BDA0002286397740000051
Figure BDA0002286397740000052
其中,H0为外加磁强度,Ms为饱和磁化强度,k为轴向波矢,κ为径向方向波矢,
Figure BDA0002286397740000053
γ为旋磁比,μ0为真空磁导率,ω为自旋波的角频率,
Figure BDA0002286397740000054
A为交换常数,κ1,κ2,κ3分别为公式1解出的三个不同的径向方向波矢的值。
上述实施例的原理具体如下:
在无限长半径为R的铁磁圆柱纳米线中,假设磁矩初始状态在纳米线中是均匀的,磁矩的易磁化轴平行于纳米线的轴线方向,我们已知LLG方程(Landau-Lifshitz-Gilbert方程)如下所示:
Figure BDA0002286397740000055
其中m=M/Ms是一个单位磁矩,M为磁矩的大小,Ms,γ分别为饱和磁化强度和旋磁比,α为吉尔伯特阻尼,μ0为真空磁导率,Beff为有效场,包含了外加磁场、交换能和退磁场,即
Figure BDA0002286397740000056
其中H0为外加磁强度,我们设置沿着z方向,A为交换常数,h(r,t)为退磁场,r为圆柱的半径,t为时间。
根据麦克斯韦方程,我们可以得到静磁方程
Figure BDA0002286397740000057
Figure BDA0002286397740000058
其中,
Figure BDA0002286397740000059
Φ为静磁势。
我们可以把磁矩和磁势写成空间与时间相乘的形式:m(r,t)=m(r)e-iωt,Φ(r,t)=Φ(r)e-iωt。把这些项都代入静磁方程和LLG方程,并利用线性近似,可以得到:
Figure BDA0002286397740000061
Figure BDA0002286397740000062
Figure BDA0002286397740000063
其中,
Figure BDA0002286397740000064
mx,my分别为磁矩的x,y分量。
在柱坐标中,磁势可以写成这样的形式:Φ(ρ,φ,z)~Jn(κρ)einφ+ikz,其中Jn(κρ)是第一类贝塞尔函数,n是柱坐标下的轨道角动量子数,n=0,±1,±2,±3…,k是轴向波矢,κ是径向方向波矢,z为圆柱轴向方向,φ为方位角。
结合公式(6)、公式(7)和公式(8),可以得出自旋波的色散关系表达式:
Figure BDA0002286397740000065
从上式可以看出,对于每个不同的n和k,有三个不同的关于κ2的解,所以,当ρ≤R,
Figure BDA0002286397740000066
ρ>R,Φ(ρ,φ,z)=c4Kn(kρ)einφ+ikz,其中Kn(kρ)指第二类修正贝塞尔函数。
基于上面的公式,我们可以得出动态磁矩的径向分量和角相分量为:
Figure BDA0002286397740000067
Figure BDA0002286397740000068
由于磁势和磁感应强度法线方向在边界处的连续性,以及磁矩在边界处是自由的,可以得到以下四个边界条件:
Figure BDA0002286397740000069
Figure BDA0002286397740000071
Figure BDA0002286397740000072
Figure BDA0002286397740000073
四个边界条件可以写成两个矩阵相乘的形式,通过化简我们可以得到:
Figure BDA0002286397740000074
Figure BDA0002286397740000075
是一个4×4的行列式,可称其为边界值行列式,它是两个未知数的复数函数(具有实部和虚部)。通常,代数复杂性使得通过同时求解公式1和2来导出自旋波频率的解析表达式是不切实际的。因此,我们可以先固定波矢k的值,然后给出试验频率,通过公式1求出κ1,κ2,κ3,最后再代入公式2求出行列式的绝对值。当求出的绝对值为极小值时,所对应的试验频率就是波矢k满足色散关系和边界条件所对应的频率。通过改变不同的k值,我们可以计算出不同的频率,因此,通过该方法可以计算自旋波的色散关系,而且,在特定的波矢和频率下,通过公式9和公式10,也可以理论计算出动态磁矩的径向分量和角相分量在截面上的分布。
本发明第二实施例提供的一种产生涡旋自旋波的方法,包括以下步骤:
在铁磁圆柱纳米线中施加激发场激发出不同频率、不同模式的自旋波;
采用布里渊光散射装置,获得自旋波的色散关系;
根据所述色散关系获得目标模式的自旋波对应的目标频率;
在铁磁圆柱纳米线中施加目标频率的涡旋光场,激发出目标模式的涡旋自旋波。
可选地,所述在铁磁圆柱纳米线中施加激发场激发出不同频率、不同模式的自旋波,包括:根据如下公式(3)确定所述激发场:
Figure BDA0002286397740000076
其中,B0为场强,fB为截止频率,t为时间,l为直角坐标下的轨道角动量子数,φ为方位角。
可选地,所述采用布里渊光散射装置,获得自旋波的色散关系,包括,采用布里渊光散射装置,测量铁磁圆柱纳米线中自旋波的波矢与频率,获得自旋波的色散关系。
可选地,所述布里渊光散射装置包括串联式法布里-拍罗干涉仪、单模固体激光器、温控滤光器和磁铁。
可选地,所述涡旋光场为拉盖尔-高斯型涡旋光场。
可选地,利用人工表面等离激元(Spoof Surface Plasmon Polariton,简称SSPP)的原理产生所述拉盖尔-高斯型涡旋光场。
上述实施例中,采用环形双层人工表面等离激元波片来进行波束的发射,同时进行辐射光束相位的调节作用,进而得到吉赫兹(GHz)量级的拉盖尔-高斯型涡旋光束。
可选地,在考虑焦平面z=0的情况下,所述涡旋光场根据如下公式(4)确定:
Figure BDA0002286397740000081
其中,柱坐标中(ρ,φ,t)的ρ为极坐标,φ为方位角,t为时间,w为光腰的大小,B0为常数,用以调节光场的幅值,
Figure BDA0002286397740000082
为广义拉盖尔函数;p为涡旋光径向上节点的数目;f为光场的频率;l为直角坐标下的轨道角动量子数;ex为光场的方向。
上述实施例中,在傍轴近似的情况下,通过解麦克斯韦方程组得到涡旋光场的方程。
图1为本发明第一实施例获得的频率和行列式的绝对值的关系曲线,其中,选取材料参数为饱和磁化强度Ms=0.192MAm-1,交换常数A=3.1pJm-1,吉尔伯特阻尼α=0.0004。当k=1×105cm-1,外场强度H0=0.4T,纳米线半径R=60nm,柱坐标下的轨道角动量子数n=-4,通过计算符合色散关系和边界条件的频率,在0~100GHz范围内得到五个值,分别为11.3GHz,25GHz,42.5GHz,63.5GHz,90GHz。
本发明第二实施例通过仿真计算验证了上述理论计算的可靠性,下面详细阐述本发明第二实施例的仿真过程:首先选取一个半径为60nm,长为2μm的铁磁圆柱纳米线,其中材料参数与上述理论计算一致,磁矩的初始方向沿着圆柱纳米线的长轴方向,并且在整个纳米线轴向方向加了0.4T的外场。为了得到自旋波的色散关系曲线,我们在圆柱纳米线中间12nm宽度的区域,施加公式(3)形式的激发场,其中我们选取B0=0.3T,fB=100GHz,l=-5,通过微磁模拟软件Mumax计算,运行2ns时长。通过对得到的数据做傅里叶变换,得到如图2所示的色散关系,其中白色线条为理论计算的结果,灰色线条为仿真计算的结果。另外,由于n对应的是柱坐标下的轨道角动量子数,l对应的是直角坐标下的轨道角动量子数,所以l与n具有这样的关系:l=n-1。
从图2中可以看出,理论计算的结果多出一条线,这条线对应于κ=0的情况,在仿真模拟中,由于有退磁场的存在,κ≠0,因此仿真结果没有这条线。而且随着k值的增加和频率的增加,理论和仿真的结果有点差别,这是因为仿真用的软件Mumax的计算方式是差分计算,随着波长减小,以及频率的增大,会有一些误差。因此我们认为这个结果是可信的,仿真结果与理论符合的比较好。
通过对离激发场10nm远的圆柱截面的mx分量采样点信号分析,得到如图3所示的四个频率,分别为25GHz,42.5GHz,63.5GHz,88.5GHz,这些频率对应k趋近于0。然后在这些频率下,分析自旋波对应的模式,得到如图4所示的结果,其中,第一行图形为对应频率下的磁矩的mx分量在截面上的分布,第二行图形表示磁矩的mx与my的夹角在圆柱截面上的变化。从图4可以看出,从左到右,这些频率分别对应径向上节点数为0、1、2、3的涡旋自旋波模式。结合图2的色散关系图,我们可以得知,灰色线条由下至上依次对应径向上节点为0、1、2、3的自旋波模式,径向上节点数为0的自旋波模式的频率在25GHz以上,径向上节点数为1的自旋波模式的频率在42.5GHz以上,径向上节点数为2的自旋波模式的频率在63.5GHz以上,径向上节点数为3的自旋波模式的频率在88.5GHz以上。
通过色散关系,可以获知不同模式的自旋波对应不同频率,为了得到固定模式的自旋波,可在铁磁圆柱纳米线中间区域加固定频率的涡旋光场,该涡旋光场可为拉盖尔-高斯型,从而产生固定频率、固定模式的具有轨道角动量的自旋波。
下面通过仿真来验证通过加公式(4)形式的光场,所产生的涡旋自旋波的结果。在仿真实验中,选取与上文相同的材料参数,选取l=-5,f=63.5GHz,径向上对应节点为2的自旋波模式,在铁磁圆柱中间区域施加公式(4)所示的涡旋光场,其中
Figure BDA0002286397740000101
w=24.3nm,p=2。通过对仿真数据进行处理,得到图5和图6。图5为离激发源10nm远的截面上磁矩的mx分量采样点信号分析仿真图,可以看到,最高峰对应的频率为63.5GHz,基本上没有杂峰出现,表明该方式激发出的自旋波频率基本上与光场的频率一致。然后在频率为63.5GHz下分析磁矩在截面上的分布形式,得到图6所示的结果,其中,从左往右分别对应磁矩的mx分量、my分量、mx与my的夹角在圆柱截面上的变化。从图6可以看出,自旋波在径向上的分布有2个节点,且对应的轨道角动量子数为-5,该结果与图4中频率为63.5GHz的模式一致,因此,我们可以得出结论,通过调节涡旋光场,可以激发出固定频率、固定模式的涡旋自旋波。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种产生涡旋自旋波的方法,其特征在于,包括以下步骤:
根据铁磁圆柱纳米线内,磁矩的动力学LLG方程、偶极场对应的静磁方程以及磁矩和偶极场需满足的边界条件,获得自旋波的色散关系;
根据所述色散关系获得目标模式的自旋波对应的目标频率;
在铁磁圆柱纳米线中施加目标频率的涡旋光场,激发出目标模式的涡旋自旋波。
2.根据权利要求1所述的一种产生涡旋自旋波的方法,其特征在于,
根据铁磁圆柱纳米线内,磁矩的动力学LLG方程、偶极场对应的静磁方程以及磁矩和偶极场需满足的边界条件,获得自旋波的色散关系,包括,根据如下公式(1)和公式(2)确定所述自旋波的色散关系:
Figure FDA0002496399980000011
Figure FDA0002496399980000012
其中,H0为外加磁强度,Ms为饱和磁化强度,k为轴向波矢,κ为径向方向波矢,
Figure FDA0002496399980000013
γ为旋磁比,μ0为真空磁导率,ω为自旋波的角频率,
Figure FDA0002496399980000014
A为交换常数,κ1,κ2,κ3分别为从公式(1)解出的三个径向方向波矢的值。
3.一种产生涡旋自旋波的方法,其特征在于,包括以下步骤:
在铁磁圆柱纳米线中施加激发场激发出不同频率、不同模式的涡旋自旋波;
采用布里渊光散射装置,获得自旋波的色散关系;
根据所述色散关系获得目标模式的自旋波对应的目标频率;
在铁磁圆柱纳米线中施加目标频率的涡旋光场,激发出目标模式的涡旋自旋波。
4.根据权利要求3所述的一种产生涡旋自旋波的方法,其特征在于,
所述在铁磁圆柱纳米线中施加激发场激发出不同频率、不同模式的涡旋自旋波,包括:根据如下公式(3)确定所述激发场:
Figure FDA0002496399980000021
其中,B0为场强,fB为截止频率,t为时间,l为直角坐标下的轨道角动量子数,φ为方位角。
5.根据权利要求3所述的一种产生涡旋自旋波的方法,其特征在于,
所述采用布里渊光散射装置,获得自旋波的色散关系,包括,采用布里渊光散射装置,测量铁磁圆柱纳米线中自旋波的波矢与频率,获得自旋波的色散关系。
6.根据权利要求3所述的一种产生涡旋自旋波的方法,其特征在于,
所述布里渊光散射装置包括串联式法布里-拍罗干涉仪、单模固体激光器、温控滤光器和磁铁。
7.根据权利要求1或权利要求3所述的一种产生涡旋自旋波的方法,其特征在于,所述涡旋光场为拉盖尔-高斯型涡旋光场。
8.根据权利要求7所述的一种产生涡旋自旋波的方法,其特征在于,利用人工表面等离激元产生所述拉盖尔-高斯型涡旋光场。
9.根据权利要求1或权利要求3所述的一种产生涡旋自旋波的方法,其特征在于,在考虑焦平面z=0的情况下,所述涡旋光场根据如下公式(4)确定:
Figure FDA0002496399980000022
其中,柱坐标中(ρ,φ,t)的ρ为极坐标,φ为方位角,t为时间,w为光腰的大小,B0为常数,用以调节光场的幅值,
Figure FDA0002496399980000023
为广义拉盖尔函数;p为涡旋光径向上节点的数目;f为光场的频率;l为直角坐标下的轨道角动量子数;ex为光场的方向。
CN201911162075.9A 2019-11-25 2019-11-25 一种产生涡旋自旋波的方法 Active CN110716328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911162075.9A CN110716328B (zh) 2019-11-25 2019-11-25 一种产生涡旋自旋波的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911162075.9A CN110716328B (zh) 2019-11-25 2019-11-25 一种产生涡旋自旋波的方法

Publications (2)

Publication Number Publication Date
CN110716328A CN110716328A (zh) 2020-01-21
CN110716328B true CN110716328B (zh) 2020-08-14

Family

ID=69215427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911162075.9A Active CN110716328B (zh) 2019-11-25 2019-11-25 一种产生涡旋自旋波的方法

Country Status (1)

Country Link
CN (1) CN110716328B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579100B (zh) * 2020-05-26 2021-04-16 河海大学常州校区 一种可视化m-线法检测拓扑荷数的装置和方法
CN112394529B (zh) * 2020-11-27 2022-12-30 南京大学 一种单元件分束合束干涉仪
CN112968058B (zh) * 2021-02-04 2022-07-26 电子科技大学 一种离子调控型自旋波晶体管及其制备方法
CN113008839B (zh) * 2021-02-19 2022-10-11 中国人民解放军战略支援部队航天工程大学 一种有机物半导体微腔玻色-爱因斯坦凝聚涡旋产生装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868404B2 (en) * 2007-11-01 2011-01-11 Nve Corporation Vortex spin momentum transfer magnetoresistive device
CN106877858A (zh) * 2016-12-27 2017-06-20 南京大学 一种基于磁性斯格明子的逻辑门电路
CN108279065B (zh) * 2018-01-23 2021-04-23 电子科技大学 一种探测自旋波信息传输频率的方法
CN109065703A (zh) * 2018-07-31 2018-12-21 电子科技大学 一种驱动磁性斯格明子运动的方法

Also Published As

Publication number Publication date
CN110716328A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
CN110716328B (zh) 一种产生涡旋自旋波的方法
Davydov Theory of molecular excitons
Galkin et al. Collective modes for an array of magnetic dots in the vortex state
Guslienko Magnetic vortex state stability, reversal and dynamics in restricted geometries
Gekelman et al. Magnetic field line reconnection experiments: 6. Magnetic turbulence
Ivanov Mesoscopic antiferromagnets: statics, dynamics, and quantum tunneling
Gadomskii Two electron problem and the nonlocal equations of electrodynamics
Ganguly et al. Magnetoelastic surface waves in a magnetic film–piezoelectric substrate configuration
Umashankar Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques
Zhang et al. Tuning edge-localized spin waves in magnetic microstripes by proximate magnetic structures
Ekomasov et al. The effect of the spin-polarized current on the dynamics and structural changes of magnetic vortices in a large-diameter three-layer conducting nanocylinder
Colliander et al. Electromagnetic scattering from rough surface using single integral equation and adaptive integral method
CN111063799A (zh) 一种驱动磁斯格明子的方法
Yoo et al. Excited eigenmodes in magnetic vortex states of soft magnetic half-spheres and spherical caps
Arias et al. Theory of collective spin-wave modes of interacting ferromagnetic spheres
Wijers et al. Optical response of layers of embedded semiconductor quantum dots
Grimes et al. The effective permeability of granular thin films
Van Diepen et al. The Influence of Contrast and Temporal Expansion on the Marching-on-in-Time Contrast Current Density Volume Integral Equation
Li et al. Quasi-periodic oscillations during magnetar giant flares in the strangeon star model
Zheng-Johansson Internally electrodynamic particle model: its experimental basis and its predictions
Watanabe et al. Periodic and Aperiodic NiFe Nanomagnet/Ferrimagnet Hybrid Structures for 2D Magnon Steering and Interferometry with High Extinction Ratio
Nersisyan Scattering and transformation of waves on heavy particles in magnetized plasma
Galkin et al. Nonlinear oscillations of magnetization for ferromagnetic particles in the vortex state and their ordered arrays
Patrinos On the Hypothesis of the Absolute Reference System: Theoretical and Experimental Confirmation
Blanco et al. Two-dimensional full-wave code for reflectometry simulations in TJ-II

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant