CN110714881A - 一种风力机性能预测控制方法及装置 - Google Patents

一种风力机性能预测控制方法及装置 Download PDF

Info

Publication number
CN110714881A
CN110714881A CN201911035130.8A CN201911035130A CN110714881A CN 110714881 A CN110714881 A CN 110714881A CN 201911035130 A CN201911035130 A CN 201911035130A CN 110714881 A CN110714881 A CN 110714881A
Authority
CN
China
Prior art keywords
wind
wind turbine
model
speed
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911035130.8A
Other languages
English (en)
Other versions
CN110714881B (zh
Inventor
沈昕
陈进格
竺晓程
杜朝辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daoli Zhiyuan Technology Suzhou Co ltd
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Publication of CN110714881A publication Critical patent/CN110714881A/zh
Application granted granted Critical
Publication of CN110714881B publication Critical patent/CN110714881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/045Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/84Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/329Azimuth or yaw angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种风力机性能预测控制方法及装置,基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量计算下一时刻风轮扫掠面上的风速通过建立风力机气动性能预测模型,预测下一时刻风力机的性能参数,并根据当前时刻风力机的性能参数,对下一时刻的风力机的性能参数作调整,为风力机寻求合适的风轮转速和叶片桨距角,保证风力机在最优的状态下工作。

Description

一种风力机性能预测控制方法及装置
技术领域
本发明属于水平轴风力机技术领域,尤其涉及一种风力机性能预测控制方法及装置。
背景技术
风轮工作环境极为恶劣,常年在复杂多变、不可预测的自然风的环境下工作,风力机工作时不仅需要应对由大气湍流、风剪切、塔架影响以及极端风况等外部因素引起的各种不稳定入流,更需要应对偏航、变工况、柔性叶片的气弹形变以及由刚-柔混合特性的风力机多体系统引入的气动-结构耦合特性对风轮流场的影响。而风力机直径大型化的趋势也进一步加剧风轮扫掠面上风速的不均匀性。
目前在风力机控制领域主要采用基于PID(Proportional Integral Derivative,比例,微分,积分)控制策略的经典控制回路方法。通过PID的方式控制叶片桨距角或者风轮转速。即如果当前时刻功率或载荷变大,则调整风轮转速或叶片桨距角使得下一步功率或载荷减小。
这类方法相当于一种滞后控制方法,不能考虑到下一时间步进风速变化对风力机状态的影响,而来流风速对风力机性能的影响最大。
发明内容
本发明的技术目的是提供一种风力机性能预测控制方法及装置,可预测下一时刻风力机的性能参数,为风力机寻求合适的风轮转速和叶片桨距角,保证风力机在最优的状态下工作。
为解决上述问题,本发明的技术方案为:
一种风力机性能预测控制方法,包括:
S1:建立风力机数学模型,包括叶片模型、机舱模型及塔架模型,所述建立风力机数学模型用于计算所述风力机气动性能;
S2:建立基于时间步进的风力机气动性能预测模型,根据所述风力机各运行参数及所述风力机前一时刻的气动性能参数,获得所述风力机当前时刻的气动性能参数;所述运行参数包括风轮转速ω,各叶片桨距角
Figure BDA0002251279320000021
风轮偏航角θyaw
S3:基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量
Figure BDA0002251279320000022
计算下一时刻Lidar测量面上的风速达到风轮扫掠面上的时间t以及对应的风速
Figure BDA0002251279320000023
S4:以所述风轮扫掠面上的风速
Figure BDA0002251279320000024
作为外部输入,以各所述叶片桨距角风轮转速ω及风轮偏航角θyaw为控制变量,建立所述风力机气动性能预测模型的优化控制系统。
根据本发明一实施例,所述S1包括:
建立叶片几何参数模型,包括叶片弦长、扭角及翼型展向分布;
根据所述风力机的结构建立风力机运动学坐标系,用于获得所述叶片的位置;
建立所述风力机的塔架塔影效应模型。
根据本发明一实施例,所述S2包括:
根据计算流体力学理论,建立基于多体运动学坐标系的可时间步进的风力机气动性能预测模型,输入所述风力机的叶片的几何参数及所述风力机的运行参数,完成对所述风力机气动性能预测模型的设定。
根据本发明一实施例,所述S3包括:
采用Lidar激光雷达测风技术实时测量平行于所述风力机扫掠面且距所述扫掠面不同距离的各平面的风速及风向,计算各平面上的平均风速
Figure BDA0002251279320000026
湍流度
Figure BDA0002251279320000027
风剪切系数
Figure BDA0002251279320000028
基于势流理论,采用半无穷长偶极子模型建立所述风力机塔架对周围塔影效应的物理模型;
根据平均风速
Figure BDA0002251279320000031
湍流度
Figure BDA0002251279320000032
风剪切系数
Figure BDA0002251279320000033
及塔架对周围塔影效应的物理模型,计算下一时间步进上的所述风轮扫掠面上的风速
根据本发明一实施例,所述S4包括:
采用Lidar激光雷达测风系统以及来流风发展模型,获得下一时间步进风轮扫略面上叶片的来流风速;
采用所述风力机气动性能预测模型,根据下一时间步进的来流风速以及当前时间步进的风力机性能参数,通过可迭代的优化算法寻找下一时间步进最优的风力机风轮转速或叶片桨距角。
一种风力机性能预测控制装置,包括:
第一计算单元:用于建立风力机数学模型,包括叶片模型、机舱模型及塔架模型,所述建立风力机数学模型用于计算所述风力机气动性能;
第二计算单元:用于建立基于时间步进的风力机气动性能预测模型,根据所述风力机各运行参数及所述风力机前一时刻的气动性能参数,获得所述风力机当前时刻的气动性能参数;所述运行参数包括风轮转速ω,各叶片桨距角
Figure BDA0002251279320000035
风轮偏航角θyaw
第三计算单元:用于基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量
Figure BDA0002251279320000036
计算下一时刻Lidar测量面上的风速达到风轮扫掠面上的时间t以及对应的风速
第四计算单元:用于以所述风轮扫掠面上的风速
Figure BDA0002251279320000038
作为外部输入,以各所述叶片桨距角风轮转速ω及风轮偏航角θyaw为控制变量,建立所述风力机气动性能预测模型的优化控制系统。
根据本发明一实施例,所述第一计算单元进一步用于:
建立叶片几何参数模型,包括叶片弦长、扭角及翼型展向分布;
根据所述风力机的结构建立风力机运动学坐标系,所述风力机运动学坐标系用于获得所述叶片的位置;
建立所述风力机的塔架塔影效应模型。
根据本发明一实施例,所述第二计算单元进一步用于:
根据计算流体力学理论,建立基于多体运动学坐标系的可时间步进的风力机气动性能预测模型,输入所述风力机的叶片的几何参数及所述风力机的运行参数,完成对所述风力机气动性能预测模型的设定。
根据本发明一实施例,所述第三计算单元进一步用于:
采用Lidar激光雷达测风技术实时测量平行于所述风力机扫掠面且距所述扫掠面不同距离的各平面的风速及风向,计算各平面上的平均风速
Figure BDA0002251279320000041
湍流度
Figure BDA0002251279320000042
风剪切系数γhj
基于势流理论,采用半无穷长偶极子模型建立所述风力机塔架对周围塔影效应的物理模型;
根据平均风速
Figure BDA0002251279320000043
湍流度风剪切系数γhj及塔架对周围塔影效应的物理模型,计算下一时间步进上的所述风轮扫掠面上的风速
Figure BDA0002251279320000045
根据本发明一实施例,所述第四计算单元进一步用于:
采用Lidar激光雷达测风系统以及来流风发展模型,获得下一时间步进风轮扫略面上叶片的来流风速;
采用所述风力机气动性能预测模型,根据下一时间步进的来流风速以及当前时间步进的风力机性能参数,通过可迭代的优化算法寻找下一时间步进最优的风力机风轮转速或叶片桨距角。
本发明由于采用以上技术方案,使其与现有技术相比具有以下的优点和积极效果:
本发明一实施例中的风力机性能预测控制方法,基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量
Figure BDA0002251279320000046
计算下一时刻风轮扫掠面上的风速
Figure BDA0002251279320000047
通过建立风力机气动性能预测模型,预测下一时刻风力机的性能参数,并根据当前时刻风力机的性能参数,对下一时刻的风力机的性能参数作调整,为风力机寻求合适的风轮转速和叶片桨距角,保证风力机在最优的状态下工作。
附图说明
图1为本发明一实施例中的风力机性能预测控制方法的框图;
图2为本发明一实施例中的风力机叶片几何参数示意图;
图3为本发明一实施例中的风力机多体运动坐标系示意图;
图4为本发明一实施例中的风力机塔影效应模型示意图;
图5为本发明一实施例中的风力机塔影效应诱导速度影响示意图;
图6为本发明一实施例中的带自由尾迹的升力面法示意图;
图7为本发明一实施例中的带自由尾迹的涡系结构示意图;
图8为本发明一实施例中的基于气动模型预测的控制系统示意图;
图9为本发明一实施例中的气动模型预测控制流程图;
图10为本发明一实施例中的风力机性能预测控制装置的框图。
附图标记说明:
1:附着涡;2:网格;3:自由涡;4:控制点;5:射线;6:叶片上自由涡;7:脱落涡;8:尾迹自由涡;9:叶尖涡。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种风力机性能预测控制方法及装置作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。
实施例一
如图1所示,本发明提供的风力机性能预测控制方法,包括:S1:建立风力机数学模型,包括叶片模型、机舱模型及塔架模型,所述建立风力机数学模型用于计算风力机气动性能;
S2:建立基于时间步进的风力机气动性能预测模型,根据风力机各运行参数及风力机前一时刻的气动性能参数,获得风力机当前时刻的气动性能参数;该运行参数包括风轮转速ω,各叶片桨距角
Figure BDA0002251279320000061
风轮偏航角θyaw
S3:基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量
Figure BDA0002251279320000062
计算下一时刻Lidar测量面上的风速达到风轮扫掠面上的时间t以及对应的风速
Figure BDA0002251279320000063
S4:以风轮扫掠面上的风速
Figure BDA0002251279320000064
作为外部输入,以各叶片桨距角
Figure BDA0002251279320000065
风轮转速ω及风轮偏航角θyaw为控制变量,建立风力机气动性能预测模型的优化控制系统。
具体的,步骤S1对叶片的几何参数化建模,具体过程为:
以影响叶片气动性能的关键参数:风轮半径R,叶片弦长展向分布c、扭角展向分布θtws以及翼型展向分布定义叶片的几何外形,如图2所示。
以影响风力机气动性能的关键参数:风轮倾角θtilt,风轮锥角θcone,风轮扫掠面距塔架中心距离Lsweep,风轮中心距地面高速Lsweep,塔架半径沿半径高度分布Rtower(y)定义风轮机几何外形。
以风力机运行时部件间的运动关系定义风轮机多体运动坐标系关系:大地坐标系E,塔底坐标系1,塔顶坐标系2,机舱坐标系,轮毂坐标系及叶片坐标系,如图3所示。
风力机由塔架、电机、变速箱、高低速轴、轮毂、叶片等部件连接的多体结构,各个部件均可能为柔性部件,在风力机运行过程中各个部件的运动都会对叶片产生相应的牵连速度,影响叶片和来流风速的相对速度。因此必须理清各部件相对坐标系的关系,获得风力机叶片在各部件运动过程中所引起的叶片上的牵连速度,才能真实获得叶片相对来流的相对速度,保证风力机气动性能预测模型的准确性。
基于塔架坐标系示意图4,将塔架简化为半无穷长线偶极子,其对周围速度势函数表示为:
Figure BDA0002251279320000071
式中,Φ为半无穷长线偶极子速度势,V为来流风速,
塔架对周围区域的诱导速度为速度势的梯度:
Figure BDA0002251279320000072
式中,
Figure BDA0002251279320000073
为塔架对周围的诱导速度影响。
将来流速度V和塔架效应诱导速度
Figure BDA0002251279320000074
叠加即可得到塔架周围当地速度,如图5所示。
步骤S2中采用带自由尾迹的升力面法作为风力机气动性能的计算方法,具体为将整个计算域分为叶片部分,近场尾迹部分及远场尾迹三部分。
如图6所示,叶片部分模型为在叶片升力面上划分网格2,在网格2弦向的1/4上布置沿叶片展向分布的附着涡1表示叶片上的升力分布,在附着涡1两端沿叶片弦向方向上向下游脱出两根涡线称之为叶片上自由涡3,表示叶片上环量沿叶片展向的变化,在网格2前缘的3/4弦向和叶片展向中心位置处布置控制点4,如果叶片不旋转(如飞机机翼),则从叶片尾缘脱出的为沿Y轴方向的射线5,每条射线5都由多个马蹄涡中的自由尾迹组成。
自由涡3分为三部分:叶片上自由涡6,近场尾迹自由涡8和之后自由涡卷起生成的叶尖涡9,同时叶片近场尾迹自由涡8还布置沿叶片展向方向的脱落涡7,表示叶片经历非定常工况时叶片上环量在时间上的变化,如图7所示。
叶片上环量分布通过满足当地速度在叶片控制点上边界条件求解得到,
式中,Φ为控制点上速度势,为叶片控制点上运动速度,
Figure BDA0002251279320000077
为控制点上法向方向单位矢量。
涡线对控制点的诱导速度通过Biot-Savart(毕奥-萨伐尔)定理计算得到:
Figure BDA0002251279320000081
式中,为涡段微元对控制点诱导速度,Γ为涡段环量,
Figure BDA0002251279320000083
为涡段矢量,
Figure BDA0002251279320000084
为涡段中心到控制点矢量。
步骤S3中获得风轮扫掠面上风速信息的步骤如下:
采用Lidar激光雷达测风技术实时测量距风轮扫掠面zj=1.5D、1D、0.7D、0.4D、0.2D和0.15D(j=1,2…5)的垂直平面上的风速矢量
Figure BDA0002251279320000085
基于此,计算各平面上平均风速
Figure BDA0002251279320000086
湍流度
Figure BDA0002251279320000087
风剪切系数γhj。以一维正态分布函数作为权函数:
Figure BDA0002251279320000088
式中,z为测量面距风轮扫掠面水平距离,μ为中心值,σ为方差。μ取0.4D,σ取40。
其中,Lidar激光雷达测风技术为采用激光测风雷达测量三维风场的技术,其工作原理是利用激光收发系统对空气中的粒子散射回波信息进行采集,再通过分析计算这些测量数据,直接得到高分辨率、高精度的实时三维风场数据。
风轮扫掠面上的风速参数按照上述一维正态函数做加权确定,以平均风速为例:
式中,下标j+1表示风轮扫掠面上的风速参数。
根据风轮扫掠面上的风速参数反求风轮扫掠面上的基本风速
Figure BDA00022512793200000810
并叠加塔影效应诱导速度
Figure BDA00022512793200000811
得到风轮扫掠面上的风速
Figure BDA00022512793200000812
Figure BDA00022512793200000813
则风速
Figure BDA00022512793200000814
为距当前时刻
Figure BDA00022512793200000815
时间后风轮扫掠面上风速。
步骤S4中,风力机气动性能预测模型的优化控制系统具体为:
基于步骤S1及S2建立的风力机气动性能预测模型及其内部可迭代的在线反复优化算法,建立模型预测优化控制系统。如图8所示,首先通过Lidar测风系统以及来流风发展模型,获得下一时间步进风轮扫略面上叶片的来流风速。通过风力机气动模型,根据下一时间步进的来流风速以及当前时间步进的风力机状态,通过可迭代的优化算法寻找下一时间步进最优的风力机转速或叶片桨距角(即风力机控制对象)。需要注意的是风力机当前性能会受到之前风力机状态的影响,另一方面风力机的气动模型与真实结果仍会有误差,因此需要通过当前时间步进的风力机性能对风力机气动模型进行适当的调整(即为风力机性能反馈)。
基于时间步进气动性能预测模型的风力机模型预测控制优化方法具体实施方法为:
以风轮扫掠面上的风速
Figure BDA0002251279320000091
作为外部输入,以风力机各叶片桨距角作为控制变量,以风力机下一时间步进t+Δt的输出功率F(t+Δt)和当前时间步进t的输出功率F(t)之间的误差小于设定残差ε为控制目标进行预测控制为例,如图9所示。
在获得下一时间步进的来流风速
Figure BDA0002251279320000093
以及当前时间步进的风力机的具体性能参数之后,调整下一时间步进下的叶片桨距角
Figure BDA0002251279320000094
(即风力机控制对象),通过气动模型预测风力机在下一时间步t+Δt进下的性能参数(如输出功率),如果下一时间步进t+Δt下的叶片以上述叶片桨距角运行时的风力机的输出功率F(t+Δt)与当前时间步进t下的输出功率F(t)比较,如两者的差值在允许范围ε之内,则设定该叶片桨距角
Figure BDA0002251279320000096
为下一时间步进的叶片桨距角,如两者的差值大于ε,则调整叶片桨距角,计算新的叶片桨距角下的风力机的输出功率,重复上述比较,直至下一时间步进的叶片桨距角满足|F(t+Δt)-F(t)|<ε。
实施例二
如图10所示,本发明还提供了一种实现上述实施例一中的风力机性能预测控制方法的风力机性能预测控制装置,该控制装置包括:
第一计算单元:用于建立风力机数学模型,包括叶片模型、机舱模型及塔架模型,建立风力机数学模型用于计算所述风力机气动性能;
第二计算单元:用于建立基于时间步进的风力机气动性能预测模型,根据风力机各运行参数及风力机前一时刻的气动性能参数,获得风力机当前时刻的气动性能参数;运行参数包括风轮转速ω,各叶片桨距角
Figure BDA0002251279320000101
风轮偏航角θyaw
第三计算单元:用于基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量计算下一时刻Lidar测量面上的风速达到风轮扫掠面上的时间t以及对应的风速
Figure BDA0002251279320000103
第四计算单元:用于以风轮扫掠面上的风速
Figure BDA0002251279320000104
作为外部输入,以各叶片桨距角
Figure BDA0002251279320000105
风轮转速ω及风轮偏航角θyaw为控制变量,建立风力机气动性能预测模型的优化控制系统。
具体的,第一计算单元进一步用于:建立叶片几何参数模型,包括叶片弦长、扭角及翼型展向分布;根据风力机的结构建立风力机运动学坐标系,风力机运动学坐标系用于获得叶片的位置;建立风力机的塔架塔影效应模型。
第二计算单元进一步用于:根据计算流体力学理论,建立基于多体运动学坐标系的可时间步进的风力机气动性能预测模型,输入风力机的叶片的几何参数及风力机的运行参数,完成对风力机气动性能预测模型的设定。
第三计算单元进一步用于:采用Lidar激光雷达测风技术实时测量平行于所述风力机扫掠面且距扫掠面不同距离的各平面的风速及风向,计算各平面上的平均风速
Figure BDA0002251279320000106
湍流度
Figure BDA0002251279320000107
风剪切系数基于势流理论,采用半无穷长偶极子模型建立风力机塔架对周围塔影效应的物理模型;
根据平均风速湍流度风剪切系数γhj及塔架对周围塔影效应的物理模型,计算下一时间步进上的风轮扫掠面上的风速
Figure BDA0002251279320000111
第四计算单元进一步用于:采用Lidar激光雷达测风系统以及来流风发展模型,获得下一时间步进风轮扫略面上叶片的来流风速;
采用风力机气动性能预测模型,根据下一时间步进的来流风速以及当前时间步进的风力机性能参数,通过可迭代的优化算法寻找下一时间步进最优的风力机风轮转速或叶片桨距角。
该控制装置可预测下一时刻风力机的性能参数,为风力机寻求合适的风轮转速和叶片桨距角,保证风力机在最优的状态下工作。
综上,本发明提供的风力机性能预测控制方法及装置,基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量计算下一时刻风轮扫掠面上的风速
Figure BDA0002251279320000113
通过建立风力机气动性能预测模型,预测下一时刻风力机的性能参数,并根据当前时刻风力机的性能参数,对下一时刻的风力机的性能参数作调整,为风力机寻求合适的风轮转速和叶片桨距角,保证风力机在最优的状态下工作。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式。即使对本发明作出各种变化,倘若这些变化属于本发明权利要求及其等同技术的范围之内,则仍落入在本发明的保护范围之中。

Claims (10)

1.一种风力机性能预测控制方法,其特征在于,包括:
S1:建立风力机数学模型,包括叶片模型、机舱模型及塔架模型,建立所述风力机数学模型用于计算所述风力机气动性能;
S2:建立基于时间步进的风力机气动性能预测模型,根据所述风力机各运行参数及所述风力机前一时刻的气动性能参数,获得所述风力机当前时刻的气动性能参数;所述运行参数包括风轮转速ω,各叶片桨距角
Figure FDA0002251279310000011
风轮偏航角θyaw
S3:基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量
Figure FDA0002251279310000012
计算下一时刻Lidar测量面上的风速达到风轮扫掠面上的时间t以及对应的风速
Figure FDA0002251279310000013
S4:以所述风轮扫掠面上的风速
Figure FDA0002251279310000015
作为外部输入,以各所述叶片桨距角风轮转速ω及风轮偏航角θyaw为控制变量,建立所述风力机气动性能预测模型的优化控制系统。
2.如权利要求1所述的风力机性能预测控制方法,其特征在于,所述S1包括:
建立叶片几何参数模型,包括叶片弦长、扭角及翼型展向分布;
根据所述风力机的结构建立风力机运动学坐标系,用于获得所述叶片的位置;
建立所述风力机的塔架塔影效应模型。
3.如权利要求1所述的风力机性能预测控制方法,其特征在于,所述S2包括:
根据计算流体力学理论,建立基于多体运动学坐标系的可时间步进的风力机气动性能预测模型,输入所述风力机的叶片的几何参数及所述风力机的运行参数,完成对所述风力机气动性能预测模型的设定。
4.如权利要求1所述的风力机性能预测控制方法,其特征在于,所述S3包括:
采用Lidar激光雷达测风技术实时测量平行于所述风力机扫掠面且距所述扫掠面不同距离的各平面的风速及风向,计算各平面上的平均风速
Figure FDA0002251279310000021
湍流度
Figure FDA0002251279310000022
风剪切系数
Figure FDA0002251279310000023
基于势流理论,采用半无穷长偶极子模型建立所述风力机塔架对周围塔影效应的物理模型;
根据平均风速
Figure FDA0002251279310000024
湍流度
Figure FDA0002251279310000025
风剪切系数
Figure FDA0002251279310000026
及塔架对周围塔影效应的物理模型,计算下一时间步进上的所述风轮扫掠面上的风速
Figure FDA0002251279310000027
5.如权利要求1所述的风力机性能预测控制方法,其特征在于,所述S4包括:
采用Lidar激光雷达测风系统以及来流风发展模型,获得下一时间步进风轮扫略面上叶片的来流风速;
采用所述风力机气动性能预测模型,根据下一时间步进的来流风速以及当前时间步进的风力机性能参数,通过可迭代的优化算法寻找下一时间步进最优的风力机风轮转速或叶片桨距角。
6.一种风力机性能预测控制装置,其特征在于,包括:
第一计算单元:用于建立风力机数学模型,包括叶片模型、机舱模型及塔架模型,建立所述风力机数学模型用于计算所述风力机气动性能;
第二计算单元:用于建立基于时间步进的风力机气动性能预测模型,根据所述风力机各运行参数及所述风力机前一时刻的气动性能参数,获得所述风力机当前时刻的气动性能参数;所述运行参数包括风轮转速ω,各叶片桨距角
Figure FDA0002251279310000028
风轮偏航角θyaw
第三计算单元:用于基于Lidar测风系统获得距风轮前方预设距离h的垂直平面上的风速矢量计算下一时刻Lidar测量面上的风速达到风轮扫掠面上的时间t以及对应的风速
Figure FDA00022512793100000210
第四计算单元:用于以所述风轮扫掠面上的风速作为外部输入,以各所述叶片桨距角
Figure FDA0002251279310000031
风轮转速ω及风轮偏航角θyaw为控制变量,建立所述风力机气动性能预测模型的优化控制系统。
7.如权利要求6所述的风力机性能预测控制装置,其特征在于,所述第一计算单元进一步用于:
建立叶片几何参数模型,包括叶片弦长、扭角及翼型展向分布;
根据所述风力机的结构建立风力机运动学坐标系,所述风力机运动学坐标系用于获得所述叶片的位置;
建立所述风力机的塔架塔影效应模型。
8.如权利要求6所述的风力机性能预测控制装置,其特征在于,所述第二计算单元进一步用于:
根据计算流体力学理论,建立基于多体运动学坐标系的可时间步进的风力机气动性能预测模型,输入所述风力机的叶片的几何参数及所述风力机的运行参数,完成对所述风力机气动性能预测模型的设定。
9.如权利要求6所述的风力机性能预测控制装置,其特征在于,所述第三计算单元进一步用于:
采用Lidar激光雷达测风技术实时测量平行于所述风力机扫掠面且距所述扫掠面不同距离的各平面的风速及风向,计算各平面上的平均风速
Figure FDA0002251279310000032
湍流度
Figure FDA0002251279310000033
风剪切系数
基于势流理论,采用半无穷长偶极子模型建立所述风力机塔架对周围塔影效应的物理模型;
根据平均风速
Figure FDA0002251279310000035
湍流度
Figure FDA0002251279310000036
风剪切系数
Figure FDA0002251279310000037
及塔架对周围塔影效应的物理模型,计算下一时间步进上的所述风轮扫掠面上的风速
10.如权利要求6所述的风力机性能预测控制装置,其特征在于,所述第四计算单元进一步用于:
采用Lidar激光雷达测风系统以及来流风发展模型,获得下一时间步进风轮扫略面上叶片的来流风速;
采用所述风力机气动性能预测模型,根据下一时间步进的来流风速以及当前时间步进的风力机性能参数,通过可迭代的优化算法寻找下一时间步进最优的风力机风轮转速或叶片桨距角。
CN201911035130.8A 2019-08-19 2019-10-29 一种风力机性能预测控制方法及装置 Active CN110714881B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910764299 2019-08-19
CN2019107642990 2019-08-19

Publications (2)

Publication Number Publication Date
CN110714881A true CN110714881A (zh) 2020-01-21
CN110714881B CN110714881B (zh) 2021-08-13

Family

ID=69213426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911035130.8A Active CN110714881B (zh) 2019-08-19 2019-10-29 一种风力机性能预测控制方法及装置

Country Status (1)

Country Link
CN (1) CN110714881B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111878308A (zh) * 2020-08-04 2020-11-03 上海交通大学 风力机集群预测群控方法
CN112922778A (zh) * 2021-03-17 2021-06-08 中国华能集团清洁能源技术研究院有限公司 一种风电机组偏航优化方法、系统、设备及存储介质
CN113464378A (zh) * 2021-07-13 2021-10-01 南京理工大学 一种基于深度强化学习的提升风能捕获的转速跟踪目标优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502637A (zh) * 2011-01-18 2014-01-08 维斯塔斯风力系统集团公司 用于保护风力涡轮机免受极端事件的方法和装置
GB2476316B (en) * 2009-12-21 2014-07-16 Vestas Wind Sys As A wind turbine having a control method and controller for predictive control of a wind turbine generator
CN105569923A (zh) * 2016-01-13 2016-05-11 湖南世优电气股份有限公司 一种大型风电机组的雷达辅助载荷优化控制方法
CN108869175A (zh) * 2018-06-15 2018-11-23 中南大学 一种基于多步预测的模型预测控制mpc的偏航控制方法
CN109751206A (zh) * 2019-02-25 2019-05-14 宜通世纪物联网研究院(广州)有限公司 风机叶片结冰故障预测方法、装置及存储介质
US10338202B2 (en) * 2016-01-28 2019-07-02 General Electric Company System and method for improving LIDAR sensor signal availability on a wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476316B (en) * 2009-12-21 2014-07-16 Vestas Wind Sys As A wind turbine having a control method and controller for predictive control of a wind turbine generator
CN103502637A (zh) * 2011-01-18 2014-01-08 维斯塔斯风力系统集团公司 用于保护风力涡轮机免受极端事件的方法和装置
CN105569923A (zh) * 2016-01-13 2016-05-11 湖南世优电气股份有限公司 一种大型风电机组的雷达辅助载荷优化控制方法
US10338202B2 (en) * 2016-01-28 2019-07-02 General Electric Company System and method for improving LIDAR sensor signal availability on a wind turbine
CN108869175A (zh) * 2018-06-15 2018-11-23 中南大学 一种基于多步预测的模型预测控制mpc的偏航控制方法
CN109751206A (zh) * 2019-02-25 2019-05-14 宜通世纪物联网研究院(广州)有限公司 风机叶片结冰故障预测方法、装置及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111878308A (zh) * 2020-08-04 2020-11-03 上海交通大学 风力机集群预测群控方法
CN112922778A (zh) * 2021-03-17 2021-06-08 中国华能集团清洁能源技术研究院有限公司 一种风电机组偏航优化方法、系统、设备及存储介质
CN113464378A (zh) * 2021-07-13 2021-10-01 南京理工大学 一种基于深度强化学习的提升风能捕获的转速跟踪目标优化方法

Also Published As

Publication number Publication date
CN110714881B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN110714881B (zh) 一种风力机性能预测控制方法及装置
CN107194097B (zh) 基于风电场气动模拟和风速风向数据的分析方法
CN109072875B (zh) 使用实时增益计算的风力涡轮机的控制
CN111878308A (zh) 风力机集群预测群控方法
CN109154276B (zh) 使用实时叶片模型的风力涡轮机的控制
WO2018007011A1 (en) Lidar-based multivariable feedforward control of wind turbines
CN110454329B (zh) 一种风电机组桨距角控制方法
EP3682110B1 (en) Individual pitch control for wind turbines
CN117108445B (zh) 一种串列式双风轮风电机组数字孪生仿真方法
CN105134482B (zh) 大型智能风机叶片系统灰色组合建模与优化振动控制的方法
CN112696319A (zh) 利用准确在线模型的基于风力涡轮模型的控制和估计
CN111173686A (zh) 确定配备有LiDAR传感器的风力涡轮机的感应因子的方法
CN115758940A (zh) 一种适用于倾转旋翼飞行器着舰飞行特性分析方法
Bottasso et al. Performance comparison of control schemes for variable-speed wind turbines
CN114169068A (zh) 一种适用于共轴刚性旋翼直升机的着舰飞行特性分析方法
Carroll A design methodology for rotors of small multirotor vehicles
Kelley Aerodynamic design of the National Rotor Testbed.
KR101635926B1 (ko) 풍력터빈 피치 제어시스템 및 제어방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
Pao et al. Control co-design of wind turbines
CN112283051B (zh) 一种基于升力线模型的振动信号特征优化方法及系统
Behrens et al. Feasibility of aerodynamic flap hinge moment measurements as input for load alleviation control
Kelley et al. Scaled aerodynamic wind turbine design for wake similarity
Lim et al. Computational modeling of HART II blade-vortex interaction loading and wake system
Aliabadi et al. Experimental study of flapping-wing aerodynamic coefficients and landing performance estimation
Ayele et al. Uncovering the Aeroelastic Behavior of Light Aircraft Structures with SlenderWings under Extreme Flow Turbulence Intensity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240417

Address after: Room 406, Building 1, No. 19 Yong'an Road, High tech Zone, Suzhou City, Jiangsu Province, 215000

Patentee after: Daoli Zhiyuan Technology (Suzhou) Co.,Ltd.

Country or region after: China

Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee before: SHANGHAI JIAO TONG University

Country or region before: China

TR01 Transfer of patent right