CN110710100A - 太阳能电池板组件 - Google Patents

太阳能电池板组件 Download PDF

Info

Publication number
CN110710100A
CN110710100A CN201880035539.7A CN201880035539A CN110710100A CN 110710100 A CN110710100 A CN 110710100A CN 201880035539 A CN201880035539 A CN 201880035539A CN 110710100 A CN110710100 A CN 110710100A
Authority
CN
China
Prior art keywords
solar
cpv
solar panel
cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880035539.7A
Other languages
English (en)
Inventor
塞巴斯蒂安·阿尔康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Augustine Canada Electric Co Ltd
Saint Augustin Canada Electric Inc
Original Assignee
Augustine Canada Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Augustine Canada Electric Co Ltd filed Critical Augustine Canada Electric Co Ltd
Publication of CN110710100A publication Critical patent/CN110710100A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/12Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using posts in combination with upper profiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池板组件包括:在第一面和第二面之间延伸的基板;安装在基板的第一面上的多个聚光光伏(CPV)电池;多个光学聚集器,每个光学聚集器面向CPV电池中的相应一个;每个光学聚集器和相应的一个CPV电池形成用于将直接光转换成电的CPV模块;以及用于将间接光转换成电的多个光伏(PV)电池。

Description

太阳能电池板组件
技术领域
本发明涉及太阳能发电机领域,并且更具体地,涉及太阳能电池板组件。
背景技术
太阳能电池是通过光伏效应将光的能量直接转换成电的电气设备。基于硅的常见太阳能电池具有有限的效率。它们通常将少于25%的光的能量转换成电。
为了提高太阳能电池的效率,已经开发了聚光光伏(CPV)电池。这种太阳能电池的效率提高了30%以上。尽管CPV电池在阳光充足条件下效率很高,但在阴天条件下,CPV电池比常见太阳能电池效率低。
因此,需要一种改进的太阳能电池板组件。
发明内容
根据第一广义方面,提供了一种太阳能电池板组件,包括:在第一面和第二面之间延伸的基板;安装在基板的第一面上的多个聚光光伏(CPV)电池;多个光学聚集器,每个光学聚集器面向CPV电池中的相应一个CPV电池;每个光学聚集器和相应一个CPV电池形成用于将直接光转换成电的CPV模块;以及用于将间接光转换成电的多个光伏(PV)电池。
在一个实施例中,PV电池安装在基板的第一面上。
在一个实施例中,太阳能电池板组件还包括在正面和背面之间延伸的次级板。
在一个实施例中,PV电池安装在次级板的正面上。
在一个实施例中,基板至少是半透明的,并且次级板位于基板下方,使得PV电池面向基板的第二面。
在一个实施例中,次级板至少是半透明的,并且基板位于次级板下方,使得CPV电池和光学聚集器面向次级板的背面。
在一个实施例中,PV电池安装在次级面的背面上,次级板的正面面向基板的第二面。
在一个实施例中,基板由散热材料制成。
根据第二广义方面,提供了一种太阳能电池板组件,包括:在第一面和第二面之间延伸的第一板;安装在基板的第一面上的多个聚光光伏(CPV)电池;多个光学聚集器,每个光学聚集器面向CPV电池中的相应一个CPV电池;每个光学聚集器和相应一个CPV电池形成用于将直接光转换成电的CPV模块;在正面与第二面之间延伸的次级板,该正面面向基板的第二面;以及多个主要光伏(PV)电池,安装在次级板的背面上,用于将间接光转换成电。
在一个实施例中,太阳能电池板组件还包括安装在基板的第一面上的附加PV电池。
在一个实施例中,太阳能电池板组件还包括在正面和背面之间延伸的附加板。
在一个实施例中,PV电池安装在次级板的正面上。
在一个实施例中,基板至少是半透明的,并且附加板位于基板下方,使得附加PV电池面向基板的第二面。
在一个实施例中,附加板至少是半透明的,并且基板位于附加板下方,使得CPV电池和光学聚集器面向次级附加板的后表面。
根据另一个广义方面,提供了一种太阳能电池板系统,包括:机动化可旋转框架;根据权利要求9所述的太阳能电池板组件,太阳能电池板组件紧固到可旋转框架上;控制器,用于确定应该暴露CPV电池和PV电池中的哪些,并且用于旋转机动化可旋转框架以便暴露这些确定的电池。
在一个实施例中,控制器适于根据关于天气预报的信息来执行确定。
在一个实施例中,关于天气预报的信息包括云覆盖百分比和云高度。
在本说明书中,太阳能电池或光伏(PV)电池是指适于通过光伏效应将光的能量转换成电的任何电气设备。
在本说明书中,“PV太阳能电池”的表述是指单独用于将光转换成电的独立太阳能电池,即PV太阳能电池不耦接或组合到任何光学器件,例如用于将光转换成电的光学聚集器或透镜。
PV太阳能电池可以是任何太阳能电池,例如薄膜太阳能电池、由多晶和单晶硅制成的常规单结太阳能电池。PV太阳能电池还可以是包括诸如砷化镓衬底、锗衬底、磷化铟衬底、氮化铟镓衬底等衬底的多结太阳能电池。PV太阳能电池还可以是包括碲化镉太阳能电池、铜铟镓硒(CIGS)太阳能电池、非晶硅太阳能电池等的太阳能电池。
“聚光光伏(CPV)太阳能电池”或“CPV太阳能电池”的表述是指与用于将光转换成电能的光学聚集器(例如光学透镜)组合使用的太阳能电池。CPV太阳能电池及其相应聚集器的组件称为CPV模块或CPV太阳能模块。光学聚集器位于CPV太阳能电池和光源(例如太阳)之间,用于将入射到其上的至少一些光集中或聚焦在CPV太阳能电池上。
CPV太阳能电池可以是任何太阳能电池,例如薄膜太阳能电池、由多晶和单晶硅制成的常规单结太阳能电池。CPV太阳能电池还可以是包括诸如砷化镓衬底、锗衬底、磷化铟衬底、氮化铟镓衬底等衬底的多结太阳能电池。CPV太阳能电池还可以是包括碲化镉太阳能电池、铜铟镓硒(CIGS)太阳能电池、非晶硅太阳能电池等的太阳能电池。
在一个实施例中,PV太阳能电池经选择为低效率太阳能电池。在这种情况下,PV太阳能电池可以是薄膜太阳能电池、单结太阳能电池等。例如PV太阳能电池有时可以称为低效率太阳能电池。在单结太阳能电池的情况下,将光能转换成电的效率通常低于25%,最大理论效率为33.16%。
在相同的实施例中,CPV太阳能电池经选择为高效率太阳能电池,例如具有至少30%效率的太阳能电池。在另一个实施例中,CPV太阳能电池经选择为具有至少两个结的太阳能电池。在这种情况下,CPV太阳能电池可以是砷化镓衬底、锗衬底、磷化铟衬底、氮化铟镓衬底等。
附图说明
通过以下结合附图的详细描述,本发明的其他特征和优点将变得显而易见,在附图中:
图1示出了根据一个实施例的太阳能电池板系统,该太阳能电池板系统包括根据第一取向定位的太阳能电池板并且在该太阳能电池板的单个面上具有太阳能电池;
图2示出了图1的太阳能电池板系统,在太阳能电池板系统中这些太阳能电池板是根据第二取向定位的;
图3示出了图1的太阳能电池板系统的太阳能电池板;
图4示出了根据一个实施例的包含在图3的太阳能电池板中的太阳能电池组件,该太阳能电池组件包括聚集器板以及安装在同一支撑板上的CPV太阳能电池和PV太阳能电池;
图5示出了设置有CPV太阳能电池和PV太阳能电池的图4的支撑板;
图6示出了根据一个实施例的太阳能电池组件,其包括聚集器板、其上安装有CPV太阳能电池的第一支撑板和其上安装有PV太阳能电池的第二支撑板,CPV太阳能电池和PV太阳能面向聚集器板;
图7示出了根据一个实施例的太阳能电池板系统,该太阳能电池板系统包括根据第一取向定位的太阳能电池板并且在这些太阳能电池板的两个面上具有太阳能电池;
图8示出了图7的太阳能电池板系统,在太阳能电池板系统中这些太阳能电池板是根据第二取向定位的;
图9示出了根据一个实施例的太阳能电池组件,该太阳能电池组件包括聚集器板、其上安装有CPV太阳能电池和第一PV太阳能电池的第一支撑板以及其上安装有第二PV太阳能电池的第二支撑板,该第二PV太阳能具有与CPV太阳能电池和第一PV太阳能电池的取向相反的取向;
图10是示出根据一个实施例的用于控制太阳能电池板的取向的控制器的框图;以及
图11示出了根据一个实施例的太阳能电池组件,其包括聚集器板、其上安装有CPV太阳能电池和散热器的第一支撑板、其上安装有第一PV太阳能电池的第二支撑板,以及第三支撑板,其中第二太阳能电池、CPV太阳能电池和第一太阳能电池面向聚集器板并且第二PV太阳能具有与CPV太阳能电池和第一PV太阳能电池的取向相反的取向。
应当注意,在整个附图中,相同的特征由相同的附图标记表示。
具体实施方式
通常,太阳能电池板包括全部为相同类型或相同的太阳能电池阵列。例如,常见的太阳能电池板可以包括PV太阳能电池阵列。这种太阳能电池板具有在不同天气条件下可操作的优点,因为它可以以可接受的效率将直接的、间接的、漫射的和/或折射的光转换成电。然而,即使在晴朗的天气条件下,包括PV太阳能电池的太阳能电池板的最大效率也是有限的。可选地,常见的太阳能电池板可以包括CPV太阳能电池阵列。在晴朗的天气条件下,这种CPV电池板提供比仅用于直接光的PV电池板更大的效率。然而,在诸如多云天气条件的某些条件下,CPV电池板提供的效率小于PV电池板的效率。
本文描述了一种太阳能电池板系统,该太阳能电池板系统结合了常规PV太阳能电池和CPV太阳能电池两者以便利用这两种技术。如下所述,太阳能电池板系统包括含有PV太阳能电池和CPV太阳能电池的太阳能电池板组件和用于定向太阳能电池板组件的跟踪系统。
在一个实施例中,PV太阳能电池和CPV太阳能电池位于太阳能电池板组件的同一侧。例如,PV太阳能电池和CPV太阳能电池可以固定到相同的板上。可选地,CPV太阳能电池可以安装在透明或半透明前板上,并且PV太阳能电池可以安装在位于前板下方的第二板和后板上,从而收集通过前板传播的部分光。
在另一实施例中,PV太阳能电池和CPV太阳能电池位于太阳能电池板组件的相对侧上,即PV侧和CPV侧。在这种情况下,跟踪系统适于确定太阳能电池板组件的哪一侧应该被暴露,即太阳能电池板组件的哪一侧应该面向天空。
图1和图2示出了太阳能电池板系统100的一个实施例,其在太阳能电池板系统100的同一侧上组合CPV太阳能电池和PV太阳能电池。太阳能电池板系统100包括太阳能电池板组件102和跟踪系统。太阳能电池板组件102包括四个太阳能电池板106a、106b、106c和106d,每个太阳能电池板包括太阳能模块108的阵列。每个太阳能模块108包括如下所述的CPV太阳能电池和PV太阳能电池。
跟踪系统包括安装太阳能电池板组件102的框架和控制器(未示出)。在所示实施例中,框架包括沿第一轴线延伸的第一垂直杆110和沿第二轴线延伸并可旋转地固定到第一杆110上的第二水平杆112。在所示实施例中,第一轴线沿第一方向(即垂直方向)延伸,且第二轴线垂直于第一轴线(即水平方向)。然而,应当理解,其他配置也是可能的。
框架是机动化的,使得太阳能电池板106a、106b、106c和106d的取向可以变化,以便跟踪太阳。应当理解,可以使用适于改变太阳能电池板106a、106b、106c和106d的取向的任何适当的机动化框架。例如,框架可以包括用于绕杆110的纵轴旋转太阳能板106a、106b、106c和106d的第一马达和用于绕杆112的纵轴旋转太阳能板106a、106b、106c和106d的第二马达。
返回参照图1和图2并且在一个实施例中,第二杆112可以围绕第二轴线(即,围绕其自身的纵轴)旋转,以便改变太阳能电池板106的取向。在这种情况下,第一杆110可以具有固定位置,并且第二杆112可以经由诸如旋转接头的可旋转连接可旋转地固定到第一杆110,以便相对于第一杆110并且围绕第二轴线旋转第二杆112。
在另一个实施例中,第二杆112可以围绕第一轴线,即围绕第一杆110的纵轴旋转。在这种情况下,第一杆110可以具有固定位置,并且第二杆112可以经由诸如旋转接头的可旋转连接可旋转地固定到第一杆110,以便相对于第一杆110并且围绕第一轴线旋转第二杆112。在另一示例中,第二杆112可以具有相对于第一杆110的固定位置,且第一杆110可围绕其纵轴(即,围绕第一轴)旋转。
在另一实施例中,第二杆112可以绕第一轴线和第二轴线旋转。
在所示实施例中,旋转连接器114将第二杆112可旋转地连接到第一杆110,使得第二杆112可绕第二轴线旋转。旋转连接器114固定在第一杆110的顶部并且基本上固定在第二杆112的中部,从而将第二杆112分成在旋转连接器114的第一侧上延伸的第一杆部分116和在旋转连接器114的第二侧且相对侧上延伸的第二杆部分118。太阳能板106a固定到第一杆部分116并且在其第一侧上从其延伸,而太阳能板106d也固定到第一杆部分116但是从其第二侧和相对侧延伸。太阳能板106b固定到第二杆部分118并且从其第一侧延伸,而太阳能板106c也固定到第二杆部分118但是从其第二侧和相对侧延伸。在所示实施例中,太阳能电池板106a、106b、106c和106d基本上共面。
应当理解,可以使用适于支撑太阳能电池板106a、106b、106c和106d并且具有至少一个自由度以改变太阳能电池板106a、106b、106c和106d的取向的任何适当的框架。还应当理解,太阳能电池板106a、106b、106c和106d的数量和/或每个太阳能电池板106a、106b、106c、106d的太阳能模块108的数量也可以变化。例如,太阳能电池板组件102可以包括单个太阳能电池板106a、106b、106c、106d,该单个太阳能电池板106a、106b、106c、106d包括单个太阳能模块108。
如本领域所公知的,跟踪系统还包括控制器(未示出),用于控制太阳能电池板106a、106b、106c和106d的取向,以便跟踪太阳。在一个实施例中,控制器调节太阳能电池板106a、106b、106c和106d的取向,使得到太阳的视线基本上垂直于太阳能电池板106a、106b、106c和106d的表面。
如图3所示,每个太阳能电池板106a、106b、106c、106d包括多个太阳能模块108,并且每个太阳能模块108包括聚集器板120和包括多个太阳能电池的太阳能电池组件122。太阳能电池板106a、106b、106c、106d还包括用于将太阳能模块108固定在一起的框架。在所示实施例中,框架包括固定在一起以形成框架的多个板124。不同的太阳能电池组件122及其各自的聚集器板120固定到四个板124以形成太阳能电池板106a、106b、106c、106d。
在一个实施例中,太阳能电池板106a、106b、106c、106d包括基板,太阳能电池组件122固定在基板上,并且板124从基板突出。因此,板124的第一端固定到基板,且太阳能电池组件固定到板124之间的基板。聚集器板120邻近其第二端固定到板124。太阳能电池安装在太阳能电池组件122上以面向它们各自的聚集器板120。
图4和图5示出了可用作太阳能电池组件122的太阳能电池组件130的一个实施例。太阳能电池组件130包括支撑板132、多个CPV太阳能电池134和多个PV太阳能电池136。CPV太阳能电池134和PV太阳能电池136安装在支撑板132的同一表面138上,以形成CPV太阳能电池134阵列和PV太阳能电池136阵列。如图5所示,CPV太阳能电池134和PV太阳能电池136的阵列位于支撑板132上,使得一行CPV太阳能电池134沿着支撑板132的长度与一行PV太阳能电池136交替。此外,CPV太阳能电池134和PV太阳能电池136以阶梯式方式布置。即,PV太阳能电池136的行相对于PV太阳能电池136的行移位,使得每个CPV太阳能电池134邻近四个PV太阳能电池136并且位于由四个邻近或邻近PV太阳能电池136的中心形成的正方形或矩形的中心。
应当理解,CPV太阳能电池134和PV太阳能电池136的特定几何布置仅是示例性的。例如,CPV太阳能电池134和PV太阳能电池136可以随机分布在支撑板132的面138上。类似地,尽管太阳能电池组件130可以包括偶数个CPV太阳能电池134和PV太阳能电池136,但应理解,CPV太阳能电池134的数目可以不同于PV太阳能电池136的数目。
返回参照图4,可以选择板124的宽度,使得聚集器板120与CPV太阳能电池134相距预定距离。聚集器板120包括多个聚集器(未示出),每个聚集器定位成将入射到其上的光聚集或聚焦到相应的CPV太阳能电池134上。例如,每个聚集器可以位于聚集器板120上以便与其相应的CPV太阳能电池134对准,即聚集器的中心与其相应的CPV太阳能电池134的中心之间的轴线可以垂直于聚集器板120和支撑板132。因此,聚集器板120包括与CPV太阳能电池134的阵列对准的聚集器阵列。由CPV太阳能电池134及其相应聚集器形成的组件对应于CPV太阳能模块。
包括集成在其中的聚集器的聚集器板120由诸如玻璃、塑料等透明或半透明材料制成。入射到给定聚集器上的光至少部分地聚焦在其相应的CPV太阳能电池134上,CPV太阳能电池134将接收到的光转换成电。在聚集器之间入射到聚集器板120上的光传播通过聚集器板120,而不被聚集器板120聚焦。一些未聚集的光到达PV太阳能电池136,PV太阳能电池136又将入射到其上的光转换成电。
作为CPV太阳能电池134和PV太阳能电池136的特定布置的结果,太阳能电池板106a、106b、106c、106d适于将直接光和间接光都转换成电。直接光指的是以大约90°的入射角入射到聚集器板120上的光。应当理解,在被认为是直接光的光的入射角的值上可以存在一些公差。例如,具有给定入射角使得当以给定入射角入射到给定聚集器上时聚焦到对应于给定聚集器的CPV太阳能电池上的所有光可以被认为是直接光。间接光是指以不同于大约90°的入射角入射到聚集器板120上的光。类似于直接光,应当理解,在间接光的入射角的值的范围上可以存在一些公差。在一个实施例中,以给定入射角入射到聚集器板120上的所有光可以被认为是间接光,使得当入射到聚集器上时,光不聚焦到CPV太阳能电池上。间接光可以包括漫射光、由太阳能电池板周围的物体反射的光等。
应当理解,跟踪系统104可以使用任何适当的方法来跟踪太阳。在一个实施例中,控制器可以适于接收太阳的理论位置并根据太阳的理论位置定向太阳能电池板组件102。
在另一实施例中,跟踪系统104还可以包括适于确定太阳的实际位置的至少一个太阳跟踪传感器。在这种情况下,如本领域所公知的,控制器适于使用所确定的太阳位置来定向太阳能电池板组件102。在跟踪系统104包括太阳跟踪传感器的实施例中,当太阳跟踪传感器不能确定太阳的实际位置时,例如在多云条件下,控制器可以适于使用太阳的理论位置来定向太阳能电池板组件102。
在一个实施例中,跟踪系统104包括适于提供太阳的实际位置的第一评估的第一太阳跟踪传感器和适于提供太阳的实际位置的精确评估的第二太阳跟踪传感器。例如,第一太阳跟踪传感器可以是全局正常辐照度(GNI)传感器或直接正常辐照度(DNI)传感器。第二太阳跟踪传感器可以是4象限(4Q)传感器。在这种情况下,控制器从第一太阳跟踪传感器接收太阳的实际位置,并相应地调节太阳能电池板组件102的位置。然后,控制器接收由第二太阳跟踪传感器测量的太阳的实际位置,并且如果需要,根据从第二太阳跟踪传感器接收的太阳的新位置来调节太阳能电池板组件102的位置。
在一个实施例中,一旦已经根据由第二太阳跟踪传感器测量的太阳位置定位了太阳能电池板组件102,则控制器可以测量由太阳能电池板组件102产生的功率并且执行微调步骤。在该可选步骤中,控制器围绕参考取向稍微改变太阳能电池板组件102的取向,该参考取向对应于在测量由太阳能电池板组件102产生的能量的同时使用由第二太阳跟踪传感器测量的太阳位置确定的太阳能电池板组件102的取向。如果给定取向提供大于参考取向产生的能量的产生能量,则控制器随后根据给定取向定向太阳能电池板组件102。
在另一个实施例中,仅当针对与由第二太阳跟踪传感器确定的太阳位置相对应的太阳能电池板组件102的取向而产生的测量能量低于给定阈值时,控制器可以执行微调步骤。
应当理解,CPV太阳能电池134和相应聚集器之间的距离,即支撑板132和聚集器板120之间的距离经选择为CPV太阳能电池134的特性(例如它们的尺寸和聚集器的特性)的函数。在一个实施例中,选择支撑板132和聚集器板120之间的距离,以最大化CPV光电池134的入射光量。
在一个实施例中,聚集器板120的外表面,即聚集器板120的与太阳能电池组件122、130相对的表面涂覆有抗反射涂层,以便使光的反射最小化。
应当理解,可以使用用于将光聚焦在CPV太阳能电池134上的任何适当的聚集器。例如,聚集器可以是凸面或双凸面光学透镜。在另一个示例中,聚集器可以是菲涅耳透镜。
在一个实施例中,太阳能电池组件130还包括多个散热器,用于消散CPV太阳能电池134和/或PV太阳能电池136产生的热量。例如,每个CPV太阳能电池134和/或每个PV太阳能电池可以安装在相应的散热器上,该散热器固定到或集成到支撑板132上。在另一个实施例中,支撑板132可以由散热材料制成,并且然后用作用于消散由CPV太阳能电池134和PV太阳能电池136产生的热的散热器。例如,支撑板132可以由铝合金、铜、诸如铜-钨假合金的复合材料、AlSiC(铝基体中的碳化硅)、Dymalloy(铜-银合金基体中的金刚石)、E材料(铍基体中的氧化铍)等制成。
虽然在太阳能电池组件130中,CPV太阳能电池143和PV太阳能电池136集成在同一支撑板132上,但是图6示出了太阳能电池组件150,其包括用于支撑CPV太阳能电池154的第一支撑板152和用于支撑PV太阳能电池158的第二支撑板156。第二支撑板156位于第一支撑板152下方,即第一支撑板152位于聚集器板120和第二支撑板156之间。第一支撑板152至少部分地由透明或半透明材料制成,以允许入射到其上的至少一些光传播通过。至于太阳能组件130,板124用于将第一支撑板152位于距聚集器板120给定距离处。在该实施例中,聚集器板120、第一支撑板152和第二支撑板156都彼此平行。然而,本领域技术人员将理解,其他配置也是可以的。例如,第二支撑板156可以不平行于第一支撑板152,第一支撑板152可以平行于聚集器板120。
在所示实施例中,CPV太阳能电池154几何地布置在第一支撑板152上,以便形成CPV太阳能电池154的阵列。类似地,PV太阳能电池158几何地布置在第一支撑板156上,以便形成CPV太阳能电池158的阵列。在一个实施例中,将第二支撑板156上的PV太阳能电池158的位置选择为第一支撑板152上的CPV太阳能电池154的位置的函数,使得PV太阳能电池158的行相对于CPV太阳能电池154的行移位。因此,每个PV太阳能电池158在第一支撑板152上的投影位于四个相邻CPV太阳能电池154之间。在一个实施例中,每个PV太阳能电池158在第一支撑板152上的投影基本上位于由四个相邻CPV太阳能电池154的中心形成的几何形状的中心。
应当理解,CPV太阳能电池154和它们各自的聚集器之间的相对位置经选择使得入射到聚集器上的直接光聚焦在它们各自的CPV太阳能电池154上,CPV太阳能电池154将入射到其上的光转换成电。应当理解,入射到聚集器之间的聚集器板120上的一些间接光可以到达CPV太阳能电池154并被转换成电。入射到聚集器板120上的间接光和在聚集器之间入射到聚集器板120上的直接光在到达第一支撑板152之前传播通过聚集器板120。由于第一支撑板152是透明或半透明的,所以入射到CPV太阳能电池154之间的第一支撑板152上的至少一些光传播通过第一支撑板152并到达位于第二支撑板156上的PV太阳能电池158。然后PV太阳能电池158将接收的光转换成电。
在一个实施例中,太阳能电池组件150进一步包括用于消散由CPV太阳能电池154和/或PV太阳能电池158产生的热的多个散热器。例如,每个CPV太阳能电池154和/或每个PV太阳能电池158可以安装在各自的散热器上,该散热器固定到或集成在它们各自的支撑板152、156上。在另一实施例中,支撑板156可以由散热材料制成,且接着用作用于消散由安装到其上的PV太阳能电池158产生的热的散热器。在一个实施例中,支撑板152可以由透明或半透明的散热材料制成。
虽然在图5所示的太阳能电池组件150中,第一支撑板152位于第二支撑板156和聚集器板120之间,但是应当理解,第二支撑板156可以位于第一支撑板152和聚集器板120之间。在这种情况下,第二支撑板156由透明或半透明材料制成,并且第一支撑板152可以不由透明或半透明材料制成。在该实施例中,入射到聚集器板120的聚集器上的直接光在到达CPV太阳能电池154之前传播通过第二支撑板156。在一个实施例中,第二支撑板可以设置有次级聚集器,使得聚集器板120的每个聚集器将入射到其上的直接光聚焦到存在于第二支撑板上的相应次级聚集器上,并且每个次级聚集器将入射到其上的光聚焦到相应CPV太阳能电池154上。
虽然太阳能电池板系统100包括集成在太阳能电池板组件102的同一侧上的CPV太阳能电池134、154和PV太阳能电池136、158两者,但是图7至图9示出了包括集成在太阳能电池板组件的相对侧上的CPV太阳能电池和PV太阳能电池的太阳能电池板系统200。
太阳能电池板系统200包括太阳能电池板组件202和跟踪系统204。太阳能电池板组件202包括四个太阳能电池板206a、206b、206c和206d,每个太阳能电池板包括太阳能模块208的阵列。每个太阳能模块208包括位于太阳能模块208的相对侧上的CPV太阳能电池和PV太阳能电池,如下所述。
跟踪系统204包括安装太阳能电池板组件202的框架和控制器(未示出)。在所示实施例中,框架对应于太阳能电池板系统100的跟踪系统104的框架,即,其包括第一垂直杆110和第二水平杆112。在所示实施例中,太阳能电池板组件202可以围绕第一杆110的轴线和围绕第二杆112的轴线旋转。然而,如上所述,只要太阳能电池板组件202可绕第二杆112的纵轴旋转,其他构造也是可以的。
每个太阳能电池板206a、206b、206c、206d分别包括第一面210a、210b、210c、210d,并且分别包括相对的第二面210e、210f、210g、210h。虽然图7示出了其中太阳能电池板206a、206b、206c和206d的第一面210a、210b、210c、210d被暴露的构型,即第一面210a、210b、210c、210d面向天空而第二面210e、210f、210g、210h面向地面,但是太阳能电池板206a、206b、206c和206d的第二面210e、210f、210g、210h可以通过围绕其纵轴旋转第二杆112而暴露。
每个太阳能模块208还设有第一面208a和相对的第二面208b。第一面208a在太阳能电池板组件202的与太阳能电池板206a、206b、206c和206d的第一面210a、210b、210c、210d相同的一侧上,并且第二面208b在太阳能电池板组件202的与太阳能电池板206a、206b、206c和206d的第二面210e、210f、210g、210h相同的一侧上。太阳能模块208的第一面208a和第二面208b可以通过围绕其纵轴旋转第二杆112而选择性地暴露。
如图9所示,太阳能模块208包括沿相反方向取向的第一太阳能电池组件221和第二太阳能电池组件222,使得第一太阳能电池组件221位于太阳能模块208的第一侧208a上,且第二太阳能电池组件位于第二侧208b上。太阳能模块208还包括位于太阳能模块208的第一侧208a上的聚集器板220和位于太阳能模块208的第二侧208b上的保护板(未示出)。聚集器板220由透明或半透明材料制成,并且包括集成在其中的聚集器,如下所述。保护板还由透明或半透明材料制成,用于保护位于太阳能模块208的第二侧208b上的太阳能电池。
第一太阳能电池组件221包括支撑板224、多个CPV太阳能电池226和多个PV太阳能电池228。在所示实施例中,CPV太阳能电池226和PV太阳能电池228安装在支撑板224的同一表面230上,以形成CPV太阳能电池226阵列和PV太阳能电池228阵列。如图所示,CPV太阳能电池226和PV太阳能电池228的阵列位于支撑板224上,使得一行CPV太阳能电池226沿着支撑板224的长度与一行PV太阳能电池228交替。此外,CPV太阳能电池226和PV太阳能电池228以阶梯式方式布置,即CPV太阳能电池226的行相对于PV太阳能电池228的行移位,使得每个CPV太阳能电池226邻近四个PV太阳能电池228并且位于由四个邻近PV太阳能电池228的中心形成的几何形状的中心处。
聚集器板220包括多个聚集器(未示出),每个聚集器定位成将入射到其上的光聚集或聚焦到相应的CPV太阳能电池226上。例如,每个聚集器可以与其各自的CPV太阳能电池226对准,即聚集器的中心与其各自的CPV太阳能电池226的中心之间的轴线可以垂直于聚集器板220和支撑板224。因此,聚集器板220包括与CPV太阳能电池226的阵列对准的聚集器阵列。每个CPV太阳能电池226及其对应的聚集器形成CPV太阳能模块。
第二太阳能电池组件222包括支撑板232和安装到其上的PV太阳能电池234。支撑板232例如使用连接板236固定到支撑板224。支撑板224和232固定在一起,使得不包括太阳能电池的支撑板224的面面向不包括太阳能电池的支撑板232的面,即,使得CPV太阳能电池226和PV太阳能电池234沿相反方向定向。
作为CPV太阳能电池226和PV太阳能电池228、234的特定布置的结果,当太阳能电池板206a、206b、206c、206d的面210a、210b、210c、210d暴露时,即当面向天空时(如图7所示)或当其面210e、210f、210g、210h暴露时,太阳能电池板206a、206b、206c、206d适于将光转换成电(如图8所示)。
当太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d暴露时,CPV太阳能电池226将入射到其上的直接光转换成电,PV太阳能电池228将入射到其上的直接光和间接光转换成电。当太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h暴露时,PV太阳能电池234将入射到其上的光转换成电。
应当理解,太阳能电池板系统200的框架是机动化的,以便至少控制第二杆112的旋转,以便选择性地暴露太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d以及面210e、210f、210g和210h中的任一个,并且控制太阳能电池板206a、206b、206c和206d的取向。还应当理解,跟踪系统的控制器控制机动化系统,并因此控制第二杆112的旋转。
控制器还适于确定太阳能电池板206a、206b、206c和206d的哪个面应该暴露,即哪个面应该朝向天空,而另一个面面向固定第一杆110的结构,例如地面。
在一个实施例中,控制器适于在不同的时间点测量由太阳能电池板的每个面产生的功率,并且暴露产生最大测量电功率的面。例如,在第一时间点,太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d可以经暴露并且产生第一电功率。然后,控制器通过旋转杆112来旋转太阳能电池板206a、206b、206c和206d,以便暴露太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h,并且确定由太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h产生的电功率,即第二电功率。如果第二电功率小于第一电功率,则控制器确定太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d应当暴露并且旋转杆112以便暴露太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d。如果第二电功率大于第一电功率,则控制器确定太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h应当暴露并且保持太阳能电池板组件202的位置。在第二时间点,控制器通过测量由实际暴露的面产生的电功率,并且然后旋转太阳能电池板组件202并测量由太阳能电池板组件202的第二面产生的电功率,再次确定太阳能电池板组件202的哪个面提供最大电功率。然后控制器暴露提供最大电功率的面。然后对每个时间点重复该方法。
在一个实施例中,周期性地确定太阳能电池板组件的提供最大电功率的面。
在一个实施例中,第一电功率和/或第二电功率对应于由太阳能电池板组件202的相应面产生的最大电功率。为了确定太阳能电池板组件202的给定面的最大产生电功率,控制器适于改变电池板组件202的取向。
在另一个实施例中,控制器适于测量由太阳能电池板组件202的面实际暴露所产生的功率,并且通过将所测量的电功率与预定阈值进行比较来确定太阳能电池板206a、206b、206c和206d的哪个面应该暴露。应当理解,可以使用用于测量由太阳能电池板206a、206b、206c和206d产生的电能的任何适当的方法和设备。例如,可以使用本领域已知的电流互感器和电压互感器的组合。例如,当太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d时,控制器接收CPV太阳能电池226和PV太阳能电池228产生的电功率的测量值,并将产生的功率值与第一阈值进行比较。如果所产生的电功率的测量值等于或高于第一阈值,则控制器确定太阳能电池板206a、206b、206c和206d的侧面210a、210b、210c和210d应当继续暴露。另一方面,如果所产生的电功率的测量值低于第一阈值,则控制器确定太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h应当暴露。然后控制器旋转第二杆112以暴露太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h。
在所测量的电功率低于第一阈值的一个实施例中,控制器适于改变太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d的取向,同时在暴露太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h之前测量所产生的电功率。如果新的给定取向提供等于或大于第一阈值的测量电功率,则控制器确定太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d应当继续暴露并且保持太阳能电池板206a、206b、206c和206d的给定取向。否则,控制器暴露太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h。可选地,控制器可以改变面210a、210b、210c和210d的取向,以便确定提供最大电功率的给定取向,并且然后将最大电功率与第一阈值进行比较。如果最大电功率等于或大于第一阈值,则控制器确定太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d应当继续暴露并且保持太阳能电池板206a、206b、206c和206d的给定取向。否则,控制器暴露太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h。
当太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h暴露时,控制器将PV太阳能电池234产生的测量电功率与第二阈值进行比较。如果测量的电功率等于或低于第二阈值,则控制器确定太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h应当继续暴露。然而,当所测量的电功率大于第二阈值时,控制器旋转第二杆112以暴露太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d,并且然后旋转太阳能电池板组件202以暴露太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d。
在另一实施例中,控制器适于测量由太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d产生的功率,并估计由面210e、210f、210g和210h产生的能量。然后控制器暴露提供最大能量的面。在该实施例中,执行校准步骤以便确定在相同天气条件下由PV电池234产生的能量和由PV太阳能电池228产生的能量之间的关系。因此,通过知道这种关系和PV电池228和234的数量,可以从存在于面210a、210b、210c和210d上的PV电池228产生的测量功率确定由太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h产生的功率。在一个实施例中,当PV太阳能电池228和234暴露于相同的照明条件时,可以通过测量PV太阳能电池228产生的能量和PV太阳能电池234产生的能量经验地确定该关系。在另一实施例中,理论上使用PV太阳能电池228的特性和PV太阳能电池234的特性来确定该关系。
在该实施例中,控制器在不同的时间点暴露太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d,并测量由CPV太阳能电池226和PV太阳能电池228产生的能量,以获得由面210a、210b、210c和210d产生的总能量。然后,如果太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h暴露,则控制器使用上述关系和PV太阳能电池228产生的测量能量来估计由这些面210e、210f、210g和210h产生的能量。如果针对太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h估计的能量大于针对面210a、210b、210c和210d测量的总能量,则控制器随后暴露太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h。另一方面,如果为太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h估计的能量小于为面210a、210b、210c和210d测量的总能量,则控制器继续暴露面210a、210b、210c和210d。
在又一实施例中,控制器适于根据关于天气预报的信息来识别太阳能电池板组件202的待暴露面。然后,控制器适于接收关于天气预报的信息,例如来自服务器或卫星的云预报信息。对于太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h估计的能量。
在控制器接收云预测信息的实施例中,云预测信息包括云覆盖百分比和云高度。然后,控制器适于使用云覆盖百分比和云高度来估计CPV太阳能电池226和PV太阳能电池228在所接收的云预测下将要产生的第一电功率,以便估计如果太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d暴露时将要产生的电功率。如果太阳能电池板206a、206b、206c和206d的面210e、210f、210g和210h暴露,则控制器还使用云覆盖百分比和云高度在所接收的云预测下估计将由PV太阳能电池234产生的第二电功率,以便估计将产生的电功率。然后,控制器暴露太阳能电池板组件202的估计将要产生的最大电功率的面。例如,如果CPV太阳能电池226和PV太阳能电池228估计为提供比PV太阳能电池234更多的电功率,则太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d暴露。
在一个实施例中,天气预报信息可以周期性地接收,例如每两小时接收一次。在这种情况下,控制器可以考虑所接收的云预测应用于给定时间段。在一个实施例中,对于给定的时间段,所接收的云预测包括作为时间的函数的云覆盖百分比和作为时间的函数的云高度。在这种情况下,控制器使用作为时间的函数的云覆盖百分比和作为时间的函数的云高度来估计太阳能电池板组件202的两个面在给定时间段内要产生的电功率。然后,控制器使用在太阳能电池板组件202的两个面的时间段内估计的电功率来确定太阳能电池板组件202的哪个面应当暴露。
应当理解,当控制器确定太阳能电池板206a、206b、206c和206d的面210a、210b、210c和210d应当暴露时,控制器可以进一步适于定向太阳能电池板组件202以便使用本领域已知的任何方法跟踪太阳。
在一个实施例中,控制器包括至少一个处理单元、存储器和用于与机动化框架通信并接收天气预报信息的通信设备。通信设备允许无线通信和/或有线通信。处理单元经配置执行上述方法的步骤。例如,该处理单元经配置用于控制机动化框架以便根据给定取向来定位太阳能电池板组件102、202以跟踪太阳。处理单元还可以经配置使用上述任何方法来确定太阳能电池板组件202的哪个面应暴露。处理单元可进一步经配置以跟踪太阳,以便最大化CPV太阳能电池134、154、226所产生的电功率。
图10是示出根据一些实施例的用于控制太阳能电池板组件102、202的示例性控制器300的框图。处理模块300通常包括:一个或多个计算机处理单元(CPU)或图形处理单元(GPU)302,用于执行存储在存储器304中的模块或程序和/或指令,从而执行处理操作;存储器304;以及一个或多个通信总线306,用于互连这些组件。通信总线306可选地包括互连和控制系统组件之间的通信的电路(有时称为芯片组)。存储器304包括高速随机存取存储器,诸如DRAM、SRAM、DDR RAM或其他随机存取固态存储器设备,并且可以包括非易失性存储器,诸如一个或多个磁盘存储设备、光盘存储设备、闪存设备或其他非易失性固态存储设备。存储器304可选地包括远离CPU 302定位的一个或多个存储设备。存储器304或者存储器304内的非易失性存储器设备包括非瞬态计算机可读存储介质。在一些实施例中,存储器304或存储器304的计算机可读存储介质存储以下程序、模块和数据结构或其子集:
框架控制模块310,用于控制杆110和/或112的旋转;
面暴露确定模块312,用于确定太阳能电池板组件202的哪一侧应该暴露;以及
跟踪模块314,用于确定太阳能电池板组件102、202的取向以便跟踪太阳。
以上识别的元件中的每一个可以存储在先前提及的存储器设备中的一个或多个中,且对应于用于执行上文描述的功能的指令集。以上标识的模块或程序(即,指令集)不需要作为单独的软件程序、过程或模块,并且因此这些模块的各种子集可以在各种实施例中经组合或以其他方式重新布置。在一些实施例中,存储器304可以存储上述模块和数据结构的子集。此外,存储器304可以存储上面没有描述的附加模块和数据结构。
尽管图10示出了处理模块300,但是图10旨在更多地作为可能存在于管理模块中的各种特征的功能描述,而不是作为本文描述的实施例的结构示意图。实际上,如本领域普通技术人员所认识到的,可以组合单独示出的项目,并且可以分离一些项目。
虽然太阳能电池板组件202包括在太阳能电池板206a、206b、206c和206d的侧面210a、210b、210c和210d上的PV太阳能电池228,但是应当理解,可以省略PV太阳能电池228。
在另一个实施例中,PV太阳能电池228可以安装在与CPV太阳能电池226分离的板上,如图11所示。在该实施例中,太阳能模块208包括聚集器板220、其上安装有CPV太阳能电池226以面向聚集器板220的第一支撑板250、其上安装有PV太阳能电池228的第二支撑板252从而面向第一支撑板250,并且支撑板232具有安装到其上的PV太阳能电池234,使得PV太阳能电池234定向在与CPV太阳能电池226和PV太阳能电池228的方向相反的方向上。应当理解,第一支撑板250是透明的或半透明的,以允许光通过其传播直到PV太阳能电池228。在一个实施例中,散热器254安装在第一支撑板250上,以便排出由CPV太阳能电池226产生的热量。还应当理解,第二支撑板252和第三支撑板232可以由散热材料制成。还应当理解,可以省略板232或板252,使得PV太阳能电池228和PV太阳能电池234安装在同一板的相对面上。
虽然上面的描述涉及具有集成在其中的光学聚集器的聚集器板120、220,但是应当理解,可以使用适于将光聚焦在CPV太阳能电池上的任何适当的光学聚集器设备。例如,聚集器板120、220可以由设置有透镜阵列的膜代替。在另一示例中,每个聚集器可以独立于其他聚集器,即,聚集器不集成到板中。例如,臂可用于将每个聚集器固定到其上安装有CPV太阳能电池的支撑板,臂的第一端固定到聚集器,且臂的第二端固定到支撑板,使得每个聚集器相对于其相应的CPV太阳能电池具有固定位置,同时与其相应的CPV太阳能电池对准。
应当理解,太阳能电池板系统100、200可以包括另外的设备、模块和/或子系统。例如,太阳能电池板系统100、200可以包括至少一个太阳能逆变器,用于将太阳能电池产生的DC功率转换成AC功率。太阳能电池板系统100、200可以包括一串逆变器或中央逆变器。太阳能逆变器可以执行最大功率点跟踪(MPPT)过程,即,太阳能逆变器采样来自太阳能电池的输出功率(I-V曲线)并且将适当的电阻(负载)施加到太阳能电池以获得最大功率。太阳能电池板系统100、200还可以包括例如连接到电网的开关装置。
上述本发明的实施例仅是示例性的。因此,本发明的范围仅由所附权利要求的范围限定。

Claims (17)

1.一种太阳能电池板组件,包括:
基板,在第一面和第二面之间延伸;
多个聚光光伏(CPV)电池,安装在所述基板的所述第一面上;
多个光学聚集器,每个光学聚集器面向所述CPV电池中的相应一个CPV电池;所述每个光学聚集器和所述相应一个CPV电池形成用于将直接光转换成电的CPV模块;以及
多个光伏(PV)电池,用于将间接光转换成所述电。
2.根据权利要求1所述的太阳能电池板组件,其中,所述PV电池安装在所述基板的所述第一面上。
3.根据权利要求1所述的太阳能电池板组件,还包括在正面和背面之间延伸的次级板。
4.根据权利要求3所述的太阳能电池组件,其中,所述PV电池安装在所述次级板的所述正面上。
5.根据权利要求4所述的太阳能电池板组件,其中,所述基板至少是半透明的并且所述次级板位于所述基板下方,使得所述PV电池面向所述基板的所述第二面。
6.根据权利要求4所述的太阳能电池板组件,其中,所述次级板至少是半透明的并且所述基板位于所述次级板下方,使得所述CPV电池和所述光学聚集器面向所述次级板的所述背面。
7.根据权利要求3所述的太阳能电池板组件,其中,所述PV电池安装在所述次级面的所述背面上,所述次级板的所述正面面向所述基板的所述第二面。
8.根据权利要求1至7中任一项所述的太阳能电池板组件,其中,所述基板由散热材料制成。
9.一种太阳能电池板组件,包括:
第一板,在第一面和第二面之间延伸;
多个聚光光伏(CPV)电池,安装在所述基板的所述第一面上;
多个光学聚集器,每个光学聚集器面向所述CPV电池中的相应一个CPV电池;所述每个光学聚集器和所述相应一个CPV电池形成用于将直接光转换成电的CPV模块;
次级板,所述次级板在正面和第二面之间延伸,所述正面面向所述基板的所述第二面;以及
多个主要光伏(PV)电池,安装在所述次级板的背面上用于将间接光转换成所述电。
10.根据权利要求9所述的太阳能电池板组件,还包括安装在所述基板的所述第一面上的附加PV电池。
11.根据权利要求9所述的太阳能电池板组件,还包括在正面和背面之间延伸的附加板。
12.根据权利要求11所述的太阳能电池组件,其中,所述PV电池安装在所述次级板的所述正面上。
13.根据权利要求12所述的太阳能电池板组件,其中,所述基板至少是半透明的并且所述附加板位于所述基板下方,使得所述附加PV电池面向所述基板的所述第二面。
14.根据权利要求12所述的太阳能电池板组件,其中,所述附加板至少是半透明的并且所述基板位于所述附加板下方,使得所述CPV电池和所述光学聚集器面向所述次级附加板的后表面。
15.一种太阳能电池板系统,包括:
机动化可旋转框架;
根据权利要求9所述的太阳能电池板组件,所述太阳能电池板组件紧固到所述可旋转框架上;
控制器,所述控制器用于确定所述CPV电池和所述PV电池中有待暴露的给定电池并且旋转所述机动化可旋转框架以便暴露所确定的电池。
16.根据权利要求15所述的太阳能电池板系统,其中,所述控制器适于基于关于天气预报的信息来执行所述确定。
17.根据权利要求16所述的太阳能电池板系统,其中,关于天气预报的所述信息包括云覆盖百分比和云高度。
CN201880035539.7A 2017-06-05 2018-06-05 太阳能电池板组件 Pending CN110710100A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762515235P 2017-06-05 2017-06-05
US62/515,235 2017-06-05
PCT/IB2018/054019 WO2018224962A1 (en) 2017-06-05 2018-06-05 Solar panel assembly

Publications (1)

Publication Number Publication Date
CN110710100A true CN110710100A (zh) 2020-01-17

Family

ID=64565807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880035539.7A Pending CN110710100A (zh) 2017-06-05 2018-06-05 太阳能电池板组件

Country Status (7)

Country Link
US (2) US20200144961A1 (zh)
EP (1) EP3635859A4 (zh)
CN (1) CN110710100A (zh)
CA (1) CA3059337A1 (zh)
CL (1) CL2019003206A1 (zh)
MA (1) MA49714A (zh)
WO (1) WO2018224962A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220310864A1 (en) * 2019-06-14 2022-09-29 The Administrators Of The Tulane Educational Fund Spectrum-splitting concentrator photovoltaic module with direct fluid cooling, and associated methods
CN115051641B (zh) * 2022-08-16 2022-10-25 山西省安装集团股份有限公司 一种太阳能电池组件及制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233649A (ja) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd 太陽電池モジュール、太陽光発電装置、および太陽光発電システム
US20140261630A1 (en) * 2013-03-15 2014-09-18 John Paul Morgan Photovoltaic panel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090120486A1 (en) * 2006-11-15 2009-05-14 Benyamin Buller Bifacial Solar Cell Array
JP4986056B2 (ja) 2007-12-13 2012-07-25 シャープ株式会社 集光式光電変換装置
US8759138B2 (en) 2008-02-11 2014-06-24 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
WO2011072708A1 (en) * 2009-12-18 2011-06-23 Siemens Aktiengesellschaft Solar power generator module
US20110290295A1 (en) * 2010-05-28 2011-12-01 Guardian Industries Corp. Thermoelectric/solar cell hybrid coupled via vacuum insulated glazing unit, and method of making the same
JP2014175582A (ja) 2013-03-12 2014-09-22 Sumitomo Electric Ind Ltd 太陽光発電装置
US20150326175A1 (en) * 2014-05-08 2015-11-12 Sunplicity LLC System and method of rooftop solar energy production
US20160099674A1 (en) * 2014-10-01 2016-04-07 Sharp Laboratories of America (SLA), Inc. Flat Panel Photovoltaic System

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233649A (ja) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd 太陽電池モジュール、太陽光発電装置、および太陽光発電システム
US20140261630A1 (en) * 2013-03-15 2014-09-18 John Paul Morgan Photovoltaic panel

Also Published As

Publication number Publication date
US20200144961A1 (en) 2020-05-07
CL2019003206A1 (es) 2020-04-24
US20220149775A1 (en) 2022-05-12
EP3635859A1 (en) 2020-04-15
WO2018224962A1 (en) 2018-12-13
MA49714A (fr) 2020-04-15
EP3635859A4 (en) 2020-05-20
CA3059337A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
Huang et al. Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector
US7923624B2 (en) Solar concentrator system
US8049150B2 (en) Solar collector with end modifications
US20080149162A1 (en) Spectral Splitting-Based Radiation Concentration Photovoltaic System
US20100206302A1 (en) Rotational Trough Reflector Array For Solar-Electricity Generation
US20110114180A1 (en) Method circuit device assembly and system for converting solar radiation into electric current
US20220149775A1 (en) Solar panel assembly
US20130000696A1 (en) Photovoltaic systems and methods
Paul Application of compound parabolic concentrators to solar photovoltaic conversion: A comprehensive review
Judkins et al. Performance results of a low-concentration photovoltaic system based on high efficiency back contact cells
US20110259397A1 (en) Rotational Trough Reflector Array For Solar-Electricity Generation
KR102274301B1 (ko) 태양광 발전장치 및 이를 이용한 태양광 발전 방법
Faranda et al. Analysis of a PV system with single-axis tracking energy production and performances
Mehrtash et al. Effects of surroundings snow coverage and solar tracking on photovoltaic systems operating in Canada
US20150236639A1 (en) Solar receiver module for a concentrated photovoltaic (cpv) power plant
Rajaee et al. Experimental measurements of a prototype high-concentration Fresnel lens and sun-tracking method for photovoltaic panel’s efficiency enhancement
Sala et al. The EUCLIDES prototype: An efficient parabolic trough for PV concentration
Edmonds The performance of bifacial solar cells in static solar concentrators
JP6854096B2 (ja) 集光型太陽電池システム及び発電方法
Bowden et al. Application of static concentrators to photovoltaic roof tiles
US9741886B2 (en) Thin film solar collector and method
Antonini Photovoltaic Concentrators-Fundamentals, Applications, Market & Prospective
Mikami et al. Advantages of concentrator photovoltaic system in high solar radiation region
Wijesuriya et al. A novel mathematical model to improve the power output of a solar panel using reflectors
Paul et al. Enhancing the performance of a building integrated compound parabolic photovoltaic concentrator using a hybrid photovoltaic cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination