CN110708131A - Circuit structure and method for fast calibration of transmitter power of MIMO channel simulator based on digital-analog block - Google Patents
Circuit structure and method for fast calibration of transmitter power of MIMO channel simulator based on digital-analog block Download PDFInfo
- Publication number
- CN110708131A CN110708131A CN201911070011.6A CN201911070011A CN110708131A CN 110708131 A CN110708131 A CN 110708131A CN 201911070011 A CN201911070011 A CN 201911070011A CN 110708131 A CN110708131 A CN 110708131A
- Authority
- CN
- China
- Prior art keywords
- power
- digital
- attenuator
- analog
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/101—Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
- H04B17/102—Power radiated at antenna
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/13—Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- Transmitters (AREA)
Abstract
本发明涉及一种基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构,包括数模转换器单元,用于将信道模型的数字信号转换为模拟信号,并调节输出功率;模拟电路模块包括依次相连的第一滤波器、第一混频器、第二滤波器、第二混频器、数控衰减器和大步进衰减器,所述的模拟电路模块还包括第一本振和第二本振。本发明还涉及一种实现基于数模分块式的MIMO信道模拟器发射机功率快速校准的方法。采用了本发明的基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构及其方法,解决了大规模MIMO信道模拟器发射机功率校准的时间太长的问题。使用本发明方法,单通道信道模拟器发射机的校准时间提升10~20倍,尤其适用于大规模MIMO的发射机功率校准。
The invention relates to a circuit structure for realizing fast calibration of transmitter power of a MIMO channel simulator based on a digital-analog split type, comprising a digital-to-analog converter unit for converting a digital signal of a channel model into an analog signal and adjusting the output power; The analog circuit module includes a first filter, a first mixer, a second filter, a second mixer, a digitally controlled attenuator and a large step attenuator connected in sequence, and the analog circuit module further includes a first vibration and a second local oscillator. The invention also relates to a method for realizing fast calibration of the transmitter power of the MIMO channel simulator based on the digital-analog block type. The circuit structure and method for realizing fast calibration of the transmitter power of the MIMO channel simulator based on the digital-analog block type of the present invention solves the problem of too long time for the transmitter power calibration of the massive MIMO channel simulator. Using the method of the present invention, the calibration time of the single-channel channel simulator transmitter is increased by 10-20 times, which is especially suitable for the transmitter power calibration of massive MIMO.
Description
技术领域technical field
本发明涉及仪器测量校准技术领域,尤其涉及发射机功率测量校准领域,具体是指一种基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构及其方法。The invention relates to the technical field of instrument measurement and calibration, in particular to the field of transmitter power measurement and calibration, in particular to a circuit structure and a method for realizing fast calibration of transmitter power of a MIMO channel simulator based on a digital-analog block method.
背景技术Background technique
信道模拟器是一种模拟无线环境中路径损耗、多径衰落等相关特性的测试仪器,实现在实验室验证系统设备和终端在各种复杂场景下无线环境对系统性能影响的功能。随着5G移动通信技术研发和产业化的快速推进,相较于4G时代MxN的多天线(如4x4),5G MIMO信道模拟器中实时模拟的信道数将有数量级的提升(如128x4)。The channel simulator is a test instrument that simulates the path loss, multipath fading and other related characteristics in the wireless environment. With the rapid advancement of 5G mobile communication technology research and development and industrialization, compared with the MxN multi-antenna (such as 4x4) in the 4G era, the number of channels simulated in real time in the 5G MIMO channel simulator will increase by an order of magnitude (such as 128x4).
在MIMO信道模拟器发射机系统中,主要包括了主控单元、基带单元、数模转换器单元组及发射机,其主要构成如图1所示。其中发射机中包含了(M+N)个发射通道。In the MIMO channel simulator transmitter system, it mainly includes a main control unit, a baseband unit, a digital-to-analog converter unit group and a transmitter, and its main structure is shown in Figure 1. The transmitter includes (M+N) transmission channels.
本发明数模分块式实现MIMO信道模拟器发射机功率的快速校准主要针对多通道超外差式发射机,其主要架构框图如图2所示。信道模拟器发射机工作时,基带单元将叠加了信道模型的低频信号通过数模转换器单元转换为模拟中频信号传输至发射机,发射机经过两次变频,将频率扩展至信道模拟器支持的全频率范围。其中,第一级混频为点频中频与点频第一本振混频至点频,滤波后再与扫频第二本振混频至射频输出,射频信号经过大动态衰减器调整至符合用户需求的功率范围。The digital-to-modular block type realizes the fast calibration of the transmitter power of the MIMO channel simulator mainly for the multi-channel superheterodyne transmitter, and its main structural block diagram is shown in FIG. 2 . When the channel simulator transmitter is working, the baseband unit converts the low-frequency signal superimposed with the channel model into an analog intermediate frequency signal through the digital-to-analog converter unit and transmits it to the transmitter. full frequency range. Among them, the first stage of mixing is the point frequency intermediate frequency and the point frequency first local oscillator mixed to the point frequency, and then mixed with the sweep frequency second local oscillator to the RF output, and the RF signal is adjusted by a large dynamic attenuator to meet the The power range required by the user.
信道模拟器发射功率准确度是衡量信道模拟器性能的重要指标之一,其主要取决于发射机部分的射频电路。理论上,对不同频率、不同功率逐一遍历校准,可以最准确的保证信道模拟器发射机的功率准确度。然后,遍历的是一个非常耗时间的过程,仅适用于天线数较少的信道模拟器发射机。当生产符合5G需求的MIMO信道模拟器发射机时,仅单台信道模拟器即需要校准128+4=132次,大批量生产时,必然不能再重复以上遍历校准的方法。The transmit power accuracy of the channel simulator is one of the important indicators to measure the performance of the channel simulator, which mainly depends on the radio frequency circuit of the transmitter part. In theory, traversing and calibrating different frequencies and different powers one by one can most accurately ensure the power accuracy of the channel simulator transmitter. Then, it is a very time-consuming process to traverse, which is only applicable to channel simulator transmitters with a small number of antennas. When producing a MIMO channel simulator transmitter that meets the requirements of 5G, only a single channel simulator needs to be calibrated 128+4=132 times. In mass production, the above traversal calibration method must not be repeated.
大部分信道模拟器发射机都使用电调衰减器(Voltage Variable Attenuator,VVA)来调节通路的衰减器,即可以保证精密步进,又可以保证功率准确度。但VVA属于模拟器件,非线性效应很严重,并且随着衰减值越大,非线性效应急剧下降,对于峰均比较高的宽带谱信号,经过VVA之后,矢量性能将恶化的非常严重。同时,VVA是一个负反馈环路,其稳定过程较慢,一般从一个功率调整至另一功率并稳定下来,需要us量级的时间,如此长的稳定时间不适用于信道模拟器模拟5G通信无线信道的要求。Most channel simulator transmitters use an attenuator (Voltage Variable Attenuator, VVA) to adjust the attenuator of the channel, which can ensure precise stepping and power accuracy. However, VVA is an analog device, and the nonlinear effect is very serious, and as the attenuation value increases, the nonlinear effect decreases sharply. For broadband spectrum signals with high peak-average ratio, after VVA, the vector performance will deteriorate very seriously. At the same time, VVA is a negative feedback loop, and its stabilization process is slow. Generally, it takes us time to adjust from one power to another and stabilize. Such a long stabilization time is not suitable for channel simulators to simulate 5G communication. Wireless channel requirements.
因此,使用VVA调节并遍历校准发射机输出功率,存在非线性、时间长等不利因素,不再适用于支持5G通信的大规模MIMO信道模拟器发射机功率校准。在保证功率准确度和通道线性度的前提下,如何缩短大规模MIMO信道模拟器发射机功率校准时间,保障信道模拟器高效生产的问题亟待解决。Therefore, using VVA to adjust and traverse the calibration transmitter output power has disadvantages such as nonlinearity and long time, and is no longer suitable for the transmitter power calibration of massive MIMO channel simulators supporting 5G communication. Under the premise of ensuring power accuracy and channel linearity, how to shorten the transmitter power calibration time of massive MIMO channel simulators and ensure efficient production of channel simulators needs to be solved urgently.
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服了上述现有技术的缺点,提供了一种满足精度高、操作简便、适用范围广泛的基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构及其方法。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and to provide a circuit structure that satisfies the requirements of high precision, simple operation and wide application range based on the digital-analog block type to realize the rapid calibration of the transmitter power of the MIMO channel simulator and the same. method.
为了实现上述目的,本发明的基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构及其方法如下:In order to achieve the above-mentioned purpose, the circuit structure and the method thereof for realizing the fast calibration of the transmitter power of the MIMO channel simulator based on the digital-analog block type are as follows:
该基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构,其主要特点是,所述的电路结构包括数字电路模块和模拟电路模块,所述的模拟电路模块与数字电路模块相连接;The circuit structure for realizing fast calibration of transmitter power of a MIMO channel simulator based on a digital-modular block type is mainly characterized in that the circuit structure includes a digital circuit module and an analog circuit module, and the analog circuit module and the digital circuit module connected;
所述的数字电路模块包括数模转换器单元,与所述的模拟电路模块相连接,用于将信道模型的数字信号转换为模拟信号,并调节输出功率,控制功率步进和精确度;The digital circuit module includes a digital-to-analog converter unit, which is connected to the analog circuit module and is used to convert the digital signal of the channel model into an analog signal, adjust the output power, and control the power step and accuracy;
所述的模拟电路模块包括依次相连的第一滤波器、第一混频器、第二滤波器、第二混频器、数控衰减器和大步进衰减器,所述的模拟电路模块还包括第一本振和第二本振,所述的第一本振与所述的第一混频器相连接,所述的第二本振与所述的第二混频器相连接,所述的数控衰减器用于调节校准不同频率通路上衰减特性的误差,所述的大步进衰减器用于扩展信道模拟器发射机的输出功率动态范围。The analog circuit module includes a first filter, a first mixer, a second filter, a second mixer, a numerically controlled attenuator and a large step attenuator connected in sequence, and the analog circuit module further includes a first local oscillator and a second local oscillator, the first local oscillator is connected to the first mixer, the second local oscillator is connected to the second mixer, the The digitally controlled attenuator is used to adjust and calibrate the error of attenuation characteristics on different frequency channels, and the large step attenuator is used to expand the output power dynamic range of the channel simulator transmitter.
较佳地,所述的模拟电路模块还包括功率计,与所述的大步进衰减器相连接,用于接收输出信号并反馈功率大小。Preferably, the analog circuit module further includes a power meter, which is connected to the large step attenuator for receiving the output signal and feeding back the power level.
较佳地,所述的电路结构还包括控制单元,与所述的控制单元、第一本振、第二本振、数控衰减器、大步进衰减器和功率计分别连接,用于控制电路并进行读数回传记录操作。Preferably, the circuit structure further includes a control unit, which is respectively connected with the control unit, the first local oscillator, the second local oscillator, the numerically controlled attenuator, the large step attenuator and the power meter for controlling the circuit. And carry out the reading back record operation.
较佳地,所述的数字电路模块计算输出功率,具体为:Preferably, the digital circuit module calculates the output power, specifically:
根据以下公式计算输出功率:Calculate the output power according to the following formula:
其中,Vpp为输出满量程,M为数模转换器单元控制字,N为比特位。Among them, V pp is the output full scale, M is the digital-to-analog converter unit control word, and N is the bit position.
较佳地,所述的数字电路模块计算输出功率精度,具体为:Preferably, the digital circuit module calculates the output power accuracy, specifically:
根据以下公式计算输出功率精度:Calculate the output power accuracy according to the following formula:
其中,Vpp为输出满量程,M为数模转换器单元控制字,N为比特位。Among them, V pp is the output full scale, M is the digital-to-analog converter unit control word, and N is the bit position.
较佳地,所述的控制单元存储输出频率、大步进衰减器的输出功率、实测功率、数控衰减器值、大步进衰减器值、功率误差值和不同数模转换器单元输出功率对应的M值。Preferably, the control unit stores the output frequency, the output power of the large-step attenuator, the measured power, the numerical control attenuator value, the large-step attenuator value, the power error value and the corresponding output power of different digital-to-analog converter units. the value of M.
该利用上述电路结构实现基于数模分块式的MIMO信道模拟器发射机功率快速校准的方法,其主要特点是,所述的方法包括以下步骤:The method of utilizing the above-mentioned circuit structure to realize the fast calibration of the transmitter power of the MIMO channel simulator based on the digital-analog block type is mainly characterized in that the method comprises the following steps:
(1)进行模拟电路模块校准;(1) Perform analog circuit module calibration;
(2)改变频率,进一步校准,得到全频率段的校准表;(2) Change the frequency and perform further calibration to obtain the calibration table of the full frequency range;
(3)进行数字电路模块校准,完善大步进功率衰减器步进范围内的功率校准;(3) Carry out digital circuit module calibration to improve the power calibration within the step range of the large-step power attenuator;
(4)根据公式进行单通道信道模拟器发射机的输出功率校准。(4) Carry out the output power calibration of the single-channel channel simulator transmitter according to the formula.
较佳地,所述的步骤(1)具体包括以下步骤:Preferably, the step (1) specifically includes the following steps:
(1.1)初始化配置信号源、第一本振的频率和数控衰减器的值,确定频率以及功率的信号;(1.1) Initialize the configuration signal source, the frequency of the first local oscillator and the value of the numerically controlled attenuator, and determine the signal of frequency and power;
(1.2)设置当前需要校准到的输出功率,计算并配置数控衰减器初始值和大步进衰减器的值;(1.2) Set the current output power that needs to be calibrated, calculate and configure the initial value of the digital attenuator and the value of the large step attenuator;
(1.3)设置信道模拟器发射机的输出频率,计算并配置第二本振的频率;(1.3) Set the output frequency of the channel simulator transmitter, calculate and configure the frequency of the second local oscillator;
(1.4)通过功率计测量信道模拟器发射机的输出信号,将实测的功率信号反馈至控制单元;(1.4) Measure the output signal of the channel simulator transmitter through the power meter, and feed back the measured power signal to the control unit;
(1.5)计算功率误差,判断功率误差是否满足精度要求,如果是,则继续步骤(6);否则,将功率误差代入数控衰减器,并重新配置数控衰减器,继续步骤(4);(1.5) Calculate the power error, determine whether the power error meets the accuracy requirements, if so, continue to step (6); otherwise, substitute the power error into the numerically controlled attenuator, and reconfigure the numerically controlled attenuator, continue to step (4);
(1.6)记录当前输出功率值、大步进衰减器的值、数控衰减器值、实测输出功率值、功率误差值;(1.6) Record the current output power value, the value of the large step attenuator, the numerical control attenuator value, the measured output power value, and the power error value;
(1.7)切换频率,继续步骤(3),直至遍历完所有频率点;(1.7) Switch the frequency and continue step (3) until all frequency points are traversed;
(1.8)切换频率,继续步骤(2),直至遍历完所有功率。(1.8) Switch the frequency and continue step (2) until all powers are traversed.
较佳地,所述的步骤(3)具体包括以下步骤:Preferably, the step (3) specifically includes the following steps:
(3.1)计算数模转换器单元的最大输出功率;(3.1) Calculate the maximum output power of the digital-to-analog converter unit;
(3.2)计算数模转换器单元的衰减值对应的控制字值。(3.2) Calculate the control word value corresponding to the attenuation value of the digital-to-analog converter unit.
采用了本发明的基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构及其方法,解决了信道模拟器发射机模拟器件引入的非线性问题,并且通过数模转换器单元计算,保证发射机输出功率的连续性,即提高了信道模拟器发射机的矢量性能,又保证其发射功率精度。本方案解决了大规模MIMO信道模拟器发射机功率校准的时间太长的问题。使用本发明方法,单通道信道模拟器发射机的校准时间提升10~20倍,尤其适用于大规模MIMO的发射机功率校准。The circuit structure and method for realizing fast calibration of MIMO channel simulator transmitter power based on the digital-analog block type of the present invention are adopted, the nonlinear problem introduced by the channel simulator transmitter analog device is solved, and the digital-to-analog converter unit is adopted. The calculation ensures the continuity of the output power of the transmitter, which not only improves the vector performance of the channel simulator transmitter, but also ensures the accuracy of its transmission power. This solution solves the problem that the transmitter power calibration time of massive MIMO channel simulator is too long. Using the method of the present invention, the calibration time of the single-channel channel simulator transmitter is increased by 10-20 times, which is especially suitable for the transmitter power calibration of massive MIMO.
附图说明Description of drawings
图1为MIMO信道模拟器发射机主要构成框图。Figure 1 is a block diagram of the main components of a MIMO channel simulator transmitter.
图2为MIMO信道模拟器超外差式发射机架构图。FIG. 2 is an architecture diagram of a superheterodyne transmitter of a MIMO channel simulator.
图3为MIMO信道模拟器发射机快速校准方案示意图。FIG. 3 is a schematic diagram of a fast calibration scheme of a MIMO channel simulator transmitter.
图4为本发明的基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构的单通道模拟部分电路校准系统。FIG. 4 is a single-channel analog partial circuit calibration system of the present invention based on a circuit structure for realizing fast calibration of transmitter power of a MIMO channel simulator based on a digital-analog block type.
图5为本发明的实现基于数模分块式的MIMO信道模拟器发射机功率快速校准的方法的单通道模拟部分电路校准流程图。FIG. 5 is a flow chart of the circuit calibration of the single channel analog part of the method for realizing the fast calibration of the transmitter power of the MIMO channel simulator based on the digital-analog block type according to the present invention.
图6为本发明的实现基于数模分块式的MIMO信道模拟器发射机功率快速校准的方法校准后形成的校准示意图。FIG. 6 is a schematic diagram of calibration formed after the method for realizing fast calibration of transmitter power of a MIMO channel simulator based on a digital-analog block type according to the present invention.
具体实施方式Detailed ways
为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。In order to describe the technical content of the present invention more clearly, further description will be given below with reference to specific embodiments.
本发明的该基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构,其中包括:The circuit structure of the present invention for realizing fast calibration of the transmitter power of the MIMO channel simulator based on the digital-analog block type includes:
数字电路模块和模拟电路模块,所述的模拟电路模块与数字电路模块相连接;a digital circuit module and an analog circuit module, the analog circuit module is connected with the digital circuit module;
所述的数字电路模块包括数模转换器单元,与所述的模拟电路模块相连接,用于将信道模型的数字信号转换为模拟信号,并调节输出功率,控制功率步进和精确度;The digital circuit module includes a digital-to-analog converter unit, which is connected to the analog circuit module and is used to convert the digital signal of the channel model into an analog signal, adjust the output power, and control the power step and accuracy;
所述的模拟电路模块包括依次相连的第一滤波器、第一混频器、第二滤波器、第二混频器、数控衰减器和大步进衰减器,所述的模拟电路模块还包括第一本振和第二本振,所述的第一本振与所述的第一混频器相连接,所述的第二本振与所述的第二混频器相连接,所述的数控衰减器用于调节校准不同频率通路上衰减特性的误差,所述的大步进衰减器用于扩展信道模拟器发射机的输出功率动态范围。The analog circuit module includes a first filter, a first mixer, a second filter, a second mixer, a numerically controlled attenuator and a large step attenuator connected in sequence, and the analog circuit module further includes a first local oscillator and a second local oscillator, the first local oscillator is connected to the first mixer, the second local oscillator is connected to the second mixer, the The digitally controlled attenuator is used to adjust and calibrate the error of attenuation characteristics on different frequency channels, and the large step attenuator is used to expand the output power dynamic range of the channel simulator transmitter.
作为本发明的优选实施方式,所述的模拟电路模块还包括功率计,与所述的大步进衰减器相连接,用于接收输出信号并反馈功率大小。As a preferred embodiment of the present invention, the analog circuit module further includes a power meter, which is connected to the large step attenuator for receiving the output signal and feeding back the power level.
作为本发明的优选实施方式,所述的电路结构还包括控制单元,与所述的控制单元、第一本振、第二本振、数控衰减器、大步进衰减器和功率计分别连接,用于控制电路并进行读数回传记录操作。As a preferred embodiment of the present invention, the circuit structure further includes a control unit, which is respectively connected to the control unit, the first local oscillator, the second local oscillator, the digitally controlled attenuator, the large step attenuator and the power meter, It is used to control the circuit and carry out the operation of reading back and recording.
作为本发明的优选实施方式,所述的数字电路模块计算输出功率,具体为:As a preferred embodiment of the present invention, the digital circuit module calculates the output power, specifically:
根据以下公式计算输出功率:Calculate the output power according to the following formula:
其中,Vpp为输出满量程,M为数模转换器单元控制字,N为比特位。Among them, V pp is the output full scale, M is the digital-to-analog converter unit control word, and N is the bit position.
作为本发明的优选实施方式,所述的数字电路模块计算输出功率精度,具体为:As a preferred embodiment of the present invention, the digital circuit module calculates the output power accuracy, specifically:
根据以下公式计算输出功率精度:Calculate the output power accuracy according to the following formula:
其中,Vpp为输出满量程,M为数模转换器单元控制字,N为比特位。Among them, V pp is the output full scale, M is the digital-to-analog converter unit control word, and N is the bit position.
作为本发明的优选实施方式,所述的控制单元存储输出频率、大步进衰减器的输出功率、实测功率、数控衰减器值、大步进衰减器值、功率误差值和不同数模转换器单元输出功率对应的M值。As a preferred embodiment of the present invention, the control unit stores the output frequency, the output power of the large-step attenuator, the measured power, the numerically controlled attenuator value, the large-step attenuator value, the power error value and different digital-to-analog converters. The M value corresponding to the output power of the unit.
本发明的该利用上述电路结构实现基于数模分块式的MIMO信道模拟器发射机功率快速校准的方法,其中包括以下步骤:The present invention utilizes the above-mentioned circuit structure to realize the method for fast calibration of the transmitter power of the MIMO channel simulator based on the digital-modular block type, which comprises the following steps:
(1)进行模拟电路模块校准;(1) Perform analog circuit module calibration;
(1.1)初始化配置信号源、第一本振的频率和数控衰减器的值,确定频率以及功率的信号;(1.1) Initialize the configuration signal source, the frequency of the first local oscillator and the value of the numerically controlled attenuator, and determine the signal of frequency and power;
(1.2)设置当前需要校准到的输出功率,计算并配置数控衰减器初始值和大步进衰减器的值;(1.2) Set the current output power that needs to be calibrated, calculate and configure the initial value of the digital attenuator and the value of the large step attenuator;
(1.3)设置信道模拟器发射机的输出频率,计算并配置第二本振的频率;(1.3) Set the output frequency of the channel simulator transmitter, calculate and configure the frequency of the second local oscillator;
(1.4)通过功率计测量信道模拟器发射机的输出信号,将实测的功率信号反馈至控制单元;(1.4) Measure the output signal of the channel simulator transmitter through the power meter, and feed back the measured power signal to the control unit;
(1.5)计算功率误差,判断功率误差是否满足精度要求,如果是,则继续步骤(6);否则,将功率误差代入数控衰减器,并重新配置数控衰减器,继续步骤(4);(1.5) Calculate the power error, determine whether the power error meets the accuracy requirements, if so, continue to step (6); otherwise, substitute the power error into the numerically controlled attenuator, and reconfigure the numerically controlled attenuator, continue to step (4);
(1.6)记录当前输出功率值、大步进衰减器的值、数控衰减器值、实测输出功率值、功率误差值;(1.6) Record the current output power value, the value of the large step attenuator, the numerical control attenuator value, the measured output power value, and the power error value;
(1.7)切换频率,继续步骤(3),直至遍历完所有频率点;(1.7) Switch the frequency and continue step (3) until all frequency points are traversed;
(1.8)切换频率,继续步骤(2),直至遍历完所有功率;(1.8) Switch the frequency and continue step (2) until all powers are traversed;
(2)改变频率,进一步校准,得到全频率段的校准表;(2) Change the frequency and perform further calibration to obtain the calibration table of the full frequency range;
(3)进行数字电路模块校准,完善大步进功率衰减器步进范围内的功率校准;(3) Carry out digital circuit module calibration to improve the power calibration within the step range of the large-step power attenuator;
(3.1)计算数模转换器单元的最大输出功率;(3.1) Calculate the maximum output power of the digital-to-analog converter unit;
(3.2)计算数模转换器单元的衰减值对应的控制字值;(3.2) Calculate the control word value corresponding to the attenuation value of the digital-to-analog converter unit;
(4)根据公式进行单通道信道模拟器发射机的输出功率校准。(4) Carry out the output power calibration of the single-channel channel simulator transmitter according to the formula.
本发明的具体实施方式中,本发明所要解决的技术问题是需要解决信道模拟器发射机模拟器件引入的非线性问题。使用VVA的信道模拟器发射机由于VVA的非线性导致发射机矢量性能恶化,降低了信道模拟器性能。本发明还需要解决大规模MIMO信道模拟器发射机功率校准的算法问题。采用传统的频率、功率遍历校准方法,校准时间过长,不适用于大规模MIMO信道模拟器发射机的校准和信道模拟器的大批量生产。In the specific embodiment of the present invention, the technical problem to be solved by the present invention is to solve the nonlinear problem introduced by the channel simulator transmitter analog device. Channel emulator transmitters using VVA degrade the performance of the channel emulator due to the nonlinearity of the VVA, which leads to the deterioration of the transmitter vector performance. The invention also needs to solve the algorithm problem of the transmitter power calibration of the massive MIMO channel simulator. Using the traditional frequency and power traversal calibration method, the calibration time is too long, which is not suitable for the calibration of massive MIMO channel simulator transmitters and the mass production of channel simulators.
本发明提供了一种基于数模分块式实现MIMO信道模拟器发射机功率的快速校准系统及方法。利用发射机超外差结构的点频输入特点,分块对信道模拟器发射机进行数模转换器单元中频功率校准和射频衰减功率校准。在保证信道模拟器发射机功率准确度的同时大大提高单通道信道模拟器发射机校准效率。利用MIMO信道模拟器发射机多通道的一致性,仅需校准为数不多的频点,即可实现多通道发射机功率校准,极大的提高了MIMO信道模拟器发射机的功率校准效率。该发明方法为全新的数模分块式实现MIMO信道模拟器发射机功率的快速校准方法,其单通道的电路方案框图如图3所示,技术方案包含两部分:The invention provides a fast calibration system and method for realizing the transmitter power of a MIMO channel simulator based on a digital-analog block. Using the point-frequency input characteristics of the superheterodyne structure of the transmitter, the digital-to-analog converter unit IF power calibration and the RF attenuation power calibration are performed on the channel simulator transmitter in blocks. While ensuring the power accuracy of the channel simulator transmitter, the calibration efficiency of the single channel channel simulator transmitter is greatly improved. Using the multi-channel consistency of the MIMO channel simulator transmitter, it only needs to calibrate a few frequency points to realize the multi-channel transmitter power calibration, which greatly improves the power calibration efficiency of the MIMO channel simulator transmitter. The inventive method is a brand-new digital-analog split method to realize the fast calibration method of the transmitter power of the MIMO channel simulator. The block diagram of the single-channel circuit scheme is shown in Figure 3, and the technical scheme includes two parts:
模拟电路部分主要包含两个混频器、两个本振、两个滤波器、一个数控衰减器和一个大步进衰减器。数模转换器单元输出的点频第一中频信号与点频第一本振混频至点频第二中频,滤波后再与扫频第二本振混频至全频段射频输出。数控衰减器用于调节校准不同频率通路上衰减特性的误差,而大步进衰减器则用于扩展信道模拟器发射机的输出功率动态范围。The analog circuit part mainly includes two mixers, two local oscillators, two filters, a digitally controlled attenuator and a large step attenuator. The point-frequency first intermediate frequency signal output by the digital-to-analog converter unit is mixed with the point-frequency first local oscillator to the point-frequency second intermediate frequency, filtered and then mixed with the sweep-frequency second local oscillator to a full-band radio frequency output. The digitally controlled attenuator is used to adjust the error of calibrating the attenuation characteristics on different frequency channels, while the large step attenuator is used to extend the output power dynamic range of the channel simulator transmitter.
数字电路部分主要包含数模转换器单元,叠加了信道模型的数字信号通过数模转换器单元转换为模拟信号,并且通过数模转换器单元可以调节其输出功率。超外差式的信道模拟器发射机,数模转换器单元输出为点频中频信号,数模转换器单元可以准确的控制其功率步进和精确度,对于N比特位,输出满量程为Vpp的数模转换器单元,配置不同值M,M∈[0,2N-1],其输出功率(转换为dBm)计算方式如下:The digital circuit part mainly includes a digital-to-analog converter unit. The digital signal superimposed on the channel model is converted into an analog signal by the digital-to-analog converter unit, and its output power can be adjusted by the digital-to-analog converter unit. Super-heterodyne channel simulator transmitter, the output of the digital-to-analog converter unit is a point frequency and intermediate frequency signal, and the digital-to-analog converter unit can accurately control its power step and accuracy. For N bits, the output full scale is Vpp The digital-to-analog converter unit is configured with different values of M, M∈[0, 2 N -1], and its output power (converted to dBm) is calculated as follows:
输出功率精度(dB)计算方式如下:The output power accuracy (dB) is calculated as follows:
目前市场上的数模转换器单元大部分都达到N=10位以上,并且实际使用过程中,为了信号的信噪比,数模转换器单元的配置值不会取到很小的值,则由以上公式可以得出,当M由小逐渐增大至2N-1时,ΔPout-DAC将无限逼近于0,可见数模转换器单元的输出功率精度非常高。At present, most of the digital-to-analog converter units on the market reach N=10 bits or more, and in the actual use process, for the signal-to-noise ratio of the signal, the configuration value of the digital-to-analog converter unit will not take a small value, then From the above formula, it can be concluded that when M gradually increases from small to 2N-1, ΔP out-DAC will be infinitely close to 0, which shows that the output power accuracy of the digital-to-analog converter unit is very high.
传统的信道模拟器发射机都使用电调衰减器(Voltage Variable Attenuator,VVA)来调节通路的衰减器,具有步进小,功率准确度高的优点。但VVA属于模拟器件,非线性效应很严重,并且随着衰减值越大,非线性效应急剧下降,对于峰均比较高的宽带谱信号,经过VVA之后,矢量性能将恶化的非常严重。同时,VVA是一个负反馈环路,其稳定过程较慢,一般从一个功率调整至另一功率并稳定下来,需要us量级的时间,如此长的稳定时间不适用于信道模拟器模拟5G通信无线信道的要求。The traditional channel simulator transmitters all use an attenuator (Voltage Variable Attenuator, VVA) to adjust the attenuator of the channel, which has the advantages of small steps and high power accuracy. However, VVA is an analog device, and the nonlinear effect is very serious, and as the attenuation value increases, the nonlinear effect decreases sharply. For broadband spectrum signals with high peak-average ratio, after VVA, the vector performance will deteriorate very seriously. At the same time, VVA is a negative feedback loop, and its stabilization process is slow. Generally, it takes us time to adjust from one power to another and stabilize. Such a long stabilization time is not suitable for channel simulators to simulate 5G communication. Wireless channel requirements.
本发明信道模拟器发射机系统将VVA固有的问题转化为两部分,首先使用数控衰减器有效的避开非线性问题,其线性度不会随着衰减量的增加而降低。而数控衰减器无法达到的连续功率输出则交由数字部分的数模转换器单元来实现,数模转换器单元的精确度完全满足信道模拟器发射功率精度的要求。The channel simulator transmitter system of the present invention converts the inherent problem of VVA into two parts. First, the numerical control attenuator is used to effectively avoid the nonlinear problem, and its linearity will not decrease with the increase of the attenuation. The continuous power output that cannot be achieved by the numerical control attenuator is realized by the digital-to-analog converter unit of the digital part, and the accuracy of the digital-to-analog converter unit fully meets the requirements of the transmission power accuracy of the channel simulator.
信道模拟器发射机功率校准分成了两部分,模拟部分和数字部分。其中模拟部分的功率校准即是发射机衰减特性的功率校准,数字部分的功率校准即是数模转换器单元中频功率校准。The channel simulator transmitter power calibration is divided into two parts, the analog part and the digital part. The power calibration of the analog part is the power calibration of the attenuation characteristic of the transmitter, and the power calibration of the digital part is the IF power calibration of the digital-to-analog converter unit.
首先介绍模拟部分功率校准,仪器连接方式如图4所示。信号源发出频率固定、功率固定的点频信号,模拟信道模拟器第一中频信号;功率计用于接收输出信号并反馈功率大小;控制单元控制信号源、功率计、第一本振、第二本振、数控衰减器和大步进衰减器,并进行读数回传记录等操作。数控衰减器用于调节模拟部分电路上不同大步进衰减对应的通道频率响应,即只需要以大步进衰减器的步进为输出功率的步进进行校准。具体功率校准流程如图5所示,校准方法包含以下步骤:First, the power calibration of the analog part is introduced. The connection method of the instrument is shown in Figure 4. The signal source sends out a point frequency signal with a fixed frequency and a fixed power, and simulates the first intermediate frequency signal of the channel simulator; the power meter is used to receive the output signal and feed back the power level; the control unit controls the signal source, the power meter, the first local oscillator, the second Local oscillator, numerical control attenuator and large step attenuator, and perform operations such as reading back and recording. The numerical control attenuator is used to adjust the channel frequency response corresponding to different large step attenuations on the analog part of the circuit, that is, only the step of the large step attenuator needs to be used as the output power step for calibration. The specific power calibration process is shown in Figure 5. The calibration method includes the following steps:
1、信号源模拟确定频率/确定功率的信号;1. The signal source simulates a signal with a determined frequency/determined power;
2、设置当前需要校准到的输出功率,并相应配置数控衰减器初始值和大步进衰减器的值;2. Set the current output power that needs to be calibrated, and configure the initial value of the numerical control attenuator and the value of the large step attenuator accordingly;
3、设置信道模拟器发射机的输出频率,计算并配置扫频本振的频率;3. Set the output frequency of the channel simulator transmitter, calculate and configure the frequency of the swept local oscillator;
4、使用功率计测量信道模拟器发射机的输出信号,将实测的功率信号反馈至控制单元;4. Use the power meter to measure the output signal of the channel simulator transmitter, and feed back the measured power signal to the control unit;
5、控制单元计算功率误差,并发出指令调节通道上的数控衰减器,经过多次误差值迭代,直至当前需要校准到的输出功率与大步进衰减器的值为一一对应;5. The control unit calculates the power error, and sends an instruction to adjust the numerical control attenuator on the channel. After several iterations of the error value, the output power that needs to be calibrated is in one-to-one correspondence with the value of the large-step attenuator;
6、记录当前输出频率、输出功率、实测功率、数控衰减器值、大步进衰减器值、功率误差值;6. Record the current output frequency, output power, measured power, numerical control attenuator value, large step attenuator value, and power error value;
7、切换频率,执行以上校准操作,保证不同频率,同一大步进衰减器值,能校准到同一需要校准到的输出功率;7. Switch the frequency and perform the above calibration operation to ensure that different frequencies and the same large step attenuator value can be calibrated to the same output power that needs to be calibrated;
8、再切换输出功率(步进由大步进衰减器步进决定),重复以上操作。8. Switch the output power again (the step is determined by the step of the large step attenuator), and repeat the above operation.
执行以上校准操作后形成的校准表,数控衰减器值或功率误差值均只与输出频率和输出功率有关,示意图如图6所示。不同的输出功率,不同的输出频率,数控衰减器值之间有微小的差异;不同的输出频率下,相同的大步进衰减器配置,校准后的输出功率相同。In the calibration table formed after performing the above calibration operations, the numerical control attenuator value or power error value is only related to the output frequency and output power, as shown in Figure 6. Different output power, different output frequency, there is a slight difference between the numerical control attenuator value; under different output frequency, the same large step attenuator configuration, the output power after calibration is the same.
执行完模拟电路部分功率校准后,还缺少大步进衰减器步进范围内的功率值,这部分功率校准则交由数字部分的数模转换器单元进行精密计算处理并配置,接下来介绍数字部分功率校准。After the power calibration of the analog circuit is completed, the power value within the step range of the large-step attenuator is still missing. This part of the power calibration is handed over to the digital-to-analog converter unit of the digital part for precise calculation and configuration. Next, the digital Partial power calibration.
由于数模转换器单元输出的是点频中频信号,不需要考虑其不同频率对应的频率响应特性,并且数模转换器单元的比特位很多,功率输出精确度非常高。信道模拟器发射机的输出功率步进范围内的精确功率控制则交由数模转换器单元进行计算处理,无需多余的仪器。假设大步进衰减器的步进为SdB,则数模转换器单元只需要计算校准-S~0dB之间的输出功率。首先配置数模转换器单元控制字M=x,对应输出大步进衰减器步进范围内的‘0dB’,配置数模转换器单元控制字M=y,对应输出大步进衰减器步进范围内的‘-SdB’,根据公式1:Since the digital-to-analog converter unit outputs a point-frequency intermediate frequency signal, it is not necessary to consider the frequency response characteristics corresponding to different frequencies, and the digital-to-analog converter unit has many bits, and the power output accuracy is very high. The precise power control within the output power step range of the channel simulator transmitter is handed over to the digital-to-analog converter unit for calculation processing without redundant instruments. Assuming that the step of the large-step attenuator is SdB, the digital-to-analog converter unit only needs to calculate the output power between calibration -S ~ 0dB. First, configure the digital-to-analog converter unit control word M=x, corresponding to '0dB' within the step range of the output large-step attenuator, configure the digital-to-analog converter unit control word M=y, corresponding to the output large-step attenuator step '-SdB' in the range, according to Equation 1:
对于确定的数模转换器单元电路以及大步进衰减器,上述公式中的N、Vpp、S都是确定的常数,很快即计算得到‘0dB’对应的x,以及‘-SdB’对应的y。For a certain digital-to-analog converter unit circuit and a large step attenuator, N, Vpp, and S in the above formula are all certain constants, and the x corresponding to '0dB' and the corresponding value of '-SdB' are quickly calculated. y.
同样,根据公式1,可以快速计算出-S~0dB之间的任意数模转换器单元对应控制字M的值。Similarly, according to formula 1, the value of the control word M corresponding to any digital-to-analog converter unit between -S and 0 dB can be quickly calculated.
控制单元中存储了以下内容:输出频率、输出功率(大步进)、实测功率、数控衰减器值、大步进衰减器值、功率误差值,以及不同数模转换器单元输出功率对应的M值,在信道模拟器发射机正常工作时,设置用户需求功率,控制单元首先将用户需求的发射功率拆分为实际校准过的输出功率,加上去除大步进后的小步进功率值,即数模转换器单元输出的-S~0dB。使用本发明方法,单通道发射机校准数据量有数量级的提升。The following contents are stored in the control unit: output frequency, output power (large step), measured power, numerical control attenuator value, large step attenuator value, power error value, and M corresponding to the output power of different digital-to-analog converter units When the channel simulator transmitter is working normally, set the power required by the user. The control unit first splits the transmitting power required by the user into the actual calibrated output power, plus the small step power value after removing the large step. That is -S ~ 0dB output by the digital-to-analog converter unit. Using the method of the present invention, the amount of calibration data for a single-channel transmitter is increased by an order of magnitude.
假定发射机的输出频率范围为fl~fh,输出功率范围为Pl~Ph,频率校准步进为Δf,功率校准步进为ΔP,发射机通路上的大步进衰减器步进为ΔS(ΔS一般约为ΔP的10~20倍),那么,使用传统频率、功率遍历的方法,需要校准的次数为Assume that the output frequency range of the transmitter is f l ~ f h , the output power range is P l ~ P h , the frequency calibration step is Δf, the power calibration step is ΔP, and the large step attenuator step on the transmitter path is ΔS (ΔS is generally about 10 to 20 times of ΔP), then, using the traditional frequency and power traversal method, the number of calibrations required is
而使用本发明方法,需要校准的次数仅为However, using the method of the present invention, the number of calibrations required is only
可见,使用本发明方法,功率校准次数对比如下It can be seen that, using the method of the present invention, the power calibration times are compared as follows
信道模拟器发射机的输出功率动态范围(即Ph-Pl)是比较大的范围,公式5中的可以看作约等于1,因此,公式5可简化为The output power dynamic range of the channel simulator transmitter (ie, P h -P l ) is a relatively large range, in Equation 5 can be regarded as approximately equal to 1, therefore, Equation 5 can be simplified to
使用本发明方法,单通道信道模拟器功率校准次数比传统方法提升校准次数和时间降低为传统方法的10到20分之一,而校准的功率误差则为前文提到的步骤6中的功率误差,取决于数控衰减器的步进,一般为0.5dB,完全符合仪表的功率误差要求。Using the method of the present invention, the power calibration times of the single-channel channel simulator are improved compared with the traditional method The calibration times and time are reduced to 10 to 20 times that of the traditional method, and the power error of the calibration is the power error in step 6 mentioned above, which depends on the step of the digital attenuator, generally 0.5dB, which is completely consistent with the The power error requirement of the meter.
对于5G要求的大规模MIMO信道模拟器发射机,因其发射机通道数达到100以上,使用本发明方法,则校准次数将降低为传统方法的千分之一次,校准时间可以得到极大的提升。可见本发明方法尤其适用于大规模MIMO信道模拟器发射机的功率校准。For the massive MIMO channel simulator transmitter required by 5G, since the number of transmitter channels reaches more than 100, using the method of the present invention, the calibration times will be reduced to one thousandth of the traditional method, and the calibration time can be greatly shortened. promote. It can be seen that the method of the present invention is especially suitable for power calibration of a massive MIMO channel simulator transmitter.
大规模MIMO信道模拟器发射机支持128x4,输入功率最大-2dBm,输出频率范围0.4~6GHz,输出功率范围-100~0dBm,数控衰减器动态0~31.5dB步进0.5dB,大功率衰减器动态0~80dB步进20dB,12位数模转换器单元满量程输出Vpp=1V。Massive MIMO channel simulator transmitter supports 128x4, maximum input power -2dBm, output frequency range 0.4~6GHz, output power range -100~0dBm, digital attenuator dynamic 0~31.5dB step 0.5dB, high power attenuator dynamic 0 ~ 80dB step 20dB, 12 digital-to-analog converter unit full-scale output Vpp=1V.
输出功率由以下几部分构成:The output power consists of the following parts:
输出功率=-大步进衰减值-数模转换器单元衰减值-数控衰减器值+频率响应值……(公式7)Output power = - large step attenuation value - digital-to-analog converter unit attenuation value - numerically controlled attenuator value + frequency response value... (Equation 7)
根据公式7,使用本发明方法进行输出功率校准,数控衰减器主要是校准发射机通道的频率响应,数模转换器单元衰减用来精密计算并调节大步进衰减范围以外的功率值。According to formula 7, the method of the present invention is used to calibrate the output power. The numerical control attenuator mainly calibrates the frequency response of the transmitter channel, and the digital-to-analog converter unit attenuation is used to precisely calculate and adjust the power value outside the large step attenuation range.
首先是模拟部分功率校准。对于不同频率而言,本发明方法的校准过程完全相同,因此校准步骤说明中省略不同频率校准的介绍。具体流程如下:The first is the analog section power calibration. For different frequencies, the calibration process of the method of the present invention is exactly the same, so the description of calibration of different frequencies is omitted in the description of the calibration steps. The specific process is as follows:
1、根据大步进衰减器步进决定了,信道模拟器发射机输出功率的模拟部分功率校准,仅需校准0/-20/-40/-60/-80dBm;1. According to the step of the large step attenuator, the power calibration of the analog part of the output power of the channel simulator transmitter only needs to calibrate 0/-20/-40/-60/-80dBm;
2、首先设置信道模拟器发射机需要校准到的输出功率为0dBm,配置标准信号源输入功率-2dBm,配置数控衰减器初始值B0=0dB,配置大步进衰减器值为0dB;2. First, set the output power of the channel simulator transmitter to be calibrated to 0dBm, configure the input power of the standard signal source to -2dBm, configure the initial value of the numerical control attenuator B0=0dB, and configure the large step attenuator value to be 0dB;
3、读出功率计接收到的功率值,反馈回控制模块并计算功率误差值Aj=接收到的功率值-需要校准到的功率值;3. Read the power value received by the power meter, feed it back to the control module and calculate the power error value Aj = the received power value - the power value that needs to be calibrated;
4、判断功率误差值是否满足Aj∈[-0.5,+0.5],(0.5dB是由数控衰减器决定,并且已满足信道模拟器发射机输出功率精度要求);4. Determine whether the power error value satisfies A j ∈ [-0.5,+0.5], (0.5dB is determined by the numerical control attenuator, and has met the channel simulator transmitter output power accuracy requirements);
5、如果Aj不满足要求,将Aj的误差值代入数控衰减器,计算Bj=Aj+Bj-1,并配置数控衰减器的值为Bj;5. If Aj does not meet the requirements, substitute the error value of Aj into the numerical control attenuator, calculate B j =A j +B j-1 , and configure the numerical control attenuator as Bj;
6、重复步骤3至步骤5,直至满足步骤4中的要求;6. Repeat steps 3 to 5 until the requirements in step 4 are met;
7、如果Aj满足要求,则直接记录当前功率值、大步进衰减器的值、数控衰减器值、实测输出功率值、功率误差值;7. If Aj meets the requirements, directly record the current power value, the value of the large step attenuator, the numerical control attenuator value, the measured output power value, and the power error value;
8、改变信道模拟器发射机需要校准到的输出功率为-20dBm,重复步骤2至步骤7,直至完成步骤1中的功率点。8. Change the output power of the channel simulator transmitter to be calibrated to -20dBm, and repeat steps 2 to 7 until the power point in step 1 is completed.
完成以上步骤的功率校准后,再改变频率,进一步校准,即可得到完整的信道模拟器发射机输出功率为0/-20/-40/-60/-80dBm,全频率段的校准表。After completing the power calibration in the above steps, change the frequency and perform further calibration to obtain a complete channel simulator transmitter output power of 0/-20/-40/-60/-80dBm, the calibration table of the full frequency range.
再进行数字部分功率校准,完善大步进功率衰减器步进范围内的功率校准。根据前文的描述,数字数模转换器单元部分仅需进行简单的计算,无需外接仪器进行校准。具体过程如下:Then carry out the power calibration of the digital part to improve the power calibration within the step range of the large-step power attenuator. According to the previous description, the digital-to-analog converter unit part only needs to perform simple calculations, and does not require external instruments for calibration. The specific process is as follows:
为了保证发射机输出信号的峰均比,一般预留数模转换器单元的最高位防止出现信号饱和以及非线性的问题,此时数模转换器单元最大输出电压峰峰值降为原来的1/2,即Vpp=0.5V,数模转换器单元位数N=11,基于这两个数据,根据公式1计算得到数模转换器单元的最大输出功率为-2dBm。该功率“-2dBm”即是信道模拟器发射机对应的最大输入功率,与信道模拟器发射机输出功率为0/-20/-40/-60/-80dBm,即大步进衰减器配置为0/20/40/60/80dB相对应。In order to ensure the peak-to-average ratio of the output signal of the transmitter, the highest bit of the digital-to-analog converter unit is generally reserved to prevent signal saturation and nonlinear problems. At this time, the peak-to-peak value of the maximum output voltage of the digital-to-analog converter unit is reduced to 1/ 2, that is, Vpp=0.5V, and the number of digits of the digital-to-analog converter unit is N=11. Based on these two data, the maximum output power of the digital-to-analog converter unit calculated according to formula 1 is -2dBm. The power "-2dBm" is the maximum input power corresponding to the channel simulator transmitter, and the output power of the channel simulator transmitter is 0/-20/-40/-60/-80dBm, that is, the large step attenuator is configured as 0/20/40/60/80dB corresponds to.
根据公式1,可以计算数模转换器单元的衰减动态值为[0,20)dB时的数模转换器单元控制字M,以下列出部分数模转换器单元衰减值对应的M值,计算结果如下:According to formula 1, the digital-to-analog converter unit control word M can be calculated when the attenuation dynamic value of the digital-to-analog converter unit is [0, 20) dB. The M values corresponding to the attenuation values of some digital-to-analog converter units are listed below. Calculate The result is as follows:
同样,根据公式1可以计算得到其它数模转换器单元输出功率对应的M值。Similarly, the M value corresponding to the output power of other digital-to-analog converter units can be calculated according to formula 1.
完成以上模拟部分功率校准和数字部分功率计算校准,对照公式7,即可完成单通道信道模拟器发射机的输出功率校准。After completing the power calibration of the analog part and the power calculation and calibration of the digital part, and comparing with formula 7, the output power calibration of the single-channel channel simulator transmitter can be completed.
对比传统的频率遍历、功率遍历的方法,本发明基于数模分块式实现MIMO信道模拟器发射机功率的快速校准次数有明显的提升。假定频率校准步进为20MHz,频率校准次数即为281次,传统校准方法中功率步进一般为1dB,假设每个点的校准时间为1s,校准次数和校准时间对比如下:Compared with the traditional methods of frequency traversal and power traversal, the present invention realizes the rapid calibration times of the transmitter power of the MIMO channel simulator based on the digital-analog block method, and the number of times of rapid calibration is obviously improved. Assuming that the frequency calibration step is 20MHz, the frequency calibration times is 281 times. In the traditional calibration method, the power step is generally 1dB. Assuming that the calibration time of each point is 1s, the comparison between the calibration times and the calibration time is as follows:
从以上表格可以明显看出,本发明校准方法相对于传统方法,校准次数和校准时间均有大幅度提升。可见使用本发明方法,信道模拟器发射机输出功率校准时间大大缩减。It can be clearly seen from the above table that, compared with the traditional method, the calibration method of the present invention greatly improves the calibration times and calibration time. It can be seen that using the method of the present invention, the output power calibration time of the transmitter of the channel simulator is greatly shortened.
对于支持128x4的5G信道模拟器,其发射机输出功率校准时间与传统方法,校准次数和校准时间对比如下:(按每天持续工作8小时)For a 5G channel simulator that supports 128x4, the transmitter output power calibration time is compared with the traditional method, the calibration times and the calibration time are as follows: (continuous work for 8 hours per day)
使用传统的校准方法,不考虑实际过程中的不利因素,理论上即需要4个月的校准时间,这样的校准周期完全无法满足MIMO信道模拟器的生产要求。而使用本发明方法,只需要一周时间及可完成128x4信道模拟器发射机的功率校准。Using the traditional calibration method, regardless of the unfavorable factors in the actual process, theoretically requires a calibration time of 4 months. Such a calibration period cannot meet the production requirements of the MIMO channel simulator. By using the method of the present invention, only one week is required and the power calibration of the 128×4 channel simulator transmitter can be completed.
从以上两个对比表格可以看出,使用本发明校准方法进行信道模拟器发射机输出功率校准,校准时间大大提升,并且尤其适用于5G大规模MIMO信道模拟器发射机输出功率校准及信道模拟器的批量生产。It can be seen from the above two comparison tables that the calibration method of the present invention is used to calibrate the transmitter output power of the channel simulator, and the calibration time is greatly improved, and it is especially suitable for 5G massive MIMO channel simulator transmitter output power calibration and channel simulator. of mass production.
同时,使用本发明方法,校准精度即为前文提到的功率误差值Aj,校准后的输出功率误差值满足Aj∈[-0.5,+0.5],完全符合MIMO信道模拟器发射机输出功率准确度要求。At the same time, using the method of the present invention, the calibration accuracy is the power error value Aj mentioned above, and the calibrated output power error value satisfies A j ∈ [-0.5,+0.5], which fully complies with the accurate output power of the MIMO channel simulator transmitter. degree requirements.
采用了本发明的基于数模分块式实现MIMO信道模拟器发射机功率快速校准的电路结构及其方法,解决了信道模拟器发射机模拟器件引入的非线性问题,并且通过数模转换器单元计算,保证发射机输出功率的连续性,即提高了信道模拟器发射机的矢量性能,又保证其发射功率精度。本方案解决了大规模MIMO信道模拟器发射机功率校准的时间太长的问题。使用本发明方法,单通道信道模拟器发射机的校准时间提升10~20倍,尤其适用于大规模MIMO的发射机功率校准。The circuit structure and method for realizing fast calibration of MIMO channel simulator transmitter power based on the digital-analog block type of the present invention are adopted, the nonlinear problem introduced by the channel simulator transmitter analog device is solved, and the digital-to-analog converter unit is adopted. The calculation ensures the continuity of the output power of the transmitter, which not only improves the vector performance of the channel simulator transmitter, but also ensures the accuracy of its transmission power. This solution solves the problem that the transmitter power calibration time of massive MIMO channel simulator is too long. Using the method of the present invention, the calibration time of the single-channel channel simulator transmitter is increased by 10-20 times, which is especially suitable for the transmitter power calibration of massive MIMO.
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。In this specification, the invention has been described with reference to specific embodiments thereof. However, it will be evident that various modifications and changes can still be made without departing from the spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911070011.6A CN110708131B (en) | 2019-11-05 | 2019-11-05 | Circuit structure and method for realizing quick power calibration of MIMO channel simulator transmitter based on digital-analog block |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911070011.6A CN110708131B (en) | 2019-11-05 | 2019-11-05 | Circuit structure and method for realizing quick power calibration of MIMO channel simulator transmitter based on digital-analog block |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110708131A true CN110708131A (en) | 2020-01-17 |
CN110708131B CN110708131B (en) | 2024-06-14 |
Family
ID=69204334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911070011.6A Active CN110708131B (en) | 2019-11-05 | 2019-11-05 | Circuit structure and method for realizing quick power calibration of MIMO channel simulator transmitter based on digital-analog block |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110708131B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112600629A (en) * | 2020-12-14 | 2021-04-02 | 东南大学 | Method and system for realizing power calibration and data processing of radio frequency receiver of MIMO channel simulator |
CN113938167A (en) * | 2021-10-22 | 2022-01-14 | 上海创远仪器技术股份有限公司 | System, method and device for realizing calibration of external cable of 5G MIMO channel simulator, processor and storage medium thereof |
CN114401056A (en) * | 2021-12-29 | 2022-04-26 | 中电科思仪科技(安徽)有限公司 | 5G communication vector signal generator complete machine calibration system and method |
CN116318451A (en) * | 2023-05-23 | 2023-06-23 | 英诺微(成都)电子有限公司 | High-precision high-dynamic radio frequency link calibration system |
CN117008071A (en) * | 2023-10-07 | 2023-11-07 | 广东大湾区空天信息研究院 | Linear frequency modulation MIMO radar channel calibration method and related equipment |
CN118249927A (en) * | 2024-05-24 | 2024-06-25 | 成都玖锦科技有限公司 | High-precision signal source power calibration method based on linear interpolation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050191975A1 (en) * | 2004-03-01 | 2005-09-01 | Talwalkar Sumit A. | Method and apparatus for a high performance and high dynamic range baseband power control system |
US20090196223A1 (en) * | 2008-01-31 | 2009-08-06 | Mediatek Inc. | Transmit power controller |
CN105515688A (en) * | 2015-12-17 | 2016-04-20 | 中国电子科技集团公司第四十一研究所 | Transmitter power calibration device and method |
CN106899361A (en) * | 2015-12-21 | 2017-06-27 | 北京信威通信技术股份有限公司 | Transmission power processing method, device, system and transmitting equipment |
CN210609194U (en) * | 2019-11-05 | 2020-05-22 | 上海创远仪器技术股份有限公司 | Circuit structure for realizing rapid calibration of transmitter power of MIMO channel simulator |
-
2019
- 2019-11-05 CN CN201911070011.6A patent/CN110708131B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050191975A1 (en) * | 2004-03-01 | 2005-09-01 | Talwalkar Sumit A. | Method and apparatus for a high performance and high dynamic range baseband power control system |
US20090196223A1 (en) * | 2008-01-31 | 2009-08-06 | Mediatek Inc. | Transmit power controller |
CN105515688A (en) * | 2015-12-17 | 2016-04-20 | 中国电子科技集团公司第四十一研究所 | Transmitter power calibration device and method |
CN106899361A (en) * | 2015-12-21 | 2017-06-27 | 北京信威通信技术股份有限公司 | Transmission power processing method, device, system and transmitting equipment |
CN210609194U (en) * | 2019-11-05 | 2020-05-22 | 上海创远仪器技术股份有限公司 | Circuit structure for realizing rapid calibration of transmitter power of MIMO channel simulator |
Non-Patent Citations (1)
Title |
---|
侯立新;赵海宁;田飞;赵兴;杨丽;: "MIMO信道仿真器相对路径衰减校准方法的研究", 计量学报, no. 05 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112600629A (en) * | 2020-12-14 | 2021-04-02 | 东南大学 | Method and system for realizing power calibration and data processing of radio frequency receiver of MIMO channel simulator |
CN113938167A (en) * | 2021-10-22 | 2022-01-14 | 上海创远仪器技术股份有限公司 | System, method and device for realizing calibration of external cable of 5G MIMO channel simulator, processor and storage medium thereof |
CN113938167B (en) * | 2021-10-22 | 2024-03-15 | 上海创远仪器技术股份有限公司 | System and method for realizing calibration of external cable of 5G MIMO channel simulator |
CN114401056A (en) * | 2021-12-29 | 2022-04-26 | 中电科思仪科技(安徽)有限公司 | 5G communication vector signal generator complete machine calibration system and method |
CN114401056B (en) * | 2021-12-29 | 2024-04-23 | 中电科思仪科技(安徽)有限公司 | Complete machine calibration system and method for 5G communication vector signal generator |
CN116318451A (en) * | 2023-05-23 | 2023-06-23 | 英诺微(成都)电子有限公司 | High-precision high-dynamic radio frequency link calibration system |
CN116318451B (en) * | 2023-05-23 | 2023-08-08 | 英诺微(成都)电子有限公司 | High-precision high-dynamic radio frequency link calibration system |
CN117008071A (en) * | 2023-10-07 | 2023-11-07 | 广东大湾区空天信息研究院 | Linear frequency modulation MIMO radar channel calibration method and related equipment |
CN117008071B (en) * | 2023-10-07 | 2023-12-12 | 广东大湾区空天信息研究院 | Linear frequency modulation MIMO radar channel calibration method and related equipment |
CN118249927A (en) * | 2024-05-24 | 2024-06-25 | 成都玖锦科技有限公司 | High-precision signal source power calibration method based on linear interpolation |
Also Published As
Publication number | Publication date |
---|---|
CN110708131B (en) | 2024-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110708131B (en) | Circuit structure and method for realizing quick power calibration of MIMO channel simulator transmitter based on digital-analog block | |
CN103869136B (en) | A kind of radio-frequency measurement device | |
CN110350988A (en) | The OTA Performance Test System of intelligent wearable device under disturbed condition | |
CN102638320A (en) | Method and equipment for determining radiofrequency signal calibration parameter of terminal testing instrument | |
CN105577594B (en) | A kind of quick local oscillator leakage calibration device and method towards I/Q modulator | |
US8170514B2 (en) | Method for implementing continuous radio frequency (RF) alignment in advanced electronic warfare (EW) signal stimulation systems | |
CN106053957A (en) | Test fixture line loss test method and test fixture line loss test system | |
CN105515688B (en) | A kind of calibration method of the calibration of power device of transmitter | |
CN102055539A (en) | Automated calibration method and equipment for meter output signal | |
CN210609194U (en) | Circuit structure for realizing rapid calibration of transmitter power of MIMO channel simulator | |
CN110995368A (en) | Circuit structure and method for quickly calibrating power for frequency spectrograph | |
CN111999749A (en) | A system and method for automatic calibration of power/delay of satellite navigation signal simulator | |
KR102409687B1 (en) | Method and apparatus for measuring chareteristic of radio frequency chain | |
CN103222210B (en) | Multipath fading analogue method and multipath fading analogue means | |
US7772922B1 (en) | Method and system for testing data signal amplifier having output signal power dependent upon multiple power control parameters | |
CN117895957B (en) | Debugging method based on excitation signal and adjustable transmitter | |
CN109088675A (en) | A kind of the access calibration method and device of radio-frequency signal source | |
CN116961785A (en) | RU equipment downlink gain calibration method and RU equipment | |
CN107483128A (en) | RRU and its online ACLR self diagnosis a kind of method | |
CN216013630U (en) | System for realizing automatic calibration of frequency spectrograph power under condition of adapting to ADC linear characteristic | |
CN115483988A (en) | Multichannel phased array transmitter amplitude-phase calibration system and method | |
CN113466774B (en) | System and method for realizing automatic calibration of spectrometer power under condition of adaptive ADC linear characteristic | |
CN119363257A (en) | Method, device, processor and readable storage medium for implementing calibration data application processing for reducing power output errors in signal source | |
CN116192294B (en) | Radio frequency output power calibration method, control system, calibration device and storage medium | |
US11924656B2 (en) | Automatic RF transmit power control for over the air testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 201601 building 6, 351 sizhuan Road, Sijing Town, Songjiang District, Shanghai Patentee after: Chuangyuan Xinke (Shanghai) Technology Co.,Ltd. Country or region after: China Address before: 201601 building 6, 351 sizhuan Road, Sijing Town, Songjiang District, Shanghai Patentee before: TRANSCOM INSTRUMENTS Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |