CN110702491B - 一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法 - Google Patents

一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法 Download PDF

Info

Publication number
CN110702491B
CN110702491B CN201911093440.5A CN201911093440A CN110702491B CN 110702491 B CN110702491 B CN 110702491B CN 201911093440 A CN201911093440 A CN 201911093440A CN 110702491 B CN110702491 B CN 110702491B
Authority
CN
China
Prior art keywords
water
salt
reservoir
rock core
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911093440.5A
Other languages
English (en)
Other versions
CN110702491A (zh
Inventor
游利军
邵佳新
康毅力
谭启贵
刘涛
徐弋影
黄恒清
王福荣
李可明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201911093440.5A priority Critical patent/CN110702491B/zh
Publication of CN110702491A publication Critical patent/CN110702491A/zh
Application granted granted Critical
Publication of CN110702491B publication Critical patent/CN110702491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/14Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation
    • G01N25/147Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation by cristallisation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及石油与天然气致密储层岩心分析领域,本方法考虑了水溶盐储层岩心从地层温度压力条件取至地面温度压力条件过程中,岩样内部发生盐结晶,因此在孔隙度等参数测试前要对岩心进行洗盐处理。该方法只会清洗掉原地岩样取至地面过程中由于结晶作用对孔隙度造成影响的盐量,从而使洗盐后测试出的岩心孔隙度客观真实,同时通过质量守恒原理确定了地层水矿化度,并为后续致密储层实验评价奠定基础,是一种属于石油天然气勘探开发过程中岩心分析方面的实验方法。

Description

一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法
技术领域
本发明涉及石油与天然气致密储层岩心分析领域一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法,属于石油天然气勘探开发过程中岩心分析方面的实验方法。
背景技术
随着世界各国对油气需求的不断增长、常规油气资源产量的衰竭,以及低碳经济的快速发展,具有现实勘探开发意义和资源量巨大的非常规石油天然气(主要包括致密砂岩油气藏、致密碳酸盐岩油气藏、页岩油气藏和煤层气)越来越受到各个国家和石油公司的青睐。而对于油气层地质特征的认知程度潜在决定了后续油气藏的开发能够走多远,通过岩心分析的手段可以实现对油气层地质特征的清楚认知。致密储层形成于海相或咸化湖等沉积环境时,储层内部形成大量水溶盐,导致地层水矿化度较高。然而,原地岩样取至地面过程中,从储层温度压力条件到地面温度压力条件,岩样内部会发生盐结晶,导致岩样孔隙度发生变化。所以,确定岩石的洗盐程度既可以保证岩石孔隙度测试等岩心分析实验结果的准确性,也可以实现致密储层的客观评价,同时有利于致密油气藏的高效经济开发。确定含水溶盐储层的地层水矿化度和岩心洗盐程度是评价致密储层的前提和基础。
常规洗盐会清洗掉储层沉积时形成的水溶盐和原地岩样取至地面过程中的结晶盐,导致无法准确地测试出岩心原地孔隙度,从而影响致密储层的评价。
发明内容
本发明的目的在于通过确定含水溶盐地层水矿化度与岩心洗盐程度,并为后续开展的致密储层评价奠定基础。
本发明通过以下技术方案实现:
步骤1、选取含水溶盐储层代表性岩心,称取烘干后的岩心质量m’,并确定岩心完全饱和水体积Vfluid和密度ρ;
步骤2、分析含水溶盐储层地面产出地层水矿化度C’;
步骤3、分析储层水溶盐矿物类型与比例,配制实验用复合水溶盐,并将复合水溶盐完全溶解;
步骤4、开展复合水溶盐结晶实验,分析从储层条件下的地层水到地面温度压力条件下的产出水结晶程度,记盐结晶比例系数η,盐结晶比例系数η为结晶盐析出量与初始溶液中水溶盐质量比值;
步骤5、根据盐结晶比例系数η,运用式(1)计算储层实际地层水矿化度C;
Figure GDA0003350766550000021
步骤6、进行洗盐,并反复称取洗盐后岩心质量m,直至岩心质量变化为m’-m=ηρVfluid,洗盐结束。
与现有技术相比,本发明具有如下有益效果:
(1)确定地层水矿化度。致密储层形成于海相或者湖相沉积环境时,储层含有大量水溶盐,导致储层地层水矿化度较高。储层地层水从原地温度压力条件到地面温度压力条件过程中会发生盐结晶,引起地面产出地层水矿化度降低,无法真实反映地层水矿化度。
(2)确定岩心洗盐程度。储层岩样内部含有大量水溶盐,储层岩样在从原地温度压力条件取至地面温度压力条件过程中会发生盐结晶,盐结晶导致孔隙度发生变化,因此,测试原地孔隙度前应对岩样进行洗盐处理。直接对岩样进行洗盐会清洗掉储层沉积过程中形成的水溶盐和由于结晶作用形成的盐,仍然无法清洗由于结晶作用对岩样孔隙度产生影响的盐量。
(3)为致密储层的客观评价提供保障。确定地层水矿化度和岩心洗盐程度为孔隙度的准确测试奠定基础,准确的孔隙度使得后续致密储层的实验评价更接近储层的真实条件,使得实验结果客观、真实。
具体实施方式
为了对本发明的技术特征、目的和有益效果更加清楚的解释,结合具体参数和实施例进一步详细说明本发明的发明内容、特点,具体步骤如下:
步骤1、准备无水甲醇溶液,选取含水溶盐储层代表性岩心,称取烘干后的岩心质量m’,并确定岩心完全饱和水体积Vfluid和密度ρ;
步骤2、采用原子吸收分光光度计分析含水溶盐储层地面产出地层水矿化度C’;
步骤3、将一部分岩样粉碎成粉末状和水按一定比例混合,在振荡机上进行振荡,一段时间后进行过滤,再将滤液进行烘干处理,通过烘干后的残渣分析储层水溶盐矿物类型与比例,配制实验用复合水溶盐,并将复合水溶盐完全溶解;
步骤4、开展复合水溶盐结晶实验,分析从储层条件下的地层水到地面温度压力条件下的产出水结晶程度,记盐结晶比例系数η,盐结晶比例系数η为结晶盐析出量与初始溶液中水溶盐质量比值;
步骤5、根据盐结晶比例系数η,运用式(1)计算储层实际地层水矿化度C;
Figure GDA0003350766550000031
步骤6、在抽真空饱和装置内采用无水甲醇进行岩心洗盐,并反复称取洗盐后岩心质量m,直至岩心质量变化为m’-m=ηρVfluid,洗盐结束。
根据本发明,洗盐量基于地层水矿化度确定,保证了洗盐程度的准确性。此外,常规方法会清洗掉储层沉积时形成的水溶盐和原地岩样取至地面过程中的结晶盐,该方法只会清洗掉岩样从原地温度压力条件到地面温度压力条件对孔隙度造成影响的盐结晶的盐量。
以上的具体实施方式已经结合具体参数和实施例对本发明的效果进行了详细描述,但是本发明并不局限于上述的具体实施方式,只要在不超出本发明的主旨范围内,可对实验条件及对象进行灵活的变更,这些均属于本发明的保护范围之内。

Claims (1)

1.一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法步骤如下:
步骤1、选取含水溶盐储层代表性岩心,称取烘干后的岩心质量m’,并确定岩心完全饱和水体积Vfluid和密度ρ;
步骤2、分析含水溶盐储层地面产出地层水矿化度C’;
步骤3、分析储层水溶盐矿物类型与比例,配制实验用复合水溶盐,并将复合水溶盐完全溶解;
步骤4、开展复合水溶盐结晶实验,分析从储层条件下的地层水到地面温度压力条件下的产出水结晶程度,记盐结晶比例系数η,盐结晶比例系数η为结晶盐析出量与初始溶液中水溶盐质量比值;
步骤5、根据盐结晶比例系数η,运用式(1)计算储层实际地层水矿化度C;
Figure FDA0003350766540000011
步骤6、进行洗盐,并反复称取洗盐后岩心质量m,直至岩心质量变化为m’-m=ηρVfluid,洗盐结束。
CN201911093440.5A 2019-11-11 2019-11-11 一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法 Active CN110702491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911093440.5A CN110702491B (zh) 2019-11-11 2019-11-11 一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911093440.5A CN110702491B (zh) 2019-11-11 2019-11-11 一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法

Publications (2)

Publication Number Publication Date
CN110702491A CN110702491A (zh) 2020-01-17
CN110702491B true CN110702491B (zh) 2022-02-01

Family

ID=69205600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911093440.5A Active CN110702491B (zh) 2019-11-11 2019-11-11 一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法

Country Status (1)

Country Link
CN (1) CN110702491B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504171B (zh) * 2021-07-13 2024-04-16 西南石油大学 一种测量储层结盐伤害及溶盐剂效果评价的装置及方法
CN116378644B (zh) * 2022-12-14 2024-04-05 常州大学 一种咸化湖相碳酸盐岩钻井液储层保护配方优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169115A (zh) * 2010-12-29 2011-08-31 中国石油天然气集团公司 一种通过岩心求取地层水矿化度的方法
CN102587858A (zh) * 2012-03-09 2012-07-18 中国石油化工股份有限公司 对缝洞型油藏进行堵水的方法
CN102928453A (zh) * 2012-10-29 2013-02-13 陕西联盟物流有限公司 一种地层水矿化度的求取方法
CN103233726A (zh) * 2013-05-02 2013-08-07 中国石油大学(华东) 一种水淹层饱和度、产水率测井评价模型的实验刻度方法
CN103411817A (zh) * 2013-07-13 2013-11-27 西南石油大学 一种致密岩心可溶盐的清洗方法
CN203825096U (zh) * 2014-03-20 2014-09-10 中国石油化工股份有限公司 一种高温高压条件下的地层水电阻率检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169115A (zh) * 2010-12-29 2011-08-31 中国石油天然气集团公司 一种通过岩心求取地层水矿化度的方法
CN102587858A (zh) * 2012-03-09 2012-07-18 中国石油化工股份有限公司 对缝洞型油藏进行堵水的方法
CN102928453A (zh) * 2012-10-29 2013-02-13 陕西联盟物流有限公司 一种地层水矿化度的求取方法
CN103233726A (zh) * 2013-05-02 2013-08-07 中国石油大学(华东) 一种水淹层饱和度、产水率测井评价模型的实验刻度方法
CN103411817A (zh) * 2013-07-13 2013-11-27 西南石油大学 一种致密岩心可溶盐的清洗方法
CN203825096U (zh) * 2014-03-20 2014-09-10 中国石油化工股份有限公司 一种高温高压条件下的地层水电阻率检测装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Experimental investigation of porosity and permeability change caused by salting out in tight sandstone gas reservoirs;Lijun You et al.,;《Journal of Natural Gas Geoscience》;20181213(第3期);第347-352页 *
利用岩心样品测定地层水矿化度的方法;赵富贞 等;《新疆石油地质》;20020831;第23卷(第4期);第340-341页 *
致密砂岩孔渗对盐析的响应实验研究;游利军 等;《天然气地球科学》;20180630;第29卷(第6期);第866-872页 *

Also Published As

Publication number Publication date
CN110702491A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN110702484B (zh) 含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法
US4904603A (en) Monitoring drilling mud
Kinsman Interpretation of Sr (super+ 2) concentrations in carbonate minerals and rocks
CN110702491B (zh) 一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法
Stueber et al. A strontium isotopic study of formation waters from the Illinois basin, USA
CN111855715B (zh) 一种盐下白云岩水岩反应的模拟与评价方法及系统
Sadooni et al. Dolomite: perspectives on a perplexing mineral
Bi et al. Constraints of fluid inclusions and C, O isotopic compositions on the origin of the dolomites in the Xisha Islands, South China Sea
Wicks et al. Water-rock interactions in a modern coastal mixing zone
Zhou et al. The effect of inorganic salt precipitation on oil recovery during CO2 flooding: A case study of Chang 8 block in Changqing oilfield, NW China
Al-Dujaili et al. Lithofacies, deposition, and clinoforms characterization using detailed core data, nuclear magnetic resonance logs, and modular formation dynamics tests for Mishrif Formation intervals in West Qurna/1 oil field, Iraq
Grygar et al. Chemostratigraphic correlation of sediments containing expandable clay minerals based on ion exchange with Cu (II) triethylenetetramine
Nie et al. Evaluation of the in-place adsorbed gas content of organic-rich shales using wireline logging data: a new method and its application
CN110320340A (zh) 蒸发岩与石油硫同位素对比判断石油烃源岩时代的方法
Yuan et al. Regional variation of evaporite diagenesis in Xingouzui sandstones in Jianghan Basin, China: Implications for the evolution and prediction of saline reservoirs’ quality
Schmoker et al. Porosity of the miami limestone (late pleistocene), lower Florida keys
Czarnota et al. Wettability investigation as a prerequisite during selecting enhanced oil recovery methods for sandstone and dolomite formations
Turner Integrated correlation of the Kimmeridge Clay Formation (Late Jurassic-Early Cretaceous): a Boreal-Tethyan transect
Chen et al. Experimental study on geochemical characteristic of methane hydrate formed in porous media
Muhong et al. Original component of grain size index in core sediment from southwestern slope of the South China Sea and its paleoenvironmental implication
Hogarth Normal and reverse pleochroism in biotite
CN113884642A (zh) 一种盐湖岩盐古卤水的矿化度测定方法及其应用
CN114879276A (zh) 判定盆地地下水来源的方法
CN116931117A (zh) 硫同位素划分油田水/含气田水来源的方法
Wu et al. Carboniferous-Early Permian Heterogeneous Porous Carbonate Reservoirs Prediction and Sedimentary Analysis in the Central Uplift of the South Yellow Sea Basin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant