CN110699084B - Soil heavy metal pollution curing and repairing composite reagent and curing and repairing method - Google Patents

Soil heavy metal pollution curing and repairing composite reagent and curing and repairing method Download PDF

Info

Publication number
CN110699084B
CN110699084B CN201910953902.XA CN201910953902A CN110699084B CN 110699084 B CN110699084 B CN 110699084B CN 201910953902 A CN201910953902 A CN 201910953902A CN 110699084 B CN110699084 B CN 110699084B
Authority
CN
China
Prior art keywords
heavy metal
soil
curing
iron
repairing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910953902.XA
Other languages
Chinese (zh)
Other versions
CN110699084A (en
Inventor
宋敏
赵炎
于磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910953902.XA priority Critical patent/CN110699084B/en
Publication of CN110699084A publication Critical patent/CN110699084A/en
Application granted granted Critical
Publication of CN110699084B publication Critical patent/CN110699084B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2109/00MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE pH regulation

Abstract

The invention discloses a soil heavy metal pollution curing and repairing composite reagent and a curing and repairing method. The composite medicament comprises the following components in percentage by mass: 20-40% of quicklime and 60-80% of iron-based biochar modified phosphate mineral; the iron-based biochar modified phosphate mineral is obtained by uniformly mixing iron salt and biomass, drying, uniformly mixing the dried iron salt and the biomass with phosphate mineral, and performing co-pyrolysis. The method for curing and repairing the heavy metal contaminated soil by using the composite reagent comprises the following steps: firstly, uniformly mixing iron-based biochar modified phosphate mineral and quicklime to obtain a soil heavy metal pollution curing and repairing composite reagent; then adding the composite medicament into the heavy metal contaminated soil, adding water, and uniformly stirring; and (4) performing standard maintenance to finish the solidification remediation of the heavy metal contaminated soil. The soil heavy metal pollution curing and repairing composite medicament can effectively avoid secondary dissolution of heavy metals, and greatly enhances the long-term stability of the heavy metal pollution soil curing.

Description

Soil heavy metal pollution curing and repairing composite reagent and curing and repairing method
Technical Field
The invention relates to a soil heavy metal pollution curing and repairing composite reagent and a method for curing and repairing heavy metal polluted soil by using the same, and belongs to the technical field of soil repairing and treatment.
Background
Soil is an important component of the ecological environment and is also a major natural resource on which humans live. In the rapid industrialization process of China, because the environment management mode is not perfect and the pollution control system is not strict, a large amount of heavy metal pollutants are discharged into soil in long-term industrial production activities, such as electroplating, smelting and other industries, so that the large-area soil of China is suffering from a serious pollution problem; soil pollution has concealment and hysteresis, and reasonable and effective measures must be taken to reduce environmental risks brought by pollutants. The research on repairing typical industrial heavy metal polluted sites is urgently developed by combining the characteristics of high heavy metal content and coexistence of various pollutants in industrial polluted sites in China.
For heavy metal pollution of soil, common remediation techniques include: physical repair techniques, chemical repair techniques, biological repair techniques, combined repair techniques, and the like. In a plurality of restoration technologies, physical restoration such as thermal desorption, soil replacement, electric restoration and the like damages the soil structure, so that the engineering quantity is large, and the cost is high; the bioremediation repair cycle is long and has high requirements on the soil environment. The fixation/stabilization repair technology in chemical repair is receiving wide attention due to its short time and good stability. The solidification stabilization technology (S/S technology for short) is a technology for forming a solidified body with low permeability coefficient or converting pollutants into stable forms by forcibly mixing a curing agent and polluted soil and utilizing the physical and chemical actions of the curing agent so as to reduce the migration and solubility of the pollutants. Compared with other restoration technologies (such as chemical leaching and biological restoration), the method has the unique advantages of low restoration cost, convenient construction, high intensity of the processed soil and strong stability, and is particularly suitable for restoring heavy metal polluted sites.
Aiming at the in-situ chemical immobilization repair technology, the key point is to select a proper fixative. In industrial sites, traditional curing agents are based on inorganic materials (about 94%), with high-alkali cement (39%) and lime (8%) being the most common. However, the solidified body after cement treatment has more pores, so that heavy metals in the solidified body are easy to desorb, and the soil after cement and lime solidification has high alkalinity, which is not beneficial to long-term stability of heavy metal sealing.
Moreover, in the remediation of a composite polluted site polluted by heavy metals and organic matters, when chemical oxidation is adopted for treatment, the addition of hydrogen peroxide usually destroys the original balance environment of soil, improves the oxidation-reduction potential, releases the heavy metals existing in an organic combination state, and destroys the metal form distribution structure; simultaneously, the structure of the solidified material is damaged, so that the heavy metal is secondarily dissolved out; not beneficial to the long-term solidification of heavy metals.
Disclosure of Invention
The purpose of the invention is as follows: aiming at the problem that the heavy metal contaminated soil repaired by the existing curing agent cannot be stably cured for a long time, the invention provides a composite agent for curing and repairing heavy metal contaminated soil, which can effectively enhance the long-term stability of curing of the heavy metal contaminated soil; the invention also provides a method for curing and repairing the heavy metal contaminated soil by using the composite reagent.
The technical scheme is as follows: the invention relates to a soil heavy metal pollution curing and repairing composite reagent, which comprises the following components in percentage by mass: 20-40% of quicklime and 60-80% of iron-based biochar modified phosphate mineral; the iron-based biochar modified phosphate mineral is obtained by uniformly mixing iron salt and biomass, drying, uniformly mixing the dried iron salt and the biomass with phosphate mineral, and performing co-pyrolysis.
Specifically, the iron-based biochar modified phosphate mineral can be prepared according to the following steps:
A. cleaning, drying, grinding and sieving biomass, placing the biomass in a beaker, adding iron salt and water, uniformly mixing, and drying for later use;
B. grinding and sieving the dried iron-based biomass, and mechanically mixing the iron-based biomass with phosphate minerals for 2-4 hours; and placing the obtained mixture in a tubular furnace, and roasting for 30-180 min at 600-900 ℃ in a carrier gas environment.
In the step A, the mass ratio of the iron salt to the biomass is preferably 0.1-0.8: 1. In step B, the carrier gas atmosphere can be nitrogen, carbon dioxide or a mixed carrier gas of the nitrogen and the carbon dioxide.
In the iron-based biochar modified phosphate mineral, biomass can be selected from one of straw, rice hull and bamboo dust. The phosphate mineral material is selected from one of calcium dihydrogen phosphate, hydroxyapatite, and calcium superphosphate.
According to a preferable technical scheme, in the composite reagent, the mass ratio of the quicklime to the iron-based biochar modified phosphate mineral is preferably 0.25-0.5: 1.
The method for curing and repairing the heavy metal contaminated soil by using the composite medicament comprises the following steps:
(1) uniformly mixing the iron-based biochar modified phosphate mineral and quicklime to obtain a soil heavy metal pollution curing and repairing composite reagent;
(2) adding the composite medicament into heavy metal contaminated soil, adding water, and uniformly stirring;
(3) and (5) standard maintenance, namely finishing the solidification restoration of the heavy metal polluted soil.
In the step (1), the mass ratio of the quicklime to the iron-based biochar modified phosphate mineral is preferably 0.25-0.5: 1.
In the step (2), the adding amount of the composite reagent is 1-10% of the mass of the soil polluted by the heavy metal. Preferably 6 to 8%. Furthermore, after water is added, the water content of the heavy metal contaminated soil is 30-80%.
The invention principle is as follows: in the composite medicament, the biochar has a relatively large specific surface area, a high pH value and Cation Exchange Capacity (CEC), and rich functional groups (such as carboxyl, phenolic groups, hydroxyl, carbonyl, quinone substances and the like), has a strong adsorption effect on heavy metal ions in an environmental medium, and can change the oxidation-reduction potential of soil by improving the pH and organic matter content of the soil, so that the migration and homing of the heavy metal ions are influenced. After the phosphate material is added into the soil polluted by the heavy metal, the heavy metal is promoted to be converted from an exchangeable state and a carbonate combined state to a stable state, and the migration and the bioavailability of the heavy metal in the soil are reduced; the main reaction mechanism comprises: after the phosphate is dissolved, the phosphate and heavy metal ions generate precipitate; complexing and adsorbing the surface of phosphate; dissolving hydroxyapatite and then coprecipitating or exchanging ions on the surface of the phosphate ore. Furthermore, phosphate-based minerals have a smaller K than carbonates, sulfides, and the like by forming phosphate precipitates with heavy metal ionsspThe product has certain stability; the phosphate mineral is modified by adding the iron salt, which is beneficial to generating KspSmaller metal precipitates can effectively avoid secondary dissolution of heavy metals and enhance long-term stability.
In addition, in the remediation of the heavy metal and organic compound contaminated soil, because the iron-based biochar modified phosphate mineral is obtained by co-pyrolysis of phosphate and biochar, phosphate can promote the generation of metaphosphate and C-O-PO with stable heat in the biomass pyrolysis process3And C-PO3Functional groups and the likeThe functional groups can serve as physical barriers or block active sites of carbon so as to inhibit oxidative decomposition of the biochar, thereby effectively reducing the risk of secondary dissolution of heavy metal ions caused by change of soil environment and damage to the structure of a solidified body due to chemical oxidation and greatly increasing the long-term stability of the solidified body.
Has the advantages that: compared with the prior art, the invention has the advantages that: (1) the soil heavy metal pollution curing and repairing composite medicament can effectively avoid secondary dissolution of heavy metals, and greatly enhances the long-term stability of the heavy metal pollution soil curing; (2) the soil heavy metal pollution curing and repairing composite reagent disclosed by the invention is simple in component, easy in raw material obtaining, low in cost, free of heavy metal or low in content, and free of secondary pollution risk; (3) the soil remediation composite agent for soil heavy metal pollution curing and remediation is simple in process operation and suitable for popularization and application.
Detailed Description
The technical solution of the present invention is further explained below.
The invention relates to a soil heavy metal pollution curing and repairing composite medicament, which comprises the following components in percentage by mass: 20-40% of quicklime and 60-80% of iron-based biochar modified phosphate mineral; the iron-based biochar modified phosphate mineral is obtained by uniformly mixing iron salt and biomass, drying, uniformly mixing the dried iron salt and the biomass with phosphate mineral, and performing co-pyrolysis.
Example 1
The formula of the soil heavy metal pollution curing and repairing composite medicament comprises the following components:
20% of quicklime and 80% of iron-based biochar modified calcium superphosphate.
The preparation process of the iron-based biochar modified calcium superphosphate comprises the following steps:
cleaning, drying, grinding and screening biomass by a 2mm sieve, then placing the biomass in a beaker, adding iron salt and water according to the mass ratio of the iron salt to the biomass being 0.2:1, stirring for 2 hours, and drying for later use; grinding the dried iron-based biomass, sieving the ground iron-based biomass by a 2mm sieve, and mechanically mixing the ground iron-based biomass with calcium superphosphate for 2 hours; the obtained mixture is placed inIn a tube furnace, in N2+CO2Roasting at 600 deg.C for 60min under atmosphere.
And (3) uniformly dry-mixing the prepared iron-based biochar modified calcium superphosphate and quicklime according to the mass ratio of 4:1 to obtain the composite medicament.
Example 2
The formula of the soil heavy metal pollution curing and repairing composite medicament comprises the following components:
30% of quicklime and 70% of iron-based biochar modified calcium superphosphate.
The preparation process of the iron-based biochar modified calcium superphosphate comprises the following steps:
cleaning, drying, grinding and screening biomass by a 2mm sieve, then placing the biomass in a beaker, adding iron salt and water according to the mass ratio of the iron salt to the biomass being 0.5:1, stirring for 2 hours, and drying for later use; grinding the dried iron-based biomass, sieving the ground iron-based biomass by a 2mm sieve, and mechanically mixing the ground iron-based biomass with calcium superphosphate for 2 hours; the mixture obtained is placed in a tube furnace under N2+CO2Roasting at 800 deg.C for 60min under atmosphere.
And (3) uniformly dry-mixing the prepared iron-based biochar modified calcium superphosphate and quicklime according to the mass ratio of 7:3 to obtain the composite medicament.
Example 3
The formula of the soil heavy metal pollution curing and repairing composite medicament comprises the following components:
40% of quicklime and 60% of iron-based biochar modified calcium superphosphate.
The preparation process of the iron-based biochar modified calcium superphosphate comprises the following steps:
cleaning, drying, grinding and screening biomass by a 2mm sieve, then placing the biomass in a beaker, adding iron salt and water according to the mass ratio of the iron salt to the biomass being 0.8:1, stirring for 2 hours, and drying for later use; grinding the dried iron-based biomass, sieving the ground iron-based biomass by a 2mm sieve, and mechanically mixing the ground iron-based biomass with calcium superphosphate for 2 hours; the mixture obtained is placed in a tube furnace under N2+CO2Roasting at 900 deg.C for 120min under atmosphere.
And (3) uniformly dry-mixing the prepared iron-based biochar modified calcium superphosphate and quicklime according to the mass ratio of 3:2 to obtain the composite medicament.
Comparative example
The biochar modified calcium superphosphate composite medicament comprises the following components:
30% of quicklime and 70% of biochar modified calcium superphosphate.
The preparation method of the biochar modified calcium superphosphate comprises the following steps:
cleaning biomass, drying, grinding, sieving with 2mm sieve, placing into a beaker, mechanically mixing uniformly with the mass ratio of calcium superphosphate to biomass being 0.5:1, placing the obtained mixture into a tube furnace, and adding N2+CO2Roasting at 800 deg.C for 60min in carrier gas environment.
And (3) uniformly dry-mixing the prepared biochar modified calcium superphosphate and quicklime according to the mass ratio of 7:3 to obtain the biochar modified calcium superphosphate composite medicament.
EXAMPLE 4 testing of the adsorption and Oxidation resistance of pharmaceutical Agents in liquid phase System
Preparing a zinc ion solution with the concentration of 1000mg/L, accurately weighing 0.4g of calcium superphosphate + calcium oxide (mass ratio of 7:3), the biochar modified superphosphate composite medicament prepared in the comparative example 1 and the iron-based biochar modified superphosphate composite medicament prepared in the example 2 in 50ml of solution respectively under the conditions that the pH of the solution is controlled to be 5 and the temperature is 298K, and measuring the saturated adsorption capacity of the curing agent after shaking reaction for 24 hours.
Tests show that under the condition, the saturated adsorption capacity of the three curing agents after reaction is 125mg/g, and the three curing agents have strong adsorption capacity.
And (3) carrying out suction filtration and drying on solid residues in the solution, respectively weighing 0.1g, adding 10ml of 5% hydrogen peroxide solution, and after reacting for 24 hours, determining the solubility of zinc ions in the solution.
The secondary elution of heavy metals after addition of hydrogen peroxide was tested as in table 1 below.
TABLE 1 cured body antioxidant Capacity test results
Figure BDA0002226631460000051
Therefore, the oxidation resistance of the three curing agents for adsorbing heavy metals in a liquid phase is respectively that the iron-based biochar modified superphosphate composite medicament is larger than the superphosphate composite medicament.
Example 5 testing of the curing Properties and Oxidation resistance of Agents in actual soil systems
A shallow polluted soil sample of a place left after the removal of an electroplating workshop of a gas distribution factory in Jiangsu province is taken to carry out a solidification experiment, and the conductivity, the pH and the leaching toxicity of heavy metals of the soil sample to be treated are respectively evaluated by referring to an electrode method for measuring the soil conductivity (HJ802-2016), a standard method for testing the soil engineering (GB/T50123-1999) and a method for identifying the standard toxicity leaching of the hazardous wastes in the United states of America (USEPA 1311 TCLP).
The results of the conductivity, pH and heavy metal leaching toxicity evaluation tests of the soil sample to be tested are shown in the following table 2. As can be seen from Table 2, the leaching concentration value of Zn is 500.67mg/L, which is 5 times higher than the hazardous waste identification standard (GB 5085.3-2007) in the hazardous waste identification standard leaching toxicity identification.
TABLE 2 evaluation test results of conductivity, pH and heavy metal leaching toxicity of soil sample to be tested
Cured body Electrical conductivity of pH Leaching toxicity (mg/L)
Soil sample with zinc pollution 4.58 3.22 500.67
Accurately weighing 1.6g of calcium superphosphate and calcium oxide (mass ratio is 7:3), the biochar modified superphosphate composite medicament prepared in the comparative example 1 and the iron-based biochar modified superphosphate composite medicament prepared in the example 2 in a mixing ratio of 8%, uniformly mixing the three curing agents in a plastic beaker filled with 20g of a polluted soil sample, adding 12ml of water, keeping the water content at 60%, placing the mixture in a standard curing chamber, and after curing for 28 days, measuring the conductivity, pH and leaching toxicity (mg/L) of a cured body.
After curing, the conductivity, pH and cure rate in the contaminated soil samples are shown in table 3 below.
TABLE 3 evaluation test results of conductivity, pH and heavy metal leaching toxicity of treated soil sample to be tested
Figure BDA0002226631460000061
1g of the treated soil sample and a plastic test tube after curing of the three curing agents are respectively taken, 10ml of hydrogen peroxide solution with the concentration of 5% is respectively added, after oscillation for 24 hours, centrifugal filtration is carried out, and the concentration of zinc ions in the filtrate is tested.
After the reaction is finished, the test result of the oxidation resistance of the soil sample to be tested is shown in the following table 4.
TABLE 4 test results of the antioxidant capacity of the soil sample to be tested
Figure BDA0002226631460000062
Therefore, the oxidation resistance of the three curing agents for curing heavy metals in soil is respectively that the iron-based biochar modified superphosphate composite agent is larger than the superphosphate composite agent.
Example 6 testing of the curing Capacity of pharmaceutical Agents in actual composite heavy Metal contaminated soil
A shallow layer polluted soil sample of a lead-copper tailing left field in Jiangxi province is taken to carry out a solidification experiment, and the conductivity, the pH and the heavy metal leaching toxicity of the soil sample to be treated are evaluated by referring to an electrode method for measuring soil conductivity (HJ802-2016), a soil engineering test method standard (GB/T50123-1999) and an American hazardous waste identification standard toxicity leaching method USEPA 1311TCLP method respectively.
The results of the conductivity, pH and heavy metal leaching toxicity evaluation tests of the soil sample to be tested are shown in the following table 5.
TABLE 5 evaluation test results of conductivity, pH and heavy metal leaching toxicity of soil sample to be tested
Contaminated soil sample Electrical conductivity of pH Lead leaching toxicity (mg/L) Copper leaching toxicity (mg/L)
Lead-zinc-copper polluted soil 6.09 2.80 6.36 8.75
Accurately weighing 1.2g of calcium superphosphate and calcium oxide (mass ratio is 7:3), the biochar modified superphosphate composite medicament prepared in comparative example 1 and the iron-based biochar modified superphosphate composite medicament prepared in example 2 in a 6% mixing ratio in a plastic beaker filled with 20g of a polluted soil sample, uniformly mixing, adding 12ml of water, keeping the water content at 60%, placing in a standard curing chamber, and after curing for 7 days, measuring the conductivity, pH and leaching toxicity (mg/L) of a cured body.
After curing, the conductivity, pH and cure rate in the contaminated soil samples are shown in Table 6 below.
TABLE 6 evaluation test results of conductivity, pH and heavy metal leaching toxicity of treated soil sample to be tested
Figure BDA0002226631460000071
In conclusion, the iron-based biochar modified phosphate mineral composite medicament can be used for curing heavy metal contaminated soil with different degrees and different types, effectively improves the pH value of the soil body, reduces the conductivity, reduces the leaching toxicity of the heavy metal in the soil and the risk of dissolving out of metal ions in the cured body due to chemical oxidation, greatly enhances the stability of long-term curing, and has good practical application prospect.

Claims (8)

1. The soil heavy metal pollution curing and repairing composite reagent is characterized by comprising the following components in percentage by mass: 20-40% of quicklime and 60-80% of iron-based biochar modified phosphate mineral; the iron-based biochar modified phosphate mineral is obtained by uniformly mixing an iron salt and biomass, drying, uniformly mixing with a phosphate mineral and co-pyrolyzing;
the preparation method of the iron-based biochar modified phosphate mineral comprises the following steps:
A. cleaning, drying, grinding and sieving the biomass, then placing the biomass in a beaker, adding ferric salt and water, uniformly mixing, and drying for later use, wherein the mass ratio of the ferric salt to the biomass is 0.1-0.8: 1;
B. grinding and sieving the dried iron-based biomass, and mechanically mixing the iron-based biomass with phosphate minerals for 2-4 hours; and placing the obtained mixture in a tubular furnace, and roasting for 30-180 min at 600-900 ℃ in a carrier gas environment.
2. The soil heavy metal pollution curing and repairing composite reagent as claimed in claim 1, wherein in the step B, the carrier gas atmosphere is nitrogen, carbon dioxide or a mixed carrier gas of the nitrogen and the carbon dioxide.
3. The soil heavy metal pollution curing and repairing composite medicament as claimed in claim 1, wherein the biomass is one of straw, rice hull and bamboo dust.
4. The soil heavy metal pollution solidification remediation complex reagent of claim 1, wherein the phosphate mineral material is one of calcium dihydrogen phosphate, hydroxyapatite, and calcium superphosphate.
5. The soil heavy metal pollution curing and repairing composite reagent as claimed in claim 1, wherein the mass ratio of the quicklime to the iron-based biochar modified phosphate mineral is 0.25-0.5: 1.
6. The method for solidifying and repairing heavy metal contaminated soil by using the composite medicament as claimed in claim 1, which is characterized by comprising the following steps:
(1) uniformly mixing the iron-based biochar modified phosphate mineral and quicklime to obtain a soil heavy metal pollution curing and repairing composite reagent;
(2) adding the composite reagent into heavy metal contaminated soil, adding water, and uniformly stirring;
(3) and (5) standard maintenance, namely finishing the solidification restoration of the heavy metal polluted soil.
7. The method for solidifying and remediating heavy metal contaminated soil according to claim 6, wherein in the step (2), the amount of the compound agent added is 1-10% of the mass of the heavy metal contaminated soil.
8. The method for solidifying and repairing heavy metal contaminated soil according to claim 6, wherein in the step (2), water is added to make the water content of the heavy metal contaminated soil 30-80%.
CN201910953902.XA 2019-10-09 2019-10-09 Soil heavy metal pollution curing and repairing composite reagent and curing and repairing method Active CN110699084B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910953902.XA CN110699084B (en) 2019-10-09 2019-10-09 Soil heavy metal pollution curing and repairing composite reagent and curing and repairing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910953902.XA CN110699084B (en) 2019-10-09 2019-10-09 Soil heavy metal pollution curing and repairing composite reagent and curing and repairing method

Publications (2)

Publication Number Publication Date
CN110699084A CN110699084A (en) 2020-01-17
CN110699084B true CN110699084B (en) 2021-06-11

Family

ID=69198815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910953902.XA Active CN110699084B (en) 2019-10-09 2019-10-09 Soil heavy metal pollution curing and repairing composite reagent and curing and repairing method

Country Status (1)

Country Link
CN (1) CN110699084B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349441A (en) * 2020-04-10 2020-06-30 绍兴市农业科学研究院 Method for safely utilizing As and Pb composite pollution of farmland soil
CN112090946B (en) * 2020-08-27 2021-07-27 昶旻(苏州)信息科技有限公司 Heavy metal pollution administers device
CN112457851B (en) * 2020-11-13 2021-07-27 湖南有色金属研究院有限责任公司 Heavy metal contaminated soil remediation material and preparation method and application thereof
CN112642850B (en) * 2020-11-13 2022-06-07 湖南有色金属研究院有限责任公司 Remediation method for antagonistic heavy metal contaminated soil
CN114106839A (en) * 2021-12-22 2022-03-01 中电建十一局工程有限公司 Zinc-polluted soil stabilizing material and preparation method thereof
CN114393025B (en) * 2022-01-19 2022-11-25 生态环境部南京环境科学研究所 Arsenic-polluted soil remediation method based on quicklime-iron salt mixed stabilizer
CN114958382B (en) * 2022-03-17 2023-11-10 中南大学 Carbon-based soil solidifying material, preparation thereof and application thereof in repairing heavy metal contaminated soil
CN115025758A (en) * 2022-06-13 2022-09-09 江苏省环境科学研究院 Application of chemically aged biochar in copper ion adsorption

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833274A (en) * 2013-12-31 2014-06-04 中国科学院武汉岩土力学研究所 Heavy metal-contaminated soil solidifying agent and application method thereof
CN104258809A (en) * 2014-09-15 2015-01-07 河南农业大学 Modified biomass charcoal and remediation method of heavy metal contaminated soil
CN105419805A (en) * 2015-11-27 2016-03-23 同济大学 Preparing method for complex function repairing agent for treatment of heavy metal contaminated soil
CN105669324A (en) * 2016-01-05 2016-06-15 青岛洪润林业生物质能源有限公司 Biochar fertilizer and preparation method and application thereof
CN107021714A (en) * 2017-04-14 2017-08-08 东南大学 A kind of curing agent and methods for making and using same for heavy metal polluted soil
KR20180097193A (en) * 2017-02-22 2018-08-31 세종대학교산학협력단 Method for absorbing and removing arsenic using paper mill sludge
CN109122136A (en) * 2018-07-24 2019-01-04 广东省生态环境技术研究所 A kind of method of rice safety in production on mild or moderate heavy-metal contaminated soil
CN109294588A (en) * 2018-08-30 2019-02-01 安徽农业大学 A kind of passivator and its application method for repairing heavy metals in farmland cadmium pollution

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833274A (en) * 2013-12-31 2014-06-04 中国科学院武汉岩土力学研究所 Heavy metal-contaminated soil solidifying agent and application method thereof
CN104258809A (en) * 2014-09-15 2015-01-07 河南农业大学 Modified biomass charcoal and remediation method of heavy metal contaminated soil
CN105419805A (en) * 2015-11-27 2016-03-23 同济大学 Preparing method for complex function repairing agent for treatment of heavy metal contaminated soil
CN105669324A (en) * 2016-01-05 2016-06-15 青岛洪润林业生物质能源有限公司 Biochar fertilizer and preparation method and application thereof
KR20180097193A (en) * 2017-02-22 2018-08-31 세종대학교산학협력단 Method for absorbing and removing arsenic using paper mill sludge
CN107021714A (en) * 2017-04-14 2017-08-08 东南大学 A kind of curing agent and methods for making and using same for heavy metal polluted soil
CN109122136A (en) * 2018-07-24 2019-01-04 广东省生态环境技术研究所 A kind of method of rice safety in production on mild or moderate heavy-metal contaminated soil
CN109294588A (en) * 2018-08-30 2019-02-01 安徽农业大学 A kind of passivator and its application method for repairing heavy metals in farmland cadmium pollution

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
磁性羟基磷灰石/生物炭复合材料的制备及对Pb2+的吸附性能;张连科;《环境科学学报》;20181130;第38卷(第11期);第4360-4370页 *
纳米羟基磷灰石改性生物炭对铜的吸附性能研究;朱司航;《农业环境科学学报》;20171031;第36卷(第10期);第2092-2098页 *

Also Published As

Publication number Publication date
CN110699084A (en) 2020-01-17

Similar Documents

Publication Publication Date Title
CN110699084B (en) Soil heavy metal pollution curing and repairing composite reagent and curing and repairing method
Ramrakhiani et al. Industrial waste derived biosorbent for toxic metal remediation: mechanism studies and spent biosorbent management
CN107652976B (en) Mineral-based soil remediation agent and preparation method thereof
CN104804747B (en) A kind of calcium base weight metal soil-repairing agent and preparation method
CN111085537B (en) Method for restoring heavy metal contaminated soil by using organic phosphorus and inorganic phosphorus materials
CN110076185B (en) Method for repairing heavy metal and polycyclic aromatic hydrocarbon combined contaminated soil
CN109762569B (en) Heavy metal cadmium and arsenic composite contaminated soil remediation agent and preparation method thereof
CN110423624B (en) Soil pollution stabilizing and repairing agent, preparation and application
LU102374B1 (en) Method for passivating heavy metal contaminated farmland soil
CN113058983B (en) Method for restoring chromium-polluted soil by biochar-loaded hematite-shewanella photovoltaic complex
CN111286337A (en) Heavy metal composite contaminated soil remediation agent and soil remediation method using same
CN110976506A (en) Curing and stabilizing repairing agent for polluted soil and repairing method thereof
CN107099301B (en) Phosphorus-rich biological coke and preparation method and application thereof
CN107557015A (en) Heavy-metal contaminated soil renovation agent and its application method
CN111548089B (en) Barrier material with environment repairing function and preparation and use methods thereof
CN104437389A (en) Preparation method and application of adsorbent for treating lead-containing waste water
CN112779017B (en) Heavy metal contaminated soil remediation agent and preparation method and application thereof
CN107442066B (en) Microwave carbonized persimmon peel biological adsorbent and preparation method and application thereof
CN113979527A (en) Method for synchronously and efficiently removing hexavalent chromium and trichloroethylene combined pollution
CN112794622A (en) Heavy metal-containing sludge dehydrating agent
CN110665956A (en) Mechanochemical curing stabilization restoration method for heavy metal lead contaminated soil
CN107030099B (en) Stabilizer for synchronously and efficiently repairing lead-cadmium composite polluted red soil
Mao et al. The distribution and elevated solubility of lead, arsenic and cesium in contaminated paddy soil enhanced with the electrokinetic field
AU2021103099A4 (en) Method for preparing composite magnetic adsorption material and applications thereof
CN112678919A (en) Coking sewage purifying agent prepared based on steel solid waste and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant