CN110697821A - A seawater source transcritical carbon dioxide heat pump cycle multi-effect seawater desalination system - Google Patents
A seawater source transcritical carbon dioxide heat pump cycle multi-effect seawater desalination system Download PDFInfo
- Publication number
- CN110697821A CN110697821A CN201910921503.5A CN201910921503A CN110697821A CN 110697821 A CN110697821 A CN 110697821A CN 201910921503 A CN201910921503 A CN 201910921503A CN 110697821 A CN110697821 A CN 110697821A
- Authority
- CN
- China
- Prior art keywords
- seawater
- carbon dioxide
- heat
- distiller
- effect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 264
- 239000013535 sea water Substances 0.000 title claims abstract description 246
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 151
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 151
- 238000010612 desalination reaction Methods 0.000 title claims abstract description 100
- 238000012546 transfer Methods 0.000 claims abstract description 52
- 150000003839 salts Chemical class 0.000 claims abstract description 40
- 230000000694 effects Effects 0.000 claims description 63
- 239000012267 brine Substances 0.000 claims description 44
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 43
- 230000001105 regulatory effect Effects 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000013505 freshwater Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 15
- 230000001502 supplementing effect Effects 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000005338 heat storage Methods 0.000 abstract description 29
- 238000005516 engineering process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007701 flash-distillation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009938 salting Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/14—Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/06—Flash evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/142—Solar thermal; Photovoltaics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/208—Off-grid powered water treatment
- Y02A20/212—Solar-powered wastewater sewage treatment, e.g. spray evaporation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
本发明公开了一种海水源跨临界二氧化碳热泵循环多效海水淡化系统,整个系统应用于海水淡化领域。主要设备包括太阳能集热器、多效海水蒸馏器、膨胀箱、导热油‑海水换热器、熔融盐‑导热油换热器、高温熔融盐储罐、低温熔融盐储罐、二氧化碳蒸发器、二氧化碳压缩机组、二氧化碳膨胀机组、凝汽器等部件。本发明通过设置熔融盐蓄热模块,克服了太阳能的昼夜间歇性,使得系统可连续工作;通过设置二氧化碳热泵单元,利用压缩机将二氧化碳压缩至密度大的超临界二氧化碳,热泵循环的设备体积小;利用海水源跨临界二氧化碳热泵系统吸收海水热量,再通过海水蒸馏器对海水进行多效淡化,从而实现高效海水淡化。
The invention discloses a seawater source transcritical carbon dioxide heat pump circulating multi-effect seawater desalination system, and the whole system is applied to the field of seawater desalination. The main equipment includes solar collector, multi-effect seawater distiller, expansion tank, heat transfer oil-seawater heat exchanger, molten salt-heat transfer oil heat exchanger, high temperature molten salt storage tank, low temperature molten salt storage tank, carbon dioxide evaporator, Carbon dioxide compressor unit, carbon dioxide expansion unit, condenser and other components. The invention overcomes the day and night intermittency of solar energy by setting the molten salt heat storage module, so that the system can work continuously; by setting the carbon dioxide heat pump unit, the compressor is used to compress the carbon dioxide to the supercritical carbon dioxide with high density, and the equipment volume of the heat pump cycle is small. ;Using seawater source transcritical carbon dioxide heat pump system to absorb seawater heat, and then multi-effect desalination of seawater through seawater distiller, so as to achieve high-efficiency seawater desalination.
Description
技术领域technical field
本发明属于太阳能利用以及海水淡化领域,涉及热泵海水淡化技术,特别涉及一种太阳能辅助的海水源跨临界二氧化碳热泵循环多效海水淡化系统技术。The invention belongs to the fields of solar energy utilization and seawater desalination, relates to a heat pump seawater desalination technology, in particular to a solar-assisted seawater source transcritical carbon dioxide heat pump cycle multi-effect seawater desalination system technology.
背景技术Background technique
淡水是人类来意生存和发展的物质之一。当前淡水资源匮乏日益严重,已成为全球性的环境问题。而全球水资源总量中近97.5%的水为海水等咸水资源。研究高效环保的海水淡化技术对于解决水资源匮乏问题意义重大。现有利用太阳能进行海水淡化的技术已非常成熟,与传统动力源和热源相比,太阳能具有安全、环保、不消耗常规能源、无污染、所得淡水纯度高等诸多优点,将太阳能采集与脱盐工艺两个系统结合是一种可持续发展的海水淡化技术,对于淡水资源紧缺、环保要求高的地区有着巨大应用潜力。现有的海水淡化技术中,在太阳能的基础上,耦合利用风能、地热、工业废热或者其他能量来源的方式也较为常见。Fresh water is one of the substances that humans come to survive and develop. The scarcity of freshwater resources has become increasingly serious and has become a global environmental problem. Nearly 97.5% of the total global water resources are salt water resources such as seawater. Research on efficient and environmentally friendly seawater desalination technology is of great significance for solving the problem of water scarcity. The existing technology for seawater desalination using solar energy is very mature. Compared with traditional power sources and heat sources, solar energy has many advantages such as safety, environmental protection, no consumption of conventional energy, no pollution, and high purity of the obtained fresh water. The combination of these systems is a sustainable desalination technology, which has great application potential in areas with scarce freshwater resources and high environmental protection requirements. Among the existing seawater desalination technologies, on the basis of solar energy, it is also common to couple and utilize wind energy, geothermal heat, industrial waste heat or other energy sources.
然而,就目前的太阳能海水淡化技术状况而言,单纯的太阳能海水淡化效率偏低,而单纯的热泵海水淡化成本偏高,传统热泵采用的有机工质会造成温室效应和臭氧层空洞。目前的太阳能海水淡化设备普遍体积较大、淡化能耗高、设备易腐蚀、整体成本较高。此外,太阳能本身具有不稳定性和昼夜间歇性,导致太阳能海水淡化系统工作不连续,一定程度上也影响了太阳能海水淡化系统的能效和造水比,增加了海水淡化的成本。However, as far as the current state of solar desalination technology is concerned, the efficiency of pure solar desalination is low, and the cost of pure heat pump desalination is high. The organic working fluid used in traditional heat pumps will cause greenhouse effect and ozone layer hole. The current solar seawater desalination equipment is generally large in size, high in desalination energy consumption, easy to corrode equipment, and high in overall cost. In addition, the solar energy itself is unstable and intermittent between day and night, which leads to the discontinuous operation of the solar desalination system, which also affects the energy efficiency and water production ratio of the solar desalination system to a certain extent, and increases the cost of desalination.
发明内容SUMMARY OF THE INVENTION
针对现有太阳能海水淡化技术所存在的上述缺点和不足,本发明的目的在于提供一种太阳能辅助的海水源跨临界二氧化碳热泵综合能源系统实现高效海水淡化,该系统利用了太阳能对海水进行预热,结合跨临界二氧化碳热泵循环降低淡化成本。In view of the above-mentioned shortcomings and deficiencies existing in the existing solar seawater desalination technology, the purpose of the present invention is to provide a solar-assisted seawater source transcritical carbon dioxide heat pump integrated energy system to achieve high-efficiency seawater desalination, and the system utilizes solar energy to preheat seawater. , combined with transcritical carbon dioxide heat pump cycle to reduce desalination costs.
为达到上述目的,本发明采用如下的技术方案予以实现:In order to achieve the above object, the present invention adopts the following technical scheme to realize:
一种海水源跨临界二氧化碳热泵循环多效海水淡化系统,包括太阳能集热储热单元、跨临界二氧化碳热泵单元和海水淡化单元,其特征在于,A seawater source transcritical carbon dioxide heat pump circulation multi-effect seawater desalination system, comprising a solar heat collection and heat storage unit, a transcritical carbon dioxide heat pump unit and a seawater desalination unit, characterized in that,
--所述太阳能集热储热单元,至少包括太阳能集热器、导热油-二氧化碳换热器的高温侧、熔融盐-导热油换热器的导热油换热侧,其中,--The solar heat collection and heat storage unit includes at least a solar heat collector, a high temperature side of a heat transfer oil-carbon dioxide heat exchanger, and a heat transfer oil heat exchange side of a molten salt-heat transfer oil heat exchanger, wherein,
所述太阳能集热器、导热油-二氧化碳换热器的高温侧、熔融盐-导热油换热器的导热油换热侧通过管路依次连通形成一封闭的导热油循环回路;The solar heat collector, the high temperature side of the heat-conducting oil-carbon dioxide heat exchanger, and the heat-conducting oil heat-exchanging side of the molten salt-heat-conducting oil heat exchanger are connected in sequence through pipelines to form a closed heat-conducting oil circulation loop;
所述太阳能集热器的进口与出口之间设置一旁通管路,所述旁通管路上设置一旁路阀门,所述太阳能集热器的进口处设置一主路阀门;A bypass pipeline is arranged between the inlet and the outlet of the solar collector, a bypass valve is arranged on the bypass pipeline, and a main valve is arranged at the inlet of the solar collector;
所述熔融盐-导热油换热器的熔融盐换热侧的一端开口通过管路与一低温熔融盐储罐连通,另一端开口通过管路与一高温熔融盐储罐连通;One end opening of the molten salt heat exchange side of the molten salt-conducting oil heat exchanger is communicated with a low temperature molten salt storage tank through a pipeline, and the other end opening is communicated with a high temperature molten salt storage tank through a pipeline;
--所述跨临界二氧化碳热泵单元,至少包括二氧化碳蒸发器的冷侧、二氧化碳压缩机组、二氧化碳膨胀机组、第一效海水蒸馏器中的加热管路,所述二氧化碳蒸发器的冷侧、二氧化碳压缩机组、第一效海水蒸馏器中的加热管路、二氧化碳膨胀机组通过管路依次连通,形成一封闭的二氧化碳循环回路;--The transcritical carbon dioxide heat pump unit includes at least the cold side of the carbon dioxide evaporator, the carbon dioxide compressor unit, the carbon dioxide expansion unit, the heating pipeline in the first-effect seawater distiller, the cold side of the carbon dioxide evaporator, the carbon dioxide compression unit The unit, the heating pipeline in the first-effect seawater distiller, and the carbon dioxide expansion unit are connected in sequence through the pipeline to form a closed carbon dioxide circulation loop;
--所述海水淡化单元,至少包括第一效海水蒸馏器、第二效海水蒸馏器、凝汽器、导热油-二氧化碳换热器的低温侧、海水分流三通调节阀、海水盐水三通混合阀,其中,--The seawater desalination unit includes at least a first-effect seawater distiller, a second-effect seawater distiller, a condenser, a low temperature side of a heat transfer oil-carbon dioxide heat exchanger, a seawater diversion three-way regulating valve, and a seawater brine three-way mixing valve, which,
所述海水分流三通调节阀的进口形成为未经淡化的新海水进口,所述海水分流三通调节阀的第一出口通过管路依次经所述凝汽器的低温侧、所述导热油-二氧化碳换热器的低温侧后分别与所述第一效海水蒸馏器、第二效海水蒸馏器顶部的新海水进口连通,且所述第一效海水蒸馏器、第二效海水蒸馏器顶部的新海水进口管路上均设有压力调节阀;The inlet of the seawater diversion three-way regulating valve is formed as a new seawater inlet without desalination, and the first outlet of the seawater diversion three-way regulating valve sequentially passes through the low temperature side of the condenser, the heat transfer oil through the pipeline. - the low temperature side of the carbon dioxide heat exchanger is respectively connected with the new seawater inlets at the top of the first effect seawater distiller and the second effect seawater distiller, and the tops of the first effect seawater distiller and the second effect seawater distiller are respectively connected All new seawater inlet pipelines are equipped with pressure regulating valves;
所述第一效海水蒸馏器、第二效海水蒸馏器顶部或靠近顶部的位置均设有淡水蒸汽出口、底部均设有浓盐水出口,所述第一效海水蒸馏器的淡水蒸汽出口通过管路与设置在所述第二效海水蒸馏器中的加热管路的进口连通,所述第二效海水蒸馏器中的加热管路的出口、所述第二效海水蒸馏器的淡水蒸汽出口分别通过管路与所述凝汽器的高温侧进口连通,所述凝汽器的高温侧出口形成为淡化水排出口;所述第一效海水蒸馏器的浓盐水出口通过管路通入所述第二效海水蒸馏器内,所述第二效海水蒸馏器的浓盐水出口分为两条支路,其中第一支路将浓盐水直接排出,且在该第一支路上设有调节阀,第二支路与所述海水盐水三通混合阀的第一进口连通,所述海水盐水三通混合阀的第二进口通过管路与所述海水分流三通调节阀的第二出口,所述海水盐水三通混合阀的出口通过管路与所述二氧化碳蒸发器的热侧进口连通,所述二氧化碳蒸发器的热侧出口形成为海水排出口。The first-effect seawater distiller and the second-effect seawater distiller are all provided with a freshwater steam outlet at the top or near the top, and a concentrated salt water outlet at the bottom, and the freshwater steam outlet of the first-effect seawater distiller passes through a pipe. The road is communicated with the inlet of the heating pipeline arranged in the second effect seawater distiller, the outlet of the heating pipeline in the second effect seawater distiller and the fresh water steam outlet of the second effect seawater distiller are respectively It is communicated with the high temperature side inlet of the condenser through a pipeline, and the high temperature side outlet of the condenser is formed as a desalinated water outlet; the concentrated brine outlet of the first effect seawater distiller is connected to the In the second effect seawater distiller, the concentrated brine outlet of the second effect seawater distiller is divided into two branches, wherein the first branch directly discharges the concentrated brine, and a regulating valve is provided on the first branch, The second branch is communicated with the first inlet of the seawater brine three-way mixing valve, and the second inlet of the seawater brine three-way mixing valve is connected to the second outlet of the seawater diversion three-way regulating valve through a pipeline. The outlet of the seawater brine three-way mixing valve is communicated with the hot side inlet of the carbon dioxide evaporator through a pipeline, and the hot side outlet of the carbon dioxide evaporator is formed as a seawater discharge port.
优选地,所述跨临界二氧化碳热泵单元中,所述二氧化碳膨胀机组将通入其中的二氧化碳膨胀至亚临界状态,亚临界二氧化碳通入所述二氧化碳蒸发器的冷侧进行吸热,再经所述压缩机组压缩后达到超临界状态。Preferably, in the transcritical carbon dioxide heat pump unit, the carbon dioxide expansion unit expands the carbon dioxide introduced into it to a subcritical state, and the subcritical carbon dioxide is introduced into the cold side of the carbon dioxide evaporator to absorb heat, and then passes through the The compressor unit reaches a supercritical state after being compressed.
优选地,所述太阳能集热储热单元还包括一导热油泵,所述导热油泵设置在所述导热油循环回路上,用以驱动所述循环回路中的导热油在各部件之间循环流动。Preferably, the solar heat collection and storage unit further includes a heat transfer oil pump, which is arranged on the heat transfer oil circulation circuit to drive the heat transfer oil in the circulation circuit to circulate among the components.
进一步地,所述导热油泵设置在所述太阳能集热器的进口管路和/或出口管路上。Further, the heat transfer oil pump is arranged on the inlet pipeline and/or the outlet pipeline of the solar heat collector.
优选地,所述导热油循环回路中还设置一膨胀箱,所述膨胀箱用以适应导热油受热而体积增大以及在导热油不足时进行补充。Preferably, an expansion tank is further provided in the heat-conducting oil circulation circuit, and the expansion tank is used to adapt to the heat-conducting oil being heated and increasing its volume and replenishing the heat-conducting oil when the heat-conducting oil is insufficient.
进一步地,所述膨胀箱设置在所述太阳能集热器与导热油-二氧化碳换热器的高温侧之间的连通管路上。Further, the expansion tank is arranged on the communication pipeline between the solar heat collector and the high temperature side of the heat transfer oil-carbon dioxide heat exchanger.
进一步地,所述膨胀箱上还设有带阀门的导热油补充管路、带阀门的导热油排放管路,需要更换导热油时,打开所述导热油排放管路上的阀门,放掉旧导热油;需要添加导热油时,打开所述导热油补充管路上的阀门。Further, the expansion tank is also provided with a heat-conducting oil supplementary pipeline with a valve and a heat-conducting oil discharge pipeline with a valve. When the heat-conducting oil needs to be replaced, open the valve on the heat-conducting oil discharge pipeline and let go of the old heat-conducting oil. oil; when the heat transfer oil needs to be added, open the valve on the heat transfer oil supplementary pipeline.
优选地,新海水依次流过所述凝汽器、导热油-二氧化碳换热器后温度升高,再进入第一效海水蒸馏器和第二效海水蒸馏器中进行分效淡化,其中所述第一效海水蒸馏器内的工作压力高于所述第二效海水蒸馏器。Preferably, after the new seawater flows through the condenser and the heat transfer oil-carbon dioxide heat exchanger in sequence, the temperature rises, and then enters the first-effect seawater distiller and the second-effect seawater distiller for split-effect desalination, wherein the The working pressure in the first effect seawater distiller is higher than the second effect seawater distiller.
优选地,所述第二效海水蒸馏器排出的浓盐水与经过所述海水分流三通调节阀分流的新海水在所述海水盐水三通混合阀中以一定比例混合后作为所述二氧化碳蒸发器的热源,提高了二氧化碳热泵单元的平均吸热温度。Preferably, the concentrated brine discharged from the second-effect seawater distiller and the new seawater shunted by the seawater three-way regulating valve are mixed in a certain proportion in the seawater-brine three-way mixing valve as the carbon dioxide evaporator The heat source increases the average endothermic temperature of the carbon dioxide heat pump unit.
优选地,所述海水淡化单元还包括一海水排水泵、一浓盐水泵和一淡化水泵,其中,所述海水排水泵设置在所述二氧化碳蒸发器的海水排出管路上,所述浓盐水泵设置在所述第二效海水蒸馏器的浓盐水出口管路上,所述淡化水泵设置在所述凝汽器的高温侧出口管路上。Preferably, the seawater desalination unit further comprises a seawater drainage pump, a concentrated brine pump and a desalination water pump, wherein the seawater drainage pump is arranged on the seawater discharge pipeline of the carbon dioxide evaporator, and the concentrated brine pump is arranged On the concentrated brine outlet pipeline of the second effect seawater distiller, the desalination water pump is arranged on the high temperature side outlet pipeline of the condenser.
优选地,所述系统至少包括储热与热泵淡化模式、放热与热泵淡化模式、储热与闪蒸淡化模式、以及放热与闪蒸淡化模式。Preferably, the system includes at least a heat storage and heat pump desalination mode, a heat release and heat pump desalination mode, a heat storage and flash desalination mode, and an exothermic and flash desalination mode.
进一步地,当太阳能充足时,启动储热与热泵淡化模式,此时所述太阳能集热储热单元中的旁路阀门关闭,主路阀门打开,所述导热油循环回路中的导热油被输送至所述太阳能集热器中,加热后的高温导热油通入所述熔融盐-导热油换热器的导热油换热侧,所述低温熔融盐储罐中的低温熔融盐被输送至所述熔融盐-导热油换热器的熔融盐换热侧而被导热油换热侧中的高温导热油加热至储热温度后,通入所述高温熔融盐储罐中;在储热与热泵淡化模式下,所述二氧化碳热泵单元中,通入所述二氧化碳蒸发器冷侧的二氧化碳吸热之后形成为10-20℃的过热气体,过热二氧化碳再经所述二氧化碳压缩机组压缩之后达到超临界状态,且温度达到100-120℃的高温,之后高温超临界二氧化碳进入所述第一效海水蒸馏器的加热管路对其中的海水进行加热,经过放热后的二氧化碳再经过所述二氧化碳膨胀机组膨胀后将能量转化为机械能,变成低温低压的二氧化碳气液混合物,最终该二氧化碳气液混合物通入所述蒸发器的冷侧后重新变成二氧化碳过热气体,完成二氧化碳工质循环;在储热与热泵淡化模式下,通入所述导热油-二氧化碳换热器低温侧的新海水被加热至约40℃后分别被输送至所述第一效海水蒸馏器、第二效海水蒸馏器内,新海水与所述第二效海水蒸馏器产生的浓盐水在所述海水盐水三通混合阀中直接混合后通入所述二氧化碳蒸发器的热侧,作为所述二氧化碳蒸发器的热源。Further, when the solar energy is sufficient, the heat storage and heat pump desalination mode is activated. At this time, the bypass valve in the solar heat collection and heat storage unit is closed, the main circuit valve is opened, and the heat transfer oil in the heat transfer oil circulation loop is transported. into the solar heat collector, the heated high-temperature heat-conducting oil is passed into the heat-conducting oil heat-exchanging side of the molten salt-heat-conducting oil heat exchanger, and the low-temperature molten salt in the low-temperature molten salt storage tank is transported to the After the molten salt heat exchange side of the molten salt-conducting oil heat exchanger is heated to the heat storage temperature by the high-temperature heat-conducting oil in the heat-conducting oil heat-exchanging side, it is passed into the high-temperature molten salt storage tank; In the desalination mode, in the carbon dioxide heat pump unit, the carbon dioxide passed into the cold side of the carbon dioxide evaporator absorbs heat to form a superheated gas of 10-20°C, and the superheated carbon dioxide is compressed by the carbon dioxide compressor unit to reach a supercritical state. , and the temperature reaches a high temperature of 100-120 ° C, then high-temperature supercritical carbon dioxide enters the heating pipeline of the first-effect seawater distiller to heat the seawater therein, and the carbon dioxide after exothermic is expanded through the carbon dioxide expansion unit. Then the energy is converted into mechanical energy, and becomes a low-temperature and low-pressure carbon dioxide gas-liquid mixture. Finally, the carbon dioxide gas-liquid mixture is passed into the cold side of the evaporator and then becomes carbon dioxide superheated gas again to complete the carbon dioxide working medium cycle; In the heat pump desalination mode, the new seawater introduced into the low temperature side of the heat transfer oil-carbon dioxide heat exchanger is heated to about 40°C and then transported to the first effect seawater distiller and the second effect seawater distiller, respectively. The seawater and the concentrated brine produced by the second effect seawater distiller are directly mixed in the seawater brine three-way mixing valve and then passed into the hot side of the carbon dioxide evaporator as a heat source of the carbon dioxide evaporator.
进一步地,当太阳能充足但电能不足时,启动所述放热与热泵淡化模式,此时所述太阳能集热器的主路阀门关闭,旁路阀门打开,所述高温熔融盐储罐中的高温熔融盐流入所述熔融盐-导热油换热器的熔融盐换热侧,对所述导热油循环回路中的导热油进行加热而温度降低后,再通入所述低温熔融盐储罐,此时所述二氧化碳热泵循环单元、海水淡化单元的工作过程,与所述储热与热泵淡化模式下相同。Further, when the solar energy is sufficient but the electric energy is insufficient, the heat release and heat pump desalination mode is activated, at this time, the main valve of the solar collector is closed, the bypass valve is opened, and the high temperature in the high temperature molten salt storage tank is Molten salt flows into the molten salt heat exchange side of the molten salt-conducting oil heat exchanger, heats the heat-conducting oil in the heat-conducting oil circulation circuit to reduce the temperature, and then passes into the low-temperature molten salt storage tank. The working process of the carbon dioxide heat pump circulation unit and the seawater desalination unit is the same as that in the heat storage and heat pump desalination mode.
进一步地,当太阳能充足时,启动储热与闪蒸淡化模式,此时所述太阳能集热储热单元的工作过程,与储热与热泵淡化模式下相同;此时所述二氧化碳热泵循环单元停止工作,新海水在所述海水分流三通调节阀的作用下全部流入所述凝汽器的低温侧,经过凝气预热之后再流入所述导热油-海水换热器的低温侧,加热至闪蒸温度;所述第一效海水蒸馏器顶部的压力调节阀关闭,所述第二效海水蒸馏器顶部的压力调节阀打开,通入所述第二效海水蒸馏器中的新海水在压力调节阀的作用下压力降低至闪蒸压力,并在所述第二效海水蒸馏器中完成闪蒸,闪蒸后的蒸汽流入所述凝汽器的高温侧后得到凝结,所述第二效海水蒸馏器中产生的浓盐水直接排出。Further, when the solar energy is sufficient, the heat storage and flash desalination mode is activated, and the working process of the solar heat collection and heat storage unit is the same as that in the heat storage and heat pump desalination mode; at this time, the carbon dioxide heat pump circulation unit stops. Work, the new seawater flows into the low temperature side of the condenser under the action of the seawater diversion three-way regulating valve, and then flows into the low temperature side of the heat transfer oil-seawater heat exchanger after the condensate is preheated, and is heated to Flash evaporation temperature; the pressure regulating valve at the top of the first effect seawater distiller is closed, the pressure regulating valve at the top of the second effect seawater distiller is opened, and the new seawater introduced into the second effect seawater still is under pressure Under the action of the regulating valve, the pressure is reduced to the flashing pressure, and the flashing is completed in the second effect seawater distiller. The flashed steam flows into the high temperature side of the condenser and is condensed. The concentrated brine produced in the seawater distiller is directly discharged.
进一步地,当太阳能不足同时电能也不足时,启动所述放热与闪蒸淡化模式,此时所述太阳能集热器的主路阀门关闭,旁路阀门打开,所述高温熔融盐储罐中的高温熔融盐流入所述熔融盐-导热油换热器的熔融盐换热侧,加热导热油循环回路中的导热油而温度降低后,再通入低温熔融盐储罐,此时所述海水淡化单元的工作过程,与储热与闪蒸淡化模式下相同。Further, when the solar energy is insufficient and the electric energy is also insufficient, the exothermic and flash desalination modes are activated. At this time, the main circuit valve of the solar collector is closed, the bypass valve is opened, and the high temperature molten salt storage tank is stored. The high-temperature molten salt flows into the molten salt heat exchange side of the molten salt-conducting oil heat exchanger, heats the heat-conducting oil in the heat-conducting oil circulation circuit and reduces the temperature, and then passes into the low-temperature molten salt storage tank. The working process of the desalination unit is the same as in the heat storage and flash desalination modes.
优选地,当没有电能输入给所述二氧化碳压缩机组时,通过调节所述第二效海水蒸馏器顶部的压力调节阀实现闪蒸制取淡化水。Preferably, when there is no electric power input to the carbon dioxide compressor unit, flash distillation to produce desalinated water is realized by adjusting the pressure regulating valve at the top of the second-effect seawater distiller.
进一步地,所述系统还可以将所述二氧化碳压缩机组用风力透平带动,升级为风力制取淡化水系统,不用从电网获取电能,有利于孤岛的运行。Further, the system can also drive the carbon dioxide compressor unit with a wind turbine, and upgrade it to a wind-powered desalination water system, without obtaining electric power from the power grid, which is beneficial to the operation of the isolated island.
同现有技术相比,本发明的太阳能辅助的海水源跨临界二氧化碳热泵循环多效海水淡化系统,具有显著的技术优点:(1)在海水淡化系统中,具体地是在太阳能集热储热单元增加了熔融盐蓄热模块,克服了太阳能昼夜间歇性的特点,使得海水淡化系统可连续工作;(2)在海水淡化系统中,设置二氧化碳热泵单元,二氧化碳临界点温度与环境温度接近,通过压缩机将二氧化碳压缩至较为常见的超临界二氧化碳,由于超临界二氧化碳密度大,因此热泵循环的设备体积小,便于制造,降低成本;(3)采用负压低温多效海水淡化技术,低温可以有效减轻设备腐蚀,而负压又可降低海水蒸馏所需温度减少了淡化能耗;(4)该系统利用了太阳能对海水进行预热,结合跨临界二氧化碳热泵循环降低了海水淡化成本。Compared with the prior art, the solar-assisted seawater source transcritical carbon dioxide heat pump cycle multi-effect seawater desalination system of the present invention has significant technical advantages: (1) in the seawater desalination system, specifically in the solar energy collection heat storage system; The unit adds a molten salt heat storage module, which overcomes the intermittent characteristics of solar energy day and night, so that the seawater desalination system can work continuously; (2) In the seawater desalination system, a carbon dioxide heat pump unit is installed, and the carbon dioxide critical point temperature is close to the ambient temperature. The compressor compresses carbon dioxide to the more common supercritical carbon dioxide. Due to the high density of supercritical carbon dioxide, the heat pump cycle equipment is small in size, easy to manufacture and reduces costs; (3) Using negative pressure low temperature multi-effect seawater desalination technology, low temperature can effectively Reduce equipment corrosion, and negative pressure can reduce the temperature required for seawater distillation and reduce the energy consumption of desalination; (4) The system uses solar energy to preheat seawater, combined with transcritical carbon dioxide heat pump cycle to reduce the cost of seawater desalination.
附图说明Description of drawings
图1为本发明的海水源跨临界二氧化碳热泵循环多效海水淡化系统示意图。1 is a schematic diagram of a seawater source transcritical carbon dioxide heat pump cycle multi-effect seawater desalination system of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
如图1所示,本发明的太阳能辅助的海水源跨临界二氧化碳热泵循环多效海水淡化系统,由海水排水泵1、二氧化碳蒸发器2、二氧化碳压缩机3、二氧化碳膨胀机4、第一效海水蒸馏器5、第二效海水蒸馏器6、浓盐水泵7、淡化水泵8、凝汽器9、太阳能集热器10、膨胀箱11、导热油-海水换热器12、熔融盐-导热油换热器13、低温熔融盐储罐14、高温熔融盐储罐15、导热油泵16、调节阀V1、V2、V5、V6、V7、V8、V9、混合阀V3、三向调节阀V4以及必要的管路等多个部件组成。具体地,本发明的太阳能辅助的海水源跨临界二氧化碳热泵循环多效海水淡化系统,包括太阳能集热储热单元、跨临界二氧化碳热泵单元和海水淡化单元。As shown in Figure 1, the solar-assisted seawater source transcritical carbon dioxide heat pump cycle multi-effect seawater desalination system of the present invention is composed of a seawater drainage pump 1, a
太阳能集热储热单元,至少包括太阳能集热器10、导热油-二氧化碳换热器12的高温侧、熔融盐-导热油换热器13的导热油换热侧,其中,太阳能集热器10、导热油-二氧化碳换热器12的高温侧、熔融盐-导热油换热器13的导热油换热侧通过管路依次连通形成一封闭的导热油循环回路;太阳能集热器10的进口与出口之间设置一旁通管路,旁通管路上设置一旁路阀门V8,太阳能集热器10的进口处设置一主路阀门V7;熔融盐-导热油换热器13的熔融盐换热侧的一端开口通过管路与一低温熔融盐储罐14连通,另一端开口通过管路与一高温熔融盐储罐15连通。导热油循环回路中还设置一导热油泵16,具体地,导热油泵16可以设置在太阳能集热器10的进口管路和/或出口管路上,导热油泵16用以驱动导热油循环回路中的导热油在各部件之间循环流动。导热油循环回路中还设置一膨胀箱11,具体地,膨胀箱11可以设置在太阳能集热器10与导热油-二氧化碳换热器12的高温侧之间的连通管路上,在导热油循环回路中设置膨胀箱11,其目的是适应导热油受热而体积增大以及在导热油不足时进行补充的作用。进一步地,膨胀箱11上还设有带阀门V5的导热油补充管路、带阀门V6的导热油排放管路,需要更换导热油时,阀门V6打开,放掉旧导热油,新的导热油从阀门V5处添加。The solar heat collection and heat storage unit includes at least a
跨临界二氧化碳热泵单元,至少包括二氧化碳蒸发器2的冷侧、二氧化碳压缩机组3、二氧化碳膨胀机组4、第一效海水蒸馏器5中的加热管路,二氧化碳蒸发器2的冷侧、二氧化碳压缩机组3、第一效海水蒸馏器5中的加热管路、二氧化碳膨胀机组4通过管路依次连通,形成一封闭的二氧化碳循环回路。跨临界二氧化碳热泵单元,使用二氧化碳作为循环工质,二氧化碳膨胀机组4将二氧化碳膨胀至亚临界状态,亚临界二氧化碳经二氧化碳蒸发器2吸热,再经二氧化碳压缩机组3压缩后达到超临界状态。The transcritical carbon dioxide heat pump unit includes at least the cold side of the
海水淡化单元,至少包括第一效海水蒸馏器5、第二效海水蒸馏器6、凝汽器9、导热油-二氧化碳换热器12的低温侧、海水分流三通调节阀V4、海水盐水三通混合阀V3,其中,海水分流三通调节阀V4的进口形成为未经淡化的新海水进口,海水分流三通调节阀V4的第一出口通过管路依次经凝汽器9的低温侧、导热油-二氧化碳换热器12的低温侧后分别与第一效海水蒸馏器5、第二效海水蒸馏器6顶部的新海水进口连通,且第一效海水蒸馏器5、第二效海水蒸馏器6顶部的新海水进口管路上分别设有压力调节阀V1、V2;第一效海水蒸馏器5、第二效海水蒸馏器6顶部或靠近顶部的位置均设有淡水蒸汽出口、底部均设有浓盐水出口,第一效海水蒸馏器5的淡水蒸汽出口通过管路与设置在第二效海水蒸馏器6中的加热管路的进口连通,第二效海水蒸馏器6中的加热管路的出口、第二效海水蒸馏器6的淡水蒸汽出口分别通过管路与凝汽器9的高温侧进口连通,凝汽器9的高温侧出口形成为淡化水排出口;第一效海水蒸馏器5的浓盐水出口通过管路通入第二效海水蒸馏器6内,第二效海水蒸馏器6的浓盐水出口分为两条支路,其中第一支路将浓盐水直接排出,且在该第一支路上设有调节阀V9,第二支路与海水盐水三通混合阀V3的第一进口连通,海水盐水三通混合阀V3的第二进口通过管路与海水分流三通调节阀V4的第二出口,海水盐水三通混合阀V3的出口通过管路与二氧化碳蒸发器2的热侧进口连通,二氧化碳蒸发器2的热侧出口形成为海水排出口,浓盐水与新海水在海水盐水三通混合阀V3中以一定比例混合后作为二氧化碳蒸发器2的热源,提高了二氧化碳热泵单元的平均吸热温度。The seawater desalination unit includes at least the first
海水淡化单元中,新海水依次流过凝汽器9和导热油-二氧化碳换热器12后温度升高,再进入第一效海水蒸馏器5和第二效海水蒸馏器6中进行分效淡化。其中第一效海水蒸馏器5内压力高于第二效海水蒸馏器6。优选地,第一效海水蒸馏器5的浓盐水出口通过管路通入第二效海水蒸馏器6的底部。进一步地,海水淡化单元还包括一海水排水泵1、一浓盐水泵7和一淡化水泵8,其中,海水排水泵1设置在二氧化碳蒸发器2的海水排出管路上,浓盐水泵7设置在第二效海水蒸馏器6的浓盐水出口管路上,淡化水泵8设置在凝汽器9的高温侧出口管路上。In the seawater desalination unit, the new seawater flows through the condenser 9 and the heat-conducting oil-carbon
本发明的太阳能辅助的海水源跨临界二氧化碳热泵循环多效海水淡化系统,至少包括储热与热泵淡化模式、放热与热泵淡化模式、储热与闪蒸淡化模式、放热与闪蒸淡化模式等四种海水淡化模式。The solar-assisted seawater source transcritical carbon dioxide heat pump cycle multi-effect seawater desalination system of the present invention at least includes heat storage and heat pump desalination modes, heat release and heat pump desalination modes, heat storage and flash desalination modes, and heat release and flash desalination modes and other four desalination modes.
当太阳能充足时,启动储热与热泵淡化模式,此时太阳能集热储热单元中的旁路阀门V8关闭,打开主路阀门V7,导热油循环回路中的导热油在导热油泵16的驱动下进入太阳能集热器10中,加热后的高温导热油流入熔融盐-导热油换热器13的高温侧,低温熔融盐储罐14中的低温熔融盐被输送至熔融盐-导热油换热器13的熔融盐换热侧而被高温导热油加热至储热温度后,通入高温熔融盐储罐15中。When the solar energy is sufficient, the heat storage and heat pump desalination mode is activated. At this time, the bypass valve V8 in the solar heat collection and heat storage unit is closed, and the main circuit valve V7 is opened. The heat transfer oil in the heat transfer oil circulation loop is driven by the heat
继续参考图1,在储热与热泵淡化模式下,此时二氧化碳热泵单元中经过二氧化碳蒸发器2的冷侧吸热之后的二氧化碳过热气体,温度为10-20℃。过热二氧化碳气体再经二氧化碳压缩机组3压缩之后达到超临界状态,温度可达100-120℃的高温。高温超临界二氧化碳进入第一效海水蒸馏器5的加热管路对其中的海水进行加热。经过放热后的二氧化碳再经过二氧化碳膨胀机组4回收其中的能量将其转化为机械能,变成低温低压的二氧化碳气液混合物。最终该二氧化碳气液混合物经过蒸发器2的冷侧后重新变成二氧化碳过热气体,完成二氧化碳工质循环。Continuing to refer to FIG. 1 , in the heat storage and heat pump desalination mode, the temperature of the carbon dioxide superheated gas in the carbon dioxide heat pump unit after passing through the cold side of the
继续参考图1,在储热与热泵淡化模式下,海水淡化回路中新海水分为两条支路,其中第一条新海水支路依次流过凝汽器9的低温侧、导热油-二氧化碳换热器12的低温侧吸收热量后进入第一效海水蒸馏器5,以减少第一效海水蒸馏器5中的传热不可逆损失。第二条新海水支路与第二效海水蒸馏器6产生的浓盐水在混合阀V3处直接混合后通入二氧化碳蒸发器2的热侧,作为二氧化碳蒸发器2的热源。而淡水蒸汽和浓盐水逐级自流进入第二效海水蒸馏器6加热更低压力的海水,最终第一效海水蒸馏器5和第二效海水蒸馏器6的淡水蒸汽在凝汽器9中得到液化,而浓盐水从第二效海水蒸馏器6的底部排出后与第二条支路的新海水在混合阀V3完成混合。Continuing to refer to Figure 1, in the heat storage and heat pump desalination mode, the new seawater in the seawater desalination circuit is divided into two branches, of which the first new seawater branch flows through the low temperature side of the condenser 9, the heat transfer oil-carbon dioxide in turn The low temperature side of the
参考图1,当太阳能充足但电能不足时,启动放热与热泵淡化模式,此时太阳能集热器10的主路阀门V7关闭,其旁路阀门V8打开。高温熔融盐储罐15中的高温熔融盐流入熔融盐-导热油换热器13的熔融盐换热侧,对导热油循环回路中的导热油进行加热而温度降低后,再通入低温熔融盐储罐14。此时二氧化碳热泵循环单元和海水淡化单元的工作过程,与储热与热泵淡化模式下相同。Referring to FIG. 1 , when the solar energy is sufficient but the electric energy is insufficient, the heat release and heat pump desalination mode is activated. At this time, the main circuit valve V7 of the
参考图1,当太阳能充足时,启动储热与闪蒸淡化模式,此时太阳能集热储热单元的工作过程,与储热与热泵淡化模式下相同。此时二氧化碳热泵循环单元停止工作,新海水在海水分流三通调节阀V4的作用下全部流入凝汽器9的低温侧,在经过凝气预热之后再流入导热油-海水换热器12的低温侧,加热至闪蒸温度。节流阀V1关闭,海水在节流阀V2的作用下压力降低至闪蒸压力,并在第二效海水蒸馏器6中完成闪蒸。闪蒸后的蒸汽流入凝汽器9的高温侧后得到凝结,第二效海水蒸馏器6中产生的浓盐水通过阀门V9直接排出,混合阀V3关闭。Referring to Figure 1, when the solar energy is sufficient, the heat storage and flash desalination mode is activated, and the working process of the solar heat collection and heat storage unit at this time is the same as that in the heat storage and heat pump desalination mode. At this time, the carbon dioxide heat pump circulation unit stops working, and the new seawater flows into the low temperature side of the condenser 9 under the action of the seawater diversion three-way regulating valve V4, and then flows into the heat transfer oil-
参考图1,当太阳能不足同时电能也不足时,启动放热与闪蒸淡化模式,此时太阳能集热器10的主路阀门V7关闭,其旁路阀门V8打开。高温熔融盐储罐15中的高温熔融盐流入熔融盐-导热油换热器13的熔融盐换热侧,加热导热油循环回路中的导热油而温度降低后,再通入低温熔融盐储罐14。此时,海水淡化单元的工作流程,与储热与闪蒸淡化模式下相同。Referring to FIG. 1 , when the solar energy is insufficient and the electric energy is also insufficient, the exothermic and flash desalination modes are activated. At this time, the main circuit valve V7 of the
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention should be included in the scope of the present invention. within.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910921503.5A CN110697821B (en) | 2019-09-27 | 2019-09-27 | Seawater source trans-critical carbon dioxide heat pump circulation multi-effect seawater desalination system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910921503.5A CN110697821B (en) | 2019-09-27 | 2019-09-27 | Seawater source trans-critical carbon dioxide heat pump circulation multi-effect seawater desalination system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110697821A true CN110697821A (en) | 2020-01-17 |
CN110697821B CN110697821B (en) | 2021-10-26 |
Family
ID=69198162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910921503.5A Active CN110697821B (en) | 2019-09-27 | 2019-09-27 | Seawater source trans-critical carbon dioxide heat pump circulation multi-effect seawater desalination system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110697821B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115010200A (en) * | 2022-08-10 | 2022-09-06 | 山东天瑞重工有限公司 | System for utilize sea water source heat pump to carry out sea water desalination |
CN116565962A (en) * | 2023-07-11 | 2023-08-08 | 国网天津市电力公司电力科学研究院 | A wind-solar-heat-storage integrated system and a wide-load peak-shaving operation method |
CN118791076A (en) * | 2024-06-17 | 2024-10-18 | 中国人民解放军海军工程大学 | Molten salt heat storage system coupled with ocean temperature difference power generation and supercritical seawater desalination device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1724395A (en) * | 2005-04-11 | 2006-01-25 | 国家海洋局天津海水淡化与综合利用研究所 | Apparatus of combined solar energy heat pump for desaltination of sea water |
CA2688610A1 (en) * | 2009-04-22 | 2010-10-22 | Hte Water Corporation | System and process for converting non-fresh water to fresh water or steam |
CN101955238A (en) * | 2010-10-08 | 2011-01-26 | 河北工业大学 | Seawater desalting method and device |
CN103670522A (en) * | 2012-09-18 | 2014-03-26 | 株式会社神户制钢所 | System combining power generation apparatus and desalination apparatus |
WO2015004300A1 (en) * | 2013-07-09 | 2015-01-15 | Green Sea Bio System, S.L. | Installation for obtaining biomass by means of the culture of algae and obtaining a biorefined product for the production of bio-oil and bioproducts and a method for obtaining same |
CN105923674A (en) * | 2016-06-07 | 2016-09-07 | 重庆大学 | Seawater desalination system driven by supercritical CO2 heat pump with dual heat sources |
CN106673097A (en) * | 2017-02-15 | 2017-05-17 | 上海交通大学 | Seawater desalting plant for solar coupled heat pump |
CN108128831A (en) * | 2018-01-16 | 2018-06-08 | 大连海洋大学 | Solar heat pump desalination plant |
CN108425709A (en) * | 2018-02-05 | 2018-08-21 | 西安交通大学 | A kind of carbon dioxide low temperature Rankine cycle electricity generation system |
CN109340066A (en) * | 2018-10-16 | 2019-02-15 | 中国科学院工程热物理研究所 | A supercritical carbon dioxide solar power generation and energy storage integrated system |
CN110230523A (en) * | 2019-07-01 | 2019-09-13 | 西安热工研究院有限公司 | A kind of supercritical CO 2 electricity generation system and method coupling sea water desalination |
-
2019
- 2019-09-27 CN CN201910921503.5A patent/CN110697821B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1724395A (en) * | 2005-04-11 | 2006-01-25 | 国家海洋局天津海水淡化与综合利用研究所 | Apparatus of combined solar energy heat pump for desaltination of sea water |
CA2688610A1 (en) * | 2009-04-22 | 2010-10-22 | Hte Water Corporation | System and process for converting non-fresh water to fresh water or steam |
CN101955238A (en) * | 2010-10-08 | 2011-01-26 | 河北工业大学 | Seawater desalting method and device |
CN103670522A (en) * | 2012-09-18 | 2014-03-26 | 株式会社神户制钢所 | System combining power generation apparatus and desalination apparatus |
WO2015004300A1 (en) * | 2013-07-09 | 2015-01-15 | Green Sea Bio System, S.L. | Installation for obtaining biomass by means of the culture of algae and obtaining a biorefined product for the production of bio-oil and bioproducts and a method for obtaining same |
CN105923674A (en) * | 2016-06-07 | 2016-09-07 | 重庆大学 | Seawater desalination system driven by supercritical CO2 heat pump with dual heat sources |
CN106673097A (en) * | 2017-02-15 | 2017-05-17 | 上海交通大学 | Seawater desalting plant for solar coupled heat pump |
CN108128831A (en) * | 2018-01-16 | 2018-06-08 | 大连海洋大学 | Solar heat pump desalination plant |
CN108425709A (en) * | 2018-02-05 | 2018-08-21 | 西安交通大学 | A kind of carbon dioxide low temperature Rankine cycle electricity generation system |
CN109340066A (en) * | 2018-10-16 | 2019-02-15 | 中国科学院工程热物理研究所 | A supercritical carbon dioxide solar power generation and energy storage integrated system |
CN110230523A (en) * | 2019-07-01 | 2019-09-13 | 西安热工研究院有限公司 | A kind of supercritical CO 2 electricity generation system and method coupling sea water desalination |
Non-Patent Citations (2)
Title |
---|
孙小军等: "热力压缩低温多效海水淡化特点及控制技术", 《电站辅机》 * |
齐春华等: "热法海水淡化前沿技术及其应用进展", 《中国给水排水》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115010200A (en) * | 2022-08-10 | 2022-09-06 | 山东天瑞重工有限公司 | System for utilize sea water source heat pump to carry out sea water desalination |
CN116565962A (en) * | 2023-07-11 | 2023-08-08 | 国网天津市电力公司电力科学研究院 | A wind-solar-heat-storage integrated system and a wide-load peak-shaving operation method |
CN116565962B (en) * | 2023-07-11 | 2023-10-31 | 国网天津市电力公司电力科学研究院 | Wind-solar heat storage integrated system and wide-load peak shaving operation method |
CN118791076A (en) * | 2024-06-17 | 2024-10-18 | 中国人民解放军海军工程大学 | Molten salt heat storage system coupled with ocean temperature difference power generation and supercritical seawater desalination device |
Also Published As
Publication number | Publication date |
---|---|
CN110697821B (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107062698B (en) | A kind of efficient direct expanding solar heating pump couples heating system with water resource heat pump | |
CN105923676B (en) | High-efficiency solar sea water desalination and air conditioner refrigerating cooperation method and system | |
CN105180515B (en) | A kind of multipurpose pumping system | |
CN103542597B (en) | A kind of power and refrigeration cogeneration system being suitable for recovery temperature-variable heat source | |
CN110697821B (en) | Seawater source trans-critical carbon dioxide heat pump circulation multi-effect seawater desalination system | |
CN107098422A (en) | A kind of Ship Waste Heat desalination system and desalination method | |
CN103112985A (en) | Multi-stage flash distillation seawater desalination system of low-temperature multi-effect steamer vapor compression distillation | |
CN108050571A (en) | Single-stage balanced type ammonia-water reabsorbs formula heat pump cycle equipment and heat supply method | |
CN114109751A (en) | Thermoelectric power generation and comprehensive utilization system | |
CN106915792B (en) | Wind-solar complementary seawater desalination device | |
CN1815122A (en) | Industrial waste water (liquid) residual neat recovering system | |
CN103807946B (en) | The rectification regenerating unit of heat source tower anti-freezing solution | |
CN104235986B (en) | A kind of heat source tower heat pump system and method for multiple-effect regeneration | |
CN108361797A (en) | A kind of high-temperature heat accumulation type power peak regulation cogeneration of heat and power waste-heat recovery device and method | |
CN215288060U (en) | Sea water desalting device | |
CN208312760U (en) | Three combined production device of solar refrigeration supplying hot water and fresh water | |
CN110282678A (en) | Wind light mutual complementing double flash evaporation seawater desalination system and working method based on vortex tube | |
CN203730205U (en) | Two-stage permeation concentration difference working device driven by low-grade heat source | |
CN206695430U (en) | First class lithium bromide absorptive heat pump unit with condensate recuperation of heat | |
CN104961181A (en) | Air-conditioning and seawater desalination combined production method and system | |
CN110567190B (en) | Vapor compression type absorption heat pump | |
CN103807947B (en) | The just infiltration regenerating unit of heat source tower anti-freezing solution | |
CN215809427U (en) | Ocean temperature difference energy cold, heat and electricity and fresh water poly-generation system based on solar energy assistance | |
CN104944493B (en) | A kind of air-conditioning of Winter-summer dual purpose and desalinization co-production and system | |
CN112283968A (en) | Geothermal water cascade utilization system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |