CN110694679A - EMT/FAU core-shell molecular sieve catalyst and preparation method and application thereof - Google Patents
EMT/FAU core-shell molecular sieve catalyst and preparation method and application thereof Download PDFInfo
- Publication number
- CN110694679A CN110694679A CN201911048174.4A CN201911048174A CN110694679A CN 110694679 A CN110694679 A CN 110694679A CN 201911048174 A CN201911048174 A CN 201911048174A CN 110694679 A CN110694679 A CN 110694679A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- emt
- fau
- core
- shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 125
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 125
- 239000003054 catalyst Substances 0.000 title claims abstract description 55
- 239000011258 core-shell material Substances 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims abstract description 81
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims abstract description 25
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 238000003786 synthesis reaction Methods 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 14
- 239000002585 base Substances 0.000 claims description 11
- 238000005810 carbonylation reaction Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- 230000006315 carbonylation Effects 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 239000003426 co-catalyst Substances 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 238000001308 synthesis method Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical group [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000001632 sodium acetate Substances 0.000 claims description 3
- 235000017281 sodium acetate Nutrition 0.000 claims description 3
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims description 3
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 238000005470 impregnation Methods 0.000 claims description 2
- 238000005342 ion exchange Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910021645 metal ion Inorganic materials 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- -1 sodium alkyl benzene Chemical class 0.000 claims description 2
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 claims description 2
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 229940077388 benzenesulfonate Drugs 0.000 claims 1
- 150000004665 fatty acids Chemical class 0.000 claims 1
- 238000011068 loading method Methods 0.000 claims 1
- HEBRGEBJCIKEKX-UHFFFAOYSA-M sodium;2-hexadecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HEBRGEBJCIKEKX-UHFFFAOYSA-M 0.000 claims 1
- 238000011426 transformation method Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 26
- 238000011156 evaluation Methods 0.000 abstract description 3
- 239000012670 alkaline solution Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 35
- 239000002245 particle Substances 0.000 description 24
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229910002091 carbon monoxide Inorganic materials 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000004115 Sodium Silicate Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 229910052911 sodium silicate Inorganic materials 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012452 mother liquor Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 101710134784 Agnoprotein Proteins 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001657 ferrierite group Inorganic materials 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 238000005899 aromatization reaction Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- DEQLTFPCJRGSHW-UHFFFAOYSA-N hexadecylbenzene Chemical compound CCCCCCCCCCCCCCCCC1=CC=CC=C1 DEQLTFPCJRGSHW-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000000614 phase inversion technique Methods 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical group CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/36—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
- C07C67/37—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by reaction of ethers with carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7019—EMT-type, e.g. EMC-2, ECR-30, CSZ-1, ZSM-3 or ZSM-20
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种EMT/FAU核壳分子筛催化剂及其制备方法和应用,该催化剂为核壳结构,以EMT分子筛为核相,以FAU分子筛为壳层,所述EMT分子筛的表面经弱碱溶液进行处理,并添加助催化剂,制备的EMT/FAU核壳型分子筛催化剂在评价装置中催化生产乙酸甲酯。与现有技术相比,EMT/FAU核壳型分子筛以EMT为活性组分,在保持较高的选择性和稳定性基础上,提高了二甲醚转化率,降低了成本,具有明显的技术优势。
The invention relates to an EMT/FAU core-shell molecular sieve catalyst and a preparation method and application thereof. The catalyst has a core-shell structure, uses an EMT molecular sieve as a core phase, and uses a FAU molecular sieve as a shell layer, and the surface of the EMT molecular sieve is treated with a weak alkaline solution. After treatment and addition of cocatalysts, the prepared EMT/FAU core-shell molecular sieve catalyst was used to catalyze the production of methyl acetate in the evaluation device. Compared with the existing technology, the EMT/FAU core-shell molecular sieve uses EMT as the active component, and on the basis of maintaining high selectivity and stability, it improves the conversion rate of dimethyl ether, reduces the cost, and has obvious technical advantages. Advantage.
Description
技术领域technical field
本发明涉及催化剂领域,具体涉及一种EMT/FAU核壳分子筛催化剂及其制备方法和应用。The invention relates to the field of catalysts, in particular to an EMT/FAU core-shell molecular sieve catalyst and a preparation method and application thereof.
背景技术Background technique
乙醇作为一种重要的清洁能源,可直接用作液体燃料或同汽油混合使用,以降低汽车尾气中一氧化碳和碳氢化合物的排放,对我国解决大气污染问题,实现可持续发展具有重要意义。基于我国“贫油、少气、煤资源相对丰富”的能源结构和石油对外依存度不断攀升的现状,发展以煤或生物质基合成气合成乙醇的新工艺,有望显著降低我国对石油的依赖,促进我国能源多元化变革。As an important clean energy, ethanol can be used directly as a liquid fuel or mixed with gasoline to reduce the emission of carbon monoxide and hydrocarbons in vehicle exhaust. It is of great significance to solve the problem of air pollution and achieve sustainable development in my country. Based on my country's energy structure of "poor oil, little gas, and relatively abundant coal resources" and the current situation of rising dependence on petroleum, the development of a new process for synthesizing ethanol from coal or biomass-based syngas is expected to significantly reduce my country's dependence on petroleum. , to promote my country's energy diversification reform.
二甲醚(DME)羰基化合成乙酸甲酯、乙酸甲酯进一步加氢得到目标产物乙醇,是近年来制备乙醇的新路线。此路线原子经济性高、原料CO来源广泛、反应条件温和、目标产物选择性好。与其他生产工艺(如发酵法、直接合成法等)相比,乙酸甲酯加氢过程,避免了乙醇-水共沸物的生成,大大节省了因分离导致的设备和能耗投资。目前该工艺路线的关键技术难点是高效、高稳定性催化剂的开发,其相关研究必将推动整个乙醇产业的发展。Dimethyl ether (DME) carbonylation to synthesize methyl acetate, methyl acetate is further hydrogenated to obtain the target product ethanol, which is a new route to prepare ethanol in recent years. This route has high atom economy, wide sources of raw material CO, mild reaction conditions and good selectivity of target products. Compared with other production processes (such as fermentation method, direct synthesis method, etc.), the hydrogenation process of methyl acetate avoids the formation of ethanol-water azeotrope, and greatly saves the investment in equipment and energy consumption caused by separation. At present, the key technical difficulty of this process route is the development of high-efficiency and high-stability catalysts, and its related research will definitely promote the development of the entire ethanol industry.
近年报道了多种二甲醚羰基化合成乙酸甲酯的催化剂。2006年Berkeley的Enrique Iglesia研究小组(Angew.Chem,Int.Ed.45(2006)10,1617-1620,J.Catal.245(2007)110,J.Am.Chem.Soc.129(2007)4919)发现在具有8元环分子筛体系的Mordenite(丝光沸石)和Ferrierite(镁碱沸石)可进行二甲醚的羰基化反应,乙酸甲酯的选择性非常好,达到99%,但二甲醚羰基化活性非常低。中文杰等(Catal.Lett.2010,139:33-37)对比研究了MOR和ZSM-35催化剂上二甲醚羰基化之乙酸甲酯反应活性的差别,发现ZSM-35分子筛具有更佳的反应稳定性和产物选择性,在250℃、1MPa,DME/CO/N2/He=5/50/2.5/42.5~12.5ml/min的反应条件,二甲醚转化率达11%,乙酸甲酯选择性达到96%。随后CN106365995B报道了在酸性EMT结构分子筛的催化剂上进行羰基化反应而得到乙酸甲酯。发现该方法在作为催化剂的酸性EMT分子筛存在下进行,反应活性高,稳定性得以显著提高。专利CN 106890665A报道了以EMT分子筛为活性组分,可大幅度提高乙酸甲酯的选择性和稳定性,固定床上连续反应100h后,乙酸甲酯的选择性仍能维持在91%和98.3%之间。但二甲醚转化速率较低,为15%~30%,并且相关结果不能够满足工业生产的需求。In recent years, various catalysts for the carbonylation of dimethyl ether to methyl acetate have been reported. 2006 Berkeley's Enrique Iglesia research group (Angew. Chem, Int. Ed. 45 (2006) 10, 1617-1620, J. Catal. 245 (2007) 110, J. Am. Chem. Soc. 129 (2007) 4919 ) found that the carbonylation reaction of dimethyl ether can be carried out in Mordenite (mordenite) and Ferrierite (ferrierite) with an 8-membered ring molecular sieve system, and the selectivity of methyl acetate is very good, reaching 99%, but the dimethyl ether carbonyl chemical activity is very low. (Catal. Lett. 2010, 139: 33-37) comparatively studied the difference in the reactivity of methyl acetate for the carbonylation of dimethyl ether on MOR and ZSM-35 catalysts, and found that ZSM-35 molecular sieve had better reaction Stability and product selectivity, at 250℃, 1MPa, DME/CO/N 2 /He=5/50/2.5/42.5~12.5ml/min reaction conditions, the conversion rate of dimethyl ether reaches 11%, methyl acetate The selectivity reaches 96%. Then CN106365995B reported that methyl acetate was obtained by carbonylation reaction on the catalyst of acidic EMT molecular sieve. It was found that the method was carried out in the presence of acidic EMT molecular sieve as a catalyst, and the reaction activity was high and the stability was remarkably improved. Patent CN 106890665A reported that the use of EMT molecular sieve as the active component can greatly improve the selectivity and stability of methyl acetate. After 100 hours of continuous reaction on the fixed bed, the selectivity of methyl acetate can still be maintained between 91% and 98.3%. between. However, the conversion rate of dimethyl ether is relatively low, ranging from 15% to 30%, and the relevant results cannot meet the needs of industrial production.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了解决上述问题而提供一种EMT/FAU核壳分子筛催化剂及其制备方法和应用,本发明EMT/FAU核壳分子筛在提高二甲醚转化率上具有较大优势,EMT/FAU核壳分子筛兼具EMT与FAU分子筛的优点,FAU分子筛对极性分子的吸附能力强,EMT分子筛具有较强的酸性和较多的酸量,在石油加工中具有优良的异构化、烷基化和芳构化性能,利用FAU分子筛对二甲醚分子的吸附性和EMT分子筛的酸性催化作用,一方面提高了催化剂表面二甲醚分子的浓度,一方面改善了沸石催化剂的外表面酸性,可提高二甲醚转化率。The purpose of the present invention is to provide a kind of EMT/FAU core-shell molecular sieve catalyst and its preparation method and application in order to solve the above-mentioned problems. The EMT/FAU core-shell molecular sieve of the present invention has great advantages in improving the conversion rate of dimethyl ether. FAU core-shell molecular sieve has both the advantages of EMT and FAU molecular sieve. FAU molecular sieve has strong adsorption capacity for polar molecules, EMT molecular sieve has strong acidity and more acid content, and has excellent isomerization, alkane and alkane in petroleum processing. The performance of radicalization and aromatization, using the adsorption of FAU molecular sieve to dimethyl ether molecules and the acidic catalytic effect of EMT molecular sieve, on the one hand, the concentration of dimethyl ether molecules on the surface of the catalyst is increased, and on the other hand, the external surface acidity of the zeolite catalyst is improved. , can improve the conversion rate of dimethyl ether.
本发明的目的通过以下技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种EMT/FAU核壳分子筛催化剂,该催化剂为核壳结构,以EMT分子筛为内核,以FAU分子筛为壳层,所述EMT分子筛经弱碱溶液进行处理,并添加助催化剂。An EMT/FAU core-shell molecular sieve catalyst, which has a core-shell structure, uses an EMT molecular sieve as a core, and uses a FAU molecular sieve as a shell layer, the EMT molecular sieve is treated with a weak alkaline solution, and a co-catalyst is added.
EMT分子筛和FAU分子筛是由同一笼形结构单元(双6元环和β笼)通过不同的方式连接而成,结构上的相似性特点为EMT/FAU核壳分子筛的制备提供了良好的条件。两种分子筛均具有3维12元环孔道体系,物质扩散阻力小,其优越的孔道连通性,更有利于反应物分子的吸附和产物分子的扩散,可充分发挥EMT分子筛和FAU分子筛在二甲醚羰基化反应中的协同作用,提高了催化剂的稳定性与转化率,同时使得该催化剂在二甲醚羰基化反应中具备良好的再生性能。EMT molecular sieves and FAU molecular sieves are composed of the same cage-shaped structural units (double 6-membered ring and β cage) connected in different ways. The similarity in structure provides good conditions for the preparation of EMT/FAU core-shell molecular sieves. Both molecular sieves have a 3-dimensional 12-membered ring channel system, which has low material diffusion resistance and excellent channel connectivity, which is more conducive to the adsorption of reactant molecules and the diffusion of product molecules, and can give full play to EMT molecular sieves and FAU molecular sieves. The synergistic effect in the ether carbonylation reaction improves the stability and conversion rate of the catalyst, and at the same time enables the catalyst to have good regeneration performance in the dimethyl ether carbonylation reaction.
优选地,所述助催化剂通过原位合成、金属离子交换或浸渍担载引入到EMT分子筛中,所述助催化剂选自铜、铁、镓或银中的一种或几种,以金属单质计,含量为0.05~1.0wt%。EMT分子筛的酸性位具有异构化功能,金属助剂有加氢-脱氢功能,增加助催化剂能提高催化剂的选择性和稳定性,在助催化剂的协助下,烯烃加氢成烷烃,大大地减少了低聚物和焦炭前驱体的形成。Preferably, the cocatalyst is introduced into the EMT molecular sieve by in-situ synthesis, metal ion exchange or impregnation support, and the cocatalyst is selected from one or more of copper, iron, gallium or silver, based on the metal element , the content is 0.05 to 1.0 wt%. The acid site of EMT molecular sieve has the function of isomerization, and the metal promoter has the function of hydrogenation and dehydrogenation. Adding a promoter can improve the selectivity and stability of the catalyst. With the assistance of the promoter, the olefin is hydrogenated into alkane, which greatly increases the The formation of oligomers and coke precursors is reduced.
优选地,所述FAU分子筛中SiO2与Al2O3摩尔比为2.0~6.0,优选地所述FAU分子筛中SiO2与Al2O3摩尔比为2.6~3.0。FAU分子筛较小的摩尔比使其具有较强的极性,易吸附极性、易极化的分子。EMT分子筛与合成凝胶的合适的质量比使FAU分子筛能更好的生长在EMT分子筛上,避免合成纯晶相的FAU分子筛。Preferably, the molar ratio of SiO 2 to Al 2 O 3 in the FAU molecular sieve is 2.0-6.0, and preferably, the molar ratio of SiO 2 to Al 2 O 3 in the FAU molecular sieve is 2.6-3.0. The small molar ratio of FAU molecular sieve makes it have strong polarity, and it is easy to adsorb polar and polar molecules. The appropriate mass ratio of EMT molecular sieve to synthetic gel enables FAU molecular sieve to grow on EMT molecular sieve better, avoiding the synthesis of pure crystalline FAU molecular sieve.
优选地,所述EMT分子筛的晶粒大小为1~3μm。粒径范围1~3μm的EMT分子筛具有较高的利用率且较易合成。Preferably, the grain size of the EMT molecular sieve is 1-3 μm. EMT molecular sieves with a particle size ranging from 1 to 3 μm have higher utilization rates and are easier to synthesize.
优选地,所述FAU分子筛通过汽相转化法包覆在EMT分子筛表面,厚度为0.1-1μm。较薄的壳层分子筛可使反应物具有较短的扩散路径,加快催化速率。Preferably, the FAU molecular sieve is coated on the surface of the EMT molecular sieve by a vapor phase inversion method, and the thickness is 0.1-1 μm. Thinner shell molecular sieves allow the reactants to have a shorter diffusion path and speed up the catalytic rate.
一种EMT/FAU核壳分子筛催化剂的制备方法,包括如下步骤:A preparation method of an EMT/FAU core-shell molecular sieve catalyst, comprising the following steps:
(1)将EMT分子筛采用弱碱溶液进行表面处理,然后添加助催化剂;(1) The EMT molecular sieve is surface-treated with a weak base solution, and then a co-catalyst is added;
(2)以分子摩尔比为(3~10)SiO2:1Al2O3:(3~24)Na2O:(200-1322)H2O的硅源、铝源、碱与水的混合液作为FAU型分子筛合成液;(2) Mixing of silicon source, aluminum source, alkali and water with molecular molar ratio of (3-10) SiO 2 : 1Al 2 O 3 : (3-24) Na 2 O: (200-1322) H 2 O The liquid is used as the synthetic liquid of FAU molecular sieve;
(3)将FAU型分子筛合成液加入经过步骤(1)处理后干燥的EMT分子筛粉末中,搅拌均匀后老化处理,采用汽相合成法在反应釜中晶化,然后经洗涤、干燥、焙烧后,得到EMT/FAU核壳型分子筛。(3) adding the FAU type molecular sieve synthesis solution to the dried EMT molecular sieve powder after the treatment in step (1), stirring evenly, aging treatment, adopting the vapor phase synthesis method to crystallize in the reactor, and then washing, drying and roasting , to obtain EMT/FAU core-shell molecular sieves.
步骤(1)弱碱处理可以增加表面粗糙度,使FAU分子筛易于生长在EMT分子筛上;另一方面,弱碱处理可提高二甲醚羰基化的反应活性。In step (1), the weak base treatment can increase the surface roughness, so that the FAU molecular sieve is easy to grow on the EMT molecular sieve; on the other hand, the weak base treatment can improve the reactivity of the carbonylation of dimethyl ether.
传统核壳分子筛采用将晶体加入到生长母液中,运用原位水热合成法进行合成,具有较多缺点,母液仅有少量负载在外加晶体上,大多数母液晶化形成了孤立的分子筛,步骤(3)采用汽相合成法可以克服这一缺点,汽相合成法可用于不规则载体,并且能够控制壳层厚度;另一方面,仅少量配制的合成液可用于壳层分子筛的合成,既减少了孤立分子筛的形成,又避免了母液的排出污染环境。Traditional core-shell molecular sieves are synthesized by adding crystals to the growth mother liquor and using in-situ hydrothermal synthesis, which has many disadvantages. The mother liquor is only loaded on the external crystals in a small amount, and most of the mother liquid crystallizes to form isolated molecular sieves. Steps (3) This shortcoming can be overcome by the vapor phase synthesis method, which can be used for irregular carriers and can control the thickness of the shell layer; The formation of isolated molecular sieves is reduced, and the discharge of mother liquor is avoided to pollute the environment.
优选地,所述弱碱选自醋酸钠、四乙基氢氧化铵、四丙基氢氧化铵、脂肪酸钠、烷基苯磺酸钠、十二烷基苯磺酸钠、十六烷基苯磺酸钠或碱性氯化铝中的一种或其混合物,所述弱碱溶液溶度为0.05-2mol/L。Preferably, the weak base is selected from sodium acetate, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, sodium fatty acid, sodium alkylbenzenesulfonate, sodium dodecylbenzenesulfonate, hexadecylbenzene One of sodium sulfonate or basic aluminum chloride or a mixture thereof, and the weak base solution has a solubility of 0.05-2 mol/L.
优选地,步骤(1)弱碱溶液对EMT分子筛在室温下处理1-12h,用去离子水洗涤,直至洗涤液的pH为10左右,然后干燥。1-12h的弱碱处理条件保证了EMT分子筛具有一定的表面粗糙度。Preferably, in step (1), the weak base solution is treated with the EMT molecular sieve at room temperature for 1-12 hours, washed with deionized water until the pH of the washing solution is about 10, and then dried. The weak alkali treatment conditions of 1-12h ensure that the EMT molecular sieve has a certain surface roughness.
步骤(2)硅源为正硅酸甲酯、正硅酸乙酯、正硅酸四乙酯、硅酸、硅酸钠、硅酸钾、硅酸钙、硅酸镁、硅溶胶、水玻璃、二氧化硅、白炭黑、粉煤灰中的一种或其混合物;铝源为铝酸钠、铝酸钙、铝溶胶、氧化铝中的一种或其混合物;碱为氧化锂、氧化钠、氧化钾、氢氧化锂、氢氧化钠、氢氧化钾中的一种或其混合物。Step (2) silicon source is methyl orthosilicate, ethyl orthosilicate, tetraethyl orthosilicate, silicic acid, sodium silicate, potassium silicate, calcium silicate, magnesium silicate, silica sol, water glass , silicon dioxide, silica, fly ash, or a mixture thereof; the aluminum source is one or a mixture of sodium aluminate, calcium aluminate, aluminum sol, alumina; the alkali is lithium oxide, oxide One or a mixture of sodium, potassium oxide, lithium hydroxide, sodium hydroxide, potassium hydroxide.
优选地,步骤(3)所述EMT分子筛与所述FAU型分子筛合成液的质量比为1:0.1~5;老化处理条件为,温度为20~60℃,时间2-24h;汽相晶化条件为,95~110℃下,晶化6-24h,洗涤干燥之后,在400~600℃焙烧2h,最终得到EMT/FAU核壳型分子筛。Preferably, the mass ratio of the EMT molecular sieve to the FAU type molecular sieve synthesis solution in step (3) is 1:0.1-5; the aging treatment conditions are, the temperature is 20-60°C, and the time is 2-24h; vapor phase crystallization The conditions are: crystallization at 95-110°C for 6-24h, washing and drying, and then calcining at 400-600°C for 2h to finally obtain EMT/FAU core-shell molecular sieve.
该催化剂用于二甲醚羰基化合成乙酸甲酯,使用之前在200~400℃氮气气氛中处理6h。The catalyst is used for the carbonylation of dimethyl ether to synthesize methyl acetate, and is treated in a nitrogen atmosphere at 200-400° C. for 6 hours before use.
实验装置为固定床反应器、流化床反应器或移动床反应器中的一种进行评价。具体实验过程为,首先将催化剂填装入反应其中,在温度为170~240℃,压力为1.0~15.0MPa,二甲醚进料质量空速为0.1~2.5h-1,并且一氧化碳和二甲醚的摩尔比为15∶1~1∶1的条件下进行评价。The experimental setup was one of a fixed bed reactor, a fluidized bed reactor or a moving bed reactor for evaluation. The specific experimental process is as follows: firstly, the catalyst is filled into the reaction, the temperature is 170-240°C, the pressure is 1.0-15.0MPa, the mass space velocity of the dimethyl ether feed is 0.1-2.5h -1 , and the carbon monoxide and dimethyl ether The evaluation was performed under the condition that the molar ratio of ether was 15:1 to 1:1.
与现有技术相比,本发明具有以下技术特点:Compared with the prior art, the present invention has the following technical characteristics:
(1)EMT/FAU核壳分子筛可提高催化剂的转化率,FAU型分子筛对极性、易极化的分子具有吸附作用,可以提高反应物浓度,从而提高反应物的转化率。(1) EMT/FAU core-shell molecular sieves can improve the conversion rate of catalysts. FAU type molecular sieves have adsorption effect on polar and easily polarized molecules, which can increase the concentration of reactants, thereby improving the conversion rate of reactants.
(2)EMT/FAU核壳分子筛可提高催化剂的稳定性,EMT/FAU核壳结构可防止EMT分子筛外表面酸性强导致的失活速度较快。(2) The EMT/FAU core-shell molecular sieve can improve the stability of the catalyst, and the EMT/FAU core-shell structure can prevent the rapid deactivation caused by the strong acidity of the outer surface of the EMT molecular sieve.
(3)EMT/FAU核壳分子筛可提高催化剂的选择性,EMT/FAU核壳结构可减少EMT分子筛外表面酸性过强产生的副产物。(3) The EMT/FAU core-shell molecular sieve can improve the selectivity of the catalyst, and the EMT/FAU core-shell structure can reduce the by-products generated by the excessive acidity of the outer surface of the EMT molecular sieve.
附图说明Description of drawings
图1为EMT分子筛的表面SEM谱图。Fig. 1 is the surface SEM spectrum of EMT molecular sieve.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
一、催化剂的制备1. Preparation of catalyst
实施例1Example 1
EMT分子筛的处理:将粒径约1μm的EMT分子筛在0.05mol/L醋酸钠溶液中室温浸泡1h,洗涤干燥后,置于0.01mol/L的AgNO3溶液中浸泡6h,洗涤并烘干,图1为EMT分子筛的表面SEM谱图。Treatment of EMT molecular sieve: Immerse EMT molecular sieve with a particle size of about 1 μm in 0.05mol/L sodium acetate solution at room temperature for 1h, wash and dry, and then soak in 0.01mol/L AgNO 3 solution for 6h, wash and dry, as shown in Fig. 1 is the surface SEM spectrum of EMT molecular sieve.
EMT/FAU核壳型分子筛的制备:将9.7g的NaOH溶液于80g水中,在强力搅拌下加入2.0g NaAlO2,混合搅拌至澄清溶液,冷却备用,得到溶液A。称取23g硅酸钠溶于100g水中,搅拌0.5h,得到溶液B。将溶液A在搅拌的条件下缓慢滴加至溶液B中,直至生成均匀的原料摩尔配比为10SiO2:Al2O3:24Na2O:1322H2O的合成液,称量50g合成液加入10gEMT分子筛粉末中,搅拌均匀后在烘箱中20℃老化24h,然后将溶胶置于晶化釜上层,釜底加入30g水,95℃晶化24h后制备得到壳层厚度为0.9μm的EMT/FAU核壳分子筛催化剂EF1。Preparation of EMT/FAU core-shell molecular sieve: put 9.7g of NaOH solution in 80g of water, add 2.0g of NaAlO 2 under strong stirring, mix and stir until a clear solution, cool for later use, and obtain solution A. Weigh 23 g of sodium silicate, dissolve it in 100 g of water, and stir for 0.5 h to obtain solution B. The solution A was slowly added dropwise to the solution B under stirring conditions until a uniform raw material molar ratio of 10SiO 2 : Al 2 O 3 : 24Na 2 O : 1322H 2 O was formed into a synthetic solution, and 50 g of the synthetic solution was weighed and added 10g of EMT molecular sieve powder was mixed evenly and aged in an oven at 20°C for 24h, then the sol was placed on the upper layer of the crystallization kettle, 30g of water was added to the bottom of the kettle, and after crystallization at 95°C for 24h, EMT/FAU with a shell thickness of 0.9 μm was prepared Core-shell molecular sieve catalyst EF1.
对比例1Comparative Example 1
EMT分子筛的处理:将粒径约1μm的EMT分子筛置于0.01mol/L的AgNO3溶液中浸泡6h,洗涤并烘干,得到负载Ag的EMT分子筛DB1。Treatment of EMT molecular sieve: The EMT molecular sieve with a particle size of about 1 μm was soaked in 0.01 mol/L AgNO 3 solution for 6 h, washed and dried to obtain the Ag-loaded EMT molecular sieve DB1.
对比例2Comparative Example 2
FAU分子筛的制备:将0.14g的NaOH溶液于20g水中,在强力搅拌下加入3.7gNaAlO2,混合搅拌至澄清溶液,冷却备用,得到溶液A。称取12.8g硅酸钠溶于27g水中,搅拌0.5h,得到溶液B。将溶液A在搅拌的条件下缓慢滴加至溶液B中,直至生成均匀的原料摩尔配比为3SiO2:Al2O3:3Na2O:200H2O的合成液,然后将合成液置于晶化釜中,95℃晶化24h后制备得到FAU分子筛DB2。Preparation of FAU molecular sieve: add 0.14g of NaOH solution to 20g of water, add 3.7g of NaAlO 2 under vigorous stirring, mix and stir until a clear solution, cool for later use, and obtain solution A. Weigh 12.8 g of sodium silicate, dissolve it in 27 g of water, and stir for 0.5 h to obtain solution B. The solution A was slowly added dropwise to the solution B under stirring conditions until a uniform raw material molar ratio of 3SiO 2 : Al 2 O 3 : 3Na 2 O : 200H 2 O was formed into a synthesis solution, and then the synthesis solution was placed in In the crystallization kettle, the FAU molecular sieve DB2 was prepared after crystallization at 95°C for 24 hours.
实施例2Example 2
EMT分子筛的处理:将粒径约3μm的EMT分子筛在2mol/L四乙基氢氧化铵溶液中室温下浸泡12h,洗涤并烘干。Treatment of EMT molecular sieve: The EMT molecular sieve with a particle size of about 3 μm was soaked in a 2mol/L tetraethylammonium hydroxide solution at room temperature for 12 hours, washed and dried.
EMT/FAU核壳型分子筛的制备:将0.14g的NaOH溶液于20g水中,在强力搅拌下加入3.7g NaAlO2,混合搅拌至澄清溶液,冷却备用,得到溶液A。称取12.8g硅酸钠溶于27g水中,搅拌0.5h,得到溶液B。将溶液A在搅拌的条件下缓慢滴加至溶液B中,直至生成均匀的原料摩尔配比为3SiO2:Al2O3:3Na2O:200H2O的合成液,称量1g合成液加入10gEMT分子筛粉末中,搅拌均匀后在烘箱中60℃老化2h,然后将溶胶置于晶化釜上层,釜底加入30g水,110℃晶化6h后制备得到壳层厚度为0.2μm的EMT/FAU核壳分子筛催化剂EF2。Preparation of EMT/FAU core-shell molecular sieve: put 0.14g of NaOH solution in 20g of water, add 3.7g of NaAlO 2 under strong stirring, mix and stir until a clear solution, cool for later use, and obtain solution A. Weigh 12.8 g of sodium silicate, dissolve it in 27 g of water, and stir for 0.5 h to obtain solution B. The solution A was slowly added dropwise to the solution B under stirring conditions until a uniform raw material molar ratio of 3SiO 2 : Al 2 O 3 : 3Na 2 O : 200H 2 O was formed into a synthesis solution, and 1 g of the synthesis solution was weighed and added 10g of EMT molecular sieve powder was mixed well and aged in an oven at 60°C for 2h, then the sol was placed on the upper layer of the crystallization kettle, 30g of water was added to the bottom of the kettle, and after crystallization at 110°C for 6h, EMT/FAU with a shell thickness of 0.2 μm was prepared Core-shell molecular sieve catalyst EF2.
实施例3-8是以表1的合成配比与合成条件,按照实施例1类似方法和步骤合成得到EMT/FAU核壳分子筛催化剂EF3~EF8。In Examples 3-8, EMT/FAU core-shell molecular sieve catalysts EF3 to EF8 were synthesized according to the synthesis ratio and synthesis conditions of Table 1, according to the similar method and steps of Example 1.
表1实施例3-8合成配比与合成条件Table 1 embodiment 3-8 synthesis ratio and synthesis condition
二、催化剂性能测试例2. Catalyst performance test example
实施例9Example 9
将2g EF1分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为35.6%、选择性为98%。After tableting 2g of EF1 molecular sieve catalyst, sieve the particles with a particle size of 20-40 meshes. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 35.6% and the selectivity is 98%.
实施例10Example 10
将2g DB1分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为26.2%、选择性为83%,由于DB1分子筛催化剂较实施例1中EF1分子筛催化剂极性弱,且DB1分子筛催化剂表面不具有择形催化效果,乙酸甲酯转化率及选择性均小于实施例1。After 2g of DB1 molecular sieve catalyst was pressed into tablets, the particles with a particle size of 20-40 meshes were sieved. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 26.2% and the selectivity is 83%. Because the DB1 molecular sieve catalyst is less polar than the EF1 molecular sieve catalyst in Example 1, and the surface of the DB1 molecular sieve catalyst does not have a shape-selective catalytic effect, The methyl acetate conversion and selectivity are both lower than those of Example 1.
实施例11Example 11
将2g DB2分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为0%、选择性为0%,由于DB2分子筛催化剂不具有催化二甲醚羰基化反应的性能,所以乙酸甲酯转化率及选择性均为0。After 2g of DB2 molecular sieve catalyst was pressed into tablets, the particles with a particle size of 20-40 meshes were sieved. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 0% and the selectivity is 0%. Since the DB2 molecular sieve catalyst does not have the performance of catalyzing the carbonylation of dimethyl ether, the conversion rate and selectivity of methyl acetate are both 0%. .
实施例12Example 12
将2g EF2分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为37%、选择性为98%。After tableting 2g of EF2 molecular sieve catalyst, sieve the particles with a particle size of 20-40 meshes. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 37% and the selectivity is 98%.
实施例13Example 13
将2g EF3分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为41%、选择性为99%。After tableting 2g of EF3 molecular sieve catalyst, sieve the particles with a particle size of 20-40 meshes. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 41% and the selectivity is 99%.
实施例14Example 14
将2g EF4分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为31%、选择性为97%。After tableting 2g of EF4 molecular sieve catalyst, sieve the particles with a particle size of 20-40 meshes. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 31% and the selectivity is 97%.
实施例15Example 15
将2g EF5分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为36%、选择性为99%。After tableting 2g of EF5 molecular sieve catalyst, sieve the particles with a particle size of 20-40 meshes. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 36% and the selectivity is 99%.
实施例16Example 16
将2g EF6分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为42%、选择性为98%。After tableting 2g of EF6 molecular sieve catalyst, sieve the particles with a particle size of 20-40 meshes. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 42% and the selectivity is 98%.
实施例17Example 17
将2g EF7分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为36%、选择性为96%。After tableting 2g of EF7 molecular sieve catalyst, sieve the particles with a particle size of 20-40 meshes. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 36% and the selectivity is 96%.
实施例18Example 18
将2g EF8分子筛催化剂压片后,筛取粒径20-40目的颗粒。装入列管内径为10毫米的固定床反应器内,温度为180℃,压力为1.5MPa,一氧化碳和二甲醚的摩尔比为5∶1,二甲醚进料质量空速为0.1h-1,装置运行100h后,乙酸甲酯转化率为30%、选择性为96%。After tableting 2g of EF8 molecular sieve catalyst, sieve the particles with a particle size of 20-40 meshes. Loaded into a fixed-bed reactor with a tube inner diameter of 10 mm, the temperature was 180 ° C, the pressure was 1.5 MPa, the molar ratio of carbon monoxide and dimethyl ether was 5:1, and the dimethyl ether feed mass space velocity was 0.1h - 1. After the device runs for 100 hours, the conversion rate of methyl acetate is 30% and the selectivity is 96%.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The foregoing description of the embodiments is provided to facilitate understanding and use of the invention by those of ordinary skill in the art. It will be apparent to those skilled in the art that various modifications to these embodiments can be readily made, and the generic principles described herein can be applied to other embodiments without inventive step. Therefore, the present invention is not limited to the above-mentioned embodiments, and improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911048174.4A CN110694679B (en) | 2019-10-30 | 2019-10-30 | EMT/FAU core-shell molecular sieve catalyst, and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911048174.4A CN110694679B (en) | 2019-10-30 | 2019-10-30 | EMT/FAU core-shell molecular sieve catalyst, and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110694679A true CN110694679A (en) | 2020-01-17 |
CN110694679B CN110694679B (en) | 2023-04-18 |
Family
ID=69202945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911048174.4A Active CN110694679B (en) | 2019-10-30 | 2019-10-30 | EMT/FAU core-shell molecular sieve catalyst, and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110694679B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112852520A (en) * | 2021-01-12 | 2021-05-28 | 山东艾富莱新材料科技有限公司 | Biostable cutting fluid for metal processing |
CN113443988A (en) * | 2021-08-02 | 2021-09-28 | 西南化工研究设计院有限公司 | Process for removing olefin in carbonylation reaction process of dimethyl ether |
CN115957803A (en) * | 2021-10-13 | 2023-04-14 | 中国石油化工股份有限公司 | Catalyst for reducing olefins from alkanes and its preparation method and application |
CN115959679A (en) * | 2021-10-08 | 2023-04-14 | 中国石油化工股份有限公司 | A kind of EMT molecular sieve and preparation method thereof and catalyst for reducing bromine index of aromatic hydrocarbons comprising it |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101314135A (en) * | 2008-06-27 | 2008-12-03 | 吉林大学 | Preparation method of double catalytic center molecular sieve core-shell material by hydrothermal/solvothermal system |
CN103011191A (en) * | 2011-09-22 | 2013-04-03 | 中国石油化工股份有限公司 | Mordenite and beta zeolite core-shell molecular sieve and preparation method thereof |
CN106365995A (en) * | 2015-07-20 | 2017-02-01 | 中国科学院大连化学物理研究所 | A kind of production method of methyl acetate |
CN106890668A (en) * | 2015-12-18 | 2017-06-27 | 中国科学院大连化学物理研究所 | A kind of catalyst for producing methyl acetate, its preparation method and application |
CN107337472A (en) * | 2016-12-02 | 2017-11-10 | 上海绿强新材料有限公司 | A kind of preparation method of FAU types zeolite molecular sieve film |
-
2019
- 2019-10-30 CN CN201911048174.4A patent/CN110694679B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101314135A (en) * | 2008-06-27 | 2008-12-03 | 吉林大学 | Preparation method of double catalytic center molecular sieve core-shell material by hydrothermal/solvothermal system |
CN103011191A (en) * | 2011-09-22 | 2013-04-03 | 中国石油化工股份有限公司 | Mordenite and beta zeolite core-shell molecular sieve and preparation method thereof |
CN106365995A (en) * | 2015-07-20 | 2017-02-01 | 中国科学院大连化学物理研究所 | A kind of production method of methyl acetate |
US20180370896A1 (en) * | 2015-07-20 | 2018-12-27 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Methyl acetate preparation method |
CN106890668A (en) * | 2015-12-18 | 2017-06-27 | 中国科学院大连化学物理研究所 | A kind of catalyst for producing methyl acetate, its preparation method and application |
CN107337472A (en) * | 2016-12-02 | 2017-11-10 | 上海绿强新材料有限公司 | A kind of preparation method of FAU types zeolite molecular sieve film |
Non-Patent Citations (2)
Title |
---|
A.L. YONKEU等: "Structural characterization of a new "core-shell"zeolite overgrowth system: faujasite on micro sized EMT-crystals", 《CRYSTAL ENGINEERING》 * |
上海试剂五厂编: "《分子筛制备与应用》", 30 June 1976 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112852520A (en) * | 2021-01-12 | 2021-05-28 | 山东艾富莱新材料科技有限公司 | Biostable cutting fluid for metal processing |
CN112852520B (en) * | 2021-01-12 | 2022-08-12 | 山东艾富莱新材料科技有限公司 | Biostable cutting fluid for metal processing |
CN113443988A (en) * | 2021-08-02 | 2021-09-28 | 西南化工研究设计院有限公司 | Process for removing olefin in carbonylation reaction process of dimethyl ether |
CN115959679A (en) * | 2021-10-08 | 2023-04-14 | 中国石油化工股份有限公司 | A kind of EMT molecular sieve and preparation method thereof and catalyst for reducing bromine index of aromatic hydrocarbons comprising it |
CN115957803A (en) * | 2021-10-13 | 2023-04-14 | 中国石油化工股份有限公司 | Catalyst for reducing olefins from alkanes and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN110694679B (en) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110694679B (en) | EMT/FAU core-shell molecular sieve catalyst, and preparation method and application thereof | |
JP4364126B2 (en) | Method for producing dimethyl ether from methanol | |
JP6523549B2 (en) | Production method of methyl acetate | |
CN104248968B (en) | A kind of catalyst of propane direct dehydrogenation propylene and preparation method thereof | |
CN101745414A (en) | Catalyst for producing light olefins through methanol and preparation method thereof | |
CN101380587B (en) | Propane dehydrogenation catalyst to produce propylene and preparation method thereof | |
CN105214714B (en) | A kind of benzene and methanol alkylation produce paraxylene catalyst and preparation method thereof | |
CN104069886B (en) | A kind of preparation method and applications of the catalyst for aqueous phase furfural hydrogenation Ketocyclopentane | |
CN114570415A (en) | Pt @ hierarchical pore zeolite catalyst for preparing propylene by propane dehydrogenation and preparation method thereof | |
CN108246348A (en) | A kind of preparation method of ZSM-5@γ-Al2O3 catalyst with core-casing structure | |
CN107398294B (en) | Preparation method and application of modified binder-free ZSM-11 molecular sieve catalyst | |
CN108295892A (en) | A kind of preparation method of γ-Al2O3@CuO-ZnO@ZSM-5 double-core shell catalysts | |
CN115475654B (en) | Microcapsule-shaped modified Zn@ZSM-5 catalyst and preparation method and application thereof | |
CN110270368B (en) | A solution-free method for the synthesis of carbon-chemical embedded catalyst materials | |
CN104801337A (en) | Ethanol catalyst prepared from synthesis gas and dimethyl ether with one-step method as well as preparation method of ethanol catalyst | |
CN112958146B (en) | A zirconium-based catalyst supported by MFI molecular sieve nanosheets and its application in the preparation of butadiene | |
WO2020253712A1 (en) | Catalyst for directly converting syngas to prepare low-carbon olefin and preparation method therefor | |
JP2018524375A (en) | Method for producing lower aliphatic carboxylic acid alkyl ester | |
KR20190057752A (en) | Catalysts supported on modified-carrier for oxidative coupling raction of methane and method for oxidative coupling raction of methane using the same | |
CN114425438A (en) | Preparation method of titanium-containing catalyst, titanium-containing catalyst and method for preparing epoxy compound | |
CN108328624B (en) | Modified β molecular sieve and preparation method and application thereof | |
CN106890669A (en) | A kind of catalyst for producing methyl acetate, its preparation method and application | |
CN105732268B (en) | Hydrogenation method of trace acetylene in methanol-to-olefin device | |
CN112619688B (en) | A kind of preparation method and application of catalyst for one-step methylation of synthesis gas and biphenyl/4-methylbiphenyl | |
CN108295890A (en) | A kind of ZSM-5@t-ZrO2The preparation method of catalyst with core-casing structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |