CN110688765B - 一种用于湿式摩擦元件直沟槽特征参数优化方法 - Google Patents

一种用于湿式摩擦元件直沟槽特征参数优化方法 Download PDF

Info

Publication number
CN110688765B
CN110688765B CN201910953556.5A CN201910953556A CN110688765B CN 110688765 B CN110688765 B CN 110688765B CN 201910953556 A CN201910953556 A CN 201910953556A CN 110688765 B CN110688765 B CN 110688765B
Authority
CN
China
Prior art keywords
straight
characteristic parameters
groove
setting
straight grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910953556.5A
Other languages
English (en)
Other versions
CN110688765A (zh
Inventor
李�杰
王晓燕
张燕雄
顾佳玲
陶龙
陈诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Civil Engineering and Architecture
Original Assignee
Beijing University of Civil Engineering and Architecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Civil Engineering and Architecture filed Critical Beijing University of Civil Engineering and Architecture
Priority to CN201910953556.5A priority Critical patent/CN110688765B/zh
Publication of CN110688765A publication Critical patent/CN110688765A/zh
Priority to US17/066,155 priority patent/US11193550B2/en
Application granted granted Critical
Publication of CN110688765B publication Critical patent/CN110688765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/648Clutch-plates; Clutch-lamellae for clutches with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/72Features relating to cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/74Features relating to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D2069/004Profiled friction surfaces, e.g. grooves, dimples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

本发明公开了一种用于湿式摩擦元件直沟槽特征参数优化方法,涉及重载车辆传动技术领域,能够优化改进湿式摩擦元件的直沟槽特征参数,提高湿式摩擦元件的热弹稳定性。该方法包括如下步骤:确定直沟槽所需优化的结构特征参数包括直沟槽数目N、直沟槽角度θ、直沟槽宽度B和直沟槽深度h。设定结构特征参数的优化顺序N→θ→B→h。设定评价指标包括平温度场平均温度μ、温度场不均匀系数σ和温度极差R;设定评价指标顺序μ→R→σ。按照设定的结构特征参数优化顺序顺次选取当前优化参数,执行优化过程获得当前优化参数的最优取值,直至获取所有结构特征参数对应的最优取值,并以所有结构特征参数取其最优取值设置湿式摩擦元件的直沟槽结构。

Description

一种用于湿式摩擦元件直沟槽特征参数优化方法
技术领域
本发明涉及重载车辆传动技术领域,具体涉及一种用于湿式摩擦元件直沟 槽特征参数优化方法。
背景技术
高能量密度摩擦传动系统是高性能传动的关键,其显著特征是大功率、高 转速。湿式摩擦元件由于其优异的耐磨性和较高的热容被广泛应用于重载车辆 的传动技术领域。湿式摩擦元件常出现热弹性不稳定问题,导致车辆传动系统 整体性能下降甚至失效。
当摩擦副相对速度大于某临界值时,温度场的非均匀性会随时间呈指数增 大,即系统进入热弹性不稳定状态(Thermoelastic Instability,简称TEI)。由TEI 引起的局部高温(热斑点)是元件失效重要原因之一。热弹性失稳问题将使得 摩擦副产生局部高温,进而解决摩擦传动过程中出现的高频振动、翘曲变形、 甚至疲劳断裂等现象。
通过近半个世纪的研究,TEI问题在理论、仿真和实验等方面都取得了较大 的成果。热弹性理论研究以Barber和Burton等人的模型为基础,以理论为支撑 采用有限元法作为研究热弹性不稳定问题的有效工具,而实验研究是验证理论 研究和仿真研究的重要方法。
但目前国内外大多数学者在摩擦副材料和结构参数对热弹性稳定性影响的 研究中,主要集中在摩擦材料本身物理、化学等性能和摩擦副厚度及半径等参 数,而未考虑到摩擦层沟槽分布状态及结构特征对TEI的动态特性影响。
因此目前亟需一种通过改进湿式摩擦元件的直沟槽特征参数来进行提高湿 式摩擦元件的热弹稳定性的方法。
发明内容
有鉴于此,本发明提供了一种用于湿式摩擦元件直沟槽特征参数优化方法, 能够通过优化改进湿式摩擦元件的直沟槽特征参数,提高湿式摩擦元件的热弹 稳定性。
为达到上述目的,本发明的技术方案为:1、一种用于湿式摩擦元件直沟槽 特征参数优化方法,所述湿式摩擦元件由多片交替分布的摩擦片和对偶钢片, 其中相邻的摩擦片和对偶钢片组成摩擦副,其中摩擦片上具备设定数量的直沟 槽,所述直沟槽将所述摩擦片的摩擦表面分为设定数量的区块,其特征在于, 所述直沟槽特征参数优化方法包括如下步骤:
确定直沟槽所需优化的结构特征参数;所述直沟槽所需优化的结构特征参 数包括直沟槽数目N、直沟槽角度θ、直沟槽宽度B和直沟槽深度h。
所述直沟槽数目N是单个摩擦片表面上分布的沟槽组的总数目,每个沟槽 组由三道相邻且平行的沟槽构成。
所述直沟槽角度θ是指沟槽组的中间沟槽与经过其沟槽长度中点的摩擦片 直径的夹角。
所述直沟槽深度h是指直沟槽底部与摩擦片表面的垂直距离。
所述直沟槽宽度B是指摩擦片表面为直沟槽所截区域的宽度距离。
设定结构特征参数的优化顺序为N→θ→B→h。
设定评价指标包括平温度场平均温度μ、温度场不均匀系数σ和温度极差R; 设定评价指标顺序为μ→R→σ。
按照设定的结构特征参数优化顺序顺次选取当前优化参数,执行如下优化 过程获得当前优化参数的最优取值,直至获取所有结构特征参数对应的最优取 值,并以所有结构特征参数取其最优取值设置湿式摩擦元件的直沟槽结构。
所述优化过程为:对当前优化参数设置M个取值,其他结构特征参数设定 为固定值,组成M组结构特征参数数据,对所述湿式摩擦元件进行M次热弹性 仿真,获取M组仿真结果,所述仿真结果包括摩擦副的温度、热应力以及应变 力;依据所述仿真结果计算评价指标的数值,按照设定评价指标的顺序,对当 前优化参数的M个取值进行评价,选取最优取值。
进一步地,对当前优化参数设置M个取值,具体为:若当前优化参数为直 沟槽数目N,则设置5个取值,分别为4,6,8,10,12;若当前优化参数为直沟槽角 度θ,则设置取值分布在[0°,45°]区间,选取间隔为5°。若当前优化参数为 直沟槽宽度B,则设置取值分布在[1mm,5mm]区间,选取间隔为0.8mm;若当 前优化参数为直沟槽深度h,则设置取值分布在[0.2mm,0.6mm]区间,选取 间隔为0.1mm。
进一步地,结构特征参数的最优取值具体为:直沟槽数目N的最优取值为 8,直沟槽角度θ最优取值为5°,直沟槽深度h最优取值为0.4mm,直沟槽宽 度B最优取值为0.24mm。
有益效果:
(1)本发明所提供给的一种用于湿式摩擦元件直沟槽特征参数优化方法, 通过对湿式摩擦元件的热弹稳定性理论进行分析,设定了直沟槽所需优化的结 构特征参数包括直沟槽数目N、直沟槽角度θ、直沟槽宽度B和直沟槽深度h; 并通过计算热弹性失稳的临界速度,给出了各结构特征参数的优化顺序,同时 给出了评价指标顺序,通过热弹性仿真实验取得了每个结构特征参数的最优取 值,根据该最优取值设置湿式摩擦元件的直沟槽结构从而获得了热弹稳定性更 高的湿式摩擦元件,实现了对湿式摩擦元件的直沟槽的结构特征参数的合理性 优化。该优化方法在工程设计领域具有更广泛的适用性和更高的精确性。
附图说明
图1为本发明实施例提供的用于湿式摩擦元件直沟槽特征参数优化方法流 程图;
图2为本发明实施例中二维热弹失稳分析模型示意图;
图3为本发明实施例中沟槽当量摩擦半径处示意图;
图4为本发明实施例中不同沟槽角度的采样温度图;
图5为本发明实施例中摩擦片与对偶片实验图;
图6为本发明实施例中实验测试部分数据曲线。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明提供了一种用于湿式摩擦元件直沟槽特征参数优化方法,湿式摩擦 元件由多片交替分布的摩擦片和对偶钢片,其中相邻的摩擦片和对偶钢片组成 摩擦副,其中摩擦片上具备设定数量的直沟槽,直沟槽将摩擦片的摩擦表面分 为设定数量的区块。
由于对偶钢片与摩擦材料导热性相差较大,大部分摩擦热传导进入对偶钢 片,摩擦材料只有表层受到热点影响,所以可以将摩擦片简化为静止的半无限 大平面;而对偶钢片简化为运动的有限厚度平面。采用二维理论模型,并假设 摩擦片(材料1)静止,钢片(材料2)以速度V运动,以代表摩擦副相对速度, 如图2所示。
直沟槽特征参数优化方法流程如图1所示,包括如下步骤:
S1、确定直沟槽所需优化的结构特征参数;直沟槽所需优化的结构特征参 数包括直沟槽数目N、直沟槽角度θ、直沟槽宽度B和直沟槽深度h。
直沟槽数目N是单个摩擦片表面上分布的沟槽组的总数目,每个沟槽组由 三道相邻且平行的沟槽构成;直沟槽角度θ是指沟槽组的中间沟槽与经过其沟槽 长度中点的摩擦片直径的夹角;直沟槽深度h是指直沟槽底部与摩擦片表面的垂 直距离;直沟槽宽度B是指摩擦片表面为直沟槽所截区域的宽度距离。
沟槽划分区块如图3大致分为三种,沟槽分布特征参数中,沟槽数目、角 度和宽度明显改变了各个区域的当量摩擦弧长,而沟槽深度也同样会影响每个 区块当量厚度,即沟槽分布特征参数将会影响扰动波数及频率等系统稳定性。 利用理论分析,可得到三种区块当量弧长公式,根据自平衡性,扰动波长不能 大于每块区块的作用弧长,允许的最大波长应等于每块区块所截的当量摩擦半 径圆弧长L,所以每个区块若至少要存在一个扰动波长,且只能存在整数个波长。 结合热弹性失稳理论分析结果,确定直沟槽所需优化的结构特征参数为直沟槽 的数目、角度、宽度和深度等。
S2、设定结构特征参数的优化顺序为N→θ→B→h;
设定评价指标包括平温度场平均温度μ、温度场不均匀系数σ和温度极差R; 设定评价指标顺序为μ→R→σ。
其中设定结构特征参数的优化顺序的原理为:
计算热弹性失稳的临界速度Vcr
Figure BDA0002226515120000051
其中m为失稳状态扰动波波数,m为求解临界速度的中间值;
m=2π/L;
其中,L为每组沟槽所截当量摩擦圆的圆弧长,L=L1+L2+L3
L1=2πRf/N-2πarctan((s+B)/Rf);L2=π{arctan[(s+B)/Rf]+θ};
L3=π{arctan[(s+B)/Rf]-θ};
Figure BDA0002226515120000052
选取摩擦片上一个设定半径对应的圆作为当量摩擦圆:沟槽将整个模型划 分为多个区块,每组沟槽所划分区块按顺时针计数分别为1、2、3区块,L为每 组沟槽所截当量摩擦圆的圆弧长,Rf为当量摩擦圆半径,L1,L2,L3分别为1、2、 3区块的当量摩擦圆弧长。x1,x2,x3分别为1,2,3区块对波数的贡献比例;
结构参数:N为单面摩擦片的沟槽组数,s为每组沟槽中最外侧两槽的间距;
材料参数:f为摩擦系数,K为导热系数,ν为泊松比,α为剪切模量;
求解Vcr的意义:当求出临界速度的值越大,其热弹性能越稳定,根据求解 公式就可以确定所优化的沟槽特征参数对于热弹性能的贡献,优先优化贡献较 大的参数,即得到结构特征参数的优化顺序优化顺序。
S3、按照设定的结构特征参数优化顺序顺次选取当前优化参数,执行如下 优化过程获得当前优化参数的最优取值,直至获取所有结构特征参数对应的最 优取值,并以所有结构特征参数取其最优取值设置湿式摩擦元件的直沟槽结构;
优化过程为:对当前优化参数设置M个取值,其他结构特征参数设定为固 定值,组成M组结构特征参数数据,对湿式摩擦元件进行M次热弹性仿真,获 取M组仿真结果,仿真结果包括摩擦副的温度、热应力以及应变力;依据仿真 结果计算评价指标的数值,按照设定评价指标的顺序,对当前优化参数的M个 取值进行评价,选取最优取值。
若当前优化参数为直沟槽数目N,根据几何尺寸与沟槽间距限制,而且要 取对称偶数,取值有4,6,8,10,12。超过12相邻沟槽组会干涉,小于4动平衡不 稳定。
若当前优化参数为直沟槽角度θ,设置取值分布在[0°,45°]区间,选取间 隔为5°。
若当前优化参数为直沟槽宽度B,则设置取值分布在[1mm,5mm]区间,选 取间隔为0.8mm;
若当前优化参数为直沟槽深度h,则设置取值分布在[0.2mm,0.6mm]区 间,选取间隔为0.1mm。
其中在根据设定的评价指标的顺序,对当前优化参数的M个取值进行评价 时,可以按照μ→R→σ顺序,
考虑到温度场平均温度μ优先顺序较高,选取使得温度场平均温度μ能够 达到最好的效果的取值,同时该取值也能使得温度极差R和温度场不均匀系数σ 能够达到较好效果。若通过温度场平均温度μ无法选取到最优值,以第二或第 三个评价指标来决定最优值。
由热弹耦合机理分析,假设摩擦片静止,对偶片以一定相对转速与对偶片 摩擦接触,这个过程两者保持同轴。因此,本发明设置的仿真模型为:摩擦片 边界条件为对外柱面施加径向位移约束和对剖面施加y方向转动位移约束;对 偶片边界条件为半厚度剖面设定y方向位移约束,对偶片内柱面施加径向位移 约束,并给定y方向转动速度约束。
选定湿式摩擦元件仿真结果经过热点区域的圆周路径,对圆周路径节点数 据进行采集,获得湿式摩擦元件的温度、应力和应变采样数据,对采样值处理 获得采样数据曲线;以沟槽数目这一参数为例,图4为不同沟槽角度采样数据 图像,该图像通过将某一结构参数不同的仿真结果数据绘制成一张曲线图。
对采集的数据和数据曲线进行评估分析,其中评价参数选取包括温度场平 均温度μ、不均匀系数σ和温度极差R,具体评价指标定义如表1所示;将步骤 三中获得的采样数据带入以概率统计理论为基础的评价参数计算公式中,获取 评价参数结果,如表2所示;然后在综合分析所获得的评价参数结果后,确定 不同的结构特征参数最优化结果,获得整个湿式摩擦元件的最优化沟槽结构为 N=8,θ=5°,h=0.4mm,B=0.24mm;
表1温度场热弹稳定性评价指标
Figure BDA0002226515120000081
表2温度场热弹稳定性评价指标计算结果
Figure BDA0002226515120000082
Figure BDA0002226515120000091
获得了最优化的沟槽结构,其结果为N=8,θ=5°,h=0.4mm,B=0.24mm;
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保 护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等, 均应包含在本发明的保护范围之内。

Claims (3)

1.一种用于湿式摩擦元件直沟槽特征参数优化方法,所述湿式摩擦元件由多片交替分布的摩擦片和对偶钢片,其中相邻的摩擦片和对偶钢片组成摩擦副,其中摩擦片上具备设定数量的直沟槽,所述直沟槽将所述摩擦片的摩擦表面分为设定数量的区块,其特征在于,所述直沟槽特征参数优化方法包括如下步骤:
确定直沟槽所需优化的结构特征参数;所述直沟槽所需优化的结构特征参数包括直沟槽数目N、直沟槽角度θ、直沟槽宽度B和直沟槽深度h;
所述直沟槽数目N是单个摩擦片表面上分布的沟槽组的总数目,每个沟槽组由三道相邻且平行的沟槽构成;
所述直沟槽角度θ是指沟槽组的中间沟槽与经过其沟槽长度中点的摩擦片直径的夹角;
所述直沟槽深度h是指直沟槽底部与摩擦片表面的垂直距离;
所述直沟槽宽度B是指摩擦片表面为直沟槽所截区域的宽度距离
设定结构特征参数的优化顺序为N→θ→B→h;
设定评价指标包括平温度场平均温度μ、温度场不均匀系数σ和温度极差R;设定评价指标顺序为μ→R→σ;
按照设定的结构特征参数优化顺序顺次选取当前优化参数,执行如下优化过程获得当前优化参数的最优取值,直至获取所有结构特征参数对应的最优取值,并以所有结构特征参数取其最优取值设置湿式摩擦元件的直沟槽结构;
所述优化过程为:对当前优化参数设置M个取值,其他结构特征参数设定为固定值,组成M组结构特征参数数据,对所述湿式摩擦元件进行M次热弹性仿真,获取M组仿真结果,所述仿真结果包括摩擦副的温度、热应力以及应变力;依据所述仿真结果计算评价指标的数值,按照设定评价指标的顺序,对当前优化参数的M个取值进行评价,选取最优取值。
2.如权利要求1所述的方法,其特征在于,所述对当前优化参数设置M个取值,具体为:
若所述当前优化参数为直沟槽数目N,则设置5个取值,分别为4,6,8,10,12;
若所述当前优化参数为直沟槽角度θ,则设置取值分布在[0°,45°]区间,选取间隔为5°;
若所述当前优化参数为直沟槽宽度B,则设置取值分布在[1mm,5mm]区间,选取间隔为0.8mm;
若所述当前优化参数为直沟槽深度h,则设置取值分布在[0.2mm,0.6mm]区间,选取间隔为0.1mm。
3.如权利要求1或2所述的方法,其特征在于,所述结构特征参数的最优取值具体为:
直沟槽数目N的最优取值为8,直沟槽角度θ最优取值为5°,直沟槽深度h最优取值为0.4mm,直沟槽宽度B最优取值为0.24mm。
CN201910953556.5A 2019-10-09 2019-10-09 一种用于湿式摩擦元件直沟槽特征参数优化方法 Active CN110688765B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910953556.5A CN110688765B (zh) 2019-10-09 2019-10-09 一种用于湿式摩擦元件直沟槽特征参数优化方法
US17/066,155 US11193550B2 (en) 2019-10-09 2020-10-08 Method for optimizing feature parameters of straight grooves of wet friction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910953556.5A CN110688765B (zh) 2019-10-09 2019-10-09 一种用于湿式摩擦元件直沟槽特征参数优化方法

Publications (2)

Publication Number Publication Date
CN110688765A CN110688765A (zh) 2020-01-14
CN110688765B true CN110688765B (zh) 2022-10-28

Family

ID=69111611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910953556.5A Active CN110688765B (zh) 2019-10-09 2019-10-09 一种用于湿式摩擦元件直沟槽特征参数优化方法

Country Status (2)

Country Link
US (1) US11193550B2 (zh)
CN (1) CN110688765B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116151030B (zh) * 2023-04-14 2023-08-04 浙江大学 一种马达制动器低温升的结构优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955581A (zh) * 2014-05-05 2014-07-30 北京理工大学 车辆湿式离合器用旋转密封优化设计方法
CN106814029A (zh) * 2017-01-13 2017-06-09 北京航空航天大学 一种多带积分盘式摩擦副摩擦性能预测方法
CN108304641A (zh) * 2018-01-29 2018-07-20 北京航空航天大学 一种高能容干式摩擦元件耐热性能设计方法
CN108536888A (zh) * 2018-01-19 2018-09-14 江苏大学 一种摩擦片及其优化摩擦片减少不均匀磨损的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7234580B2 (en) * 2004-02-18 2007-06-26 Dynax Corporation Method for optimizing groove structure of friction plate of wet type friction engagement apparatus
US7448483B2 (en) * 2004-06-25 2008-11-11 General Motors Corporation Clutch cooling grooves for uniform plate temperature in friction launch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955581A (zh) * 2014-05-05 2014-07-30 北京理工大学 车辆湿式离合器用旋转密封优化设计方法
CN106814029A (zh) * 2017-01-13 2017-06-09 北京航空航天大学 一种多带积分盘式摩擦副摩擦性能预测方法
CN108536888A (zh) * 2018-01-19 2018-09-14 江苏大学 一种摩擦片及其优化摩擦片减少不均匀磨损的方法
CN108304641A (zh) * 2018-01-29 2018-07-20 北京航空航天大学 一种高能容干式摩擦元件耐热性能设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Analysis of Temperature Field of Wet Clutch Based on Non-Fourier;Xiaoyan Wang等;《2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics》;IEEE;20151123;全文 *
湿式多片离合器接合特性研究;曹飞;《中国优秀硕士学位论文全文数据库》;20140515;C035-72 *

Also Published As

Publication number Publication date
CN110688765A (zh) 2020-01-14
US20210123492A1 (en) 2021-04-29
US11193550B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
Jalalahmadi et al. A Voronoi finite element study of fatigue life scatter in rolling contacts
Peng et al. Fabrication of metallic bipolar plates for proton exchange membrane fuel cell by flexible forming process-numerical simulations and experiments
CN110688765B (zh) 一种用于湿式摩擦元件直沟槽特征参数优化方法
Papanikos et al. Three-dimensional finite element analysis of cold expansion of adjacent holes
CN108595862B (zh) 一种基于失稳分析的300m钢锻造工艺参数优化方法
CN114547909A (zh) 一种湿式摩擦副温度场确定方法及系统
Abdullah et al. Effect of surface roughness on the thermoelastic behaviour of friction clutches
CN110555253A (zh) 一种汽车制动系统中电磁阀线圈温升的计算方法
Manthena et al. Transient thermoelastic problem of a nonhomogeneous rectangular plate
CN115326005A (zh) 换热芯块微流道形变值的测量方法、装置、设备及介质
Leng et al. The influences of gas diffusion layer material models and parameters on mechanical analysis of proton exchange membrane fuel cell
CN108446829B (zh) 一种板式热交换器能效评价方法
Yang et al. Performance evaluation of heat transfer enhancement for offset strip fins used in plate-fin heat exchangers
Gaba et al. Performance of functionally graded exponential annular fins of constant weight
Zhou et al. Effect of channel geometry on formability of 304 stainless steel bipolar plates for fuel cells—simulation and experiments
Zheng et al. The experimental investigation of size effect on micro-cylinder deformation in coining process
Li et al. [Retracted] Numerical Simulation of Fine Blanking Die Wear and Die Performance Analysis
Gür Investigation of the influence of specimen geometry on quench behaviour of steels by X-ray determination of surface residual stresses
Páczelt et al. Analysis of steady wear processes for periodic sliding
Hsu et al. A three-dimensional inverse problem of estimating the surface thermal behavior of the working roll in rolling process
Sheleg et al. Analysis and Selection of Rational Cutting Modes while Using Hard-Alloy Tool for Shaft Turning
Jin et al. Influence of the Thermal Parameters and the Structural Parameters on the Performance of Clutch Pressure Plate
Ma et al. Determination of flow stress of magnesium alloy sheet AZ31B by reverse analysis method
CN112100750B (zh) 热-应力耦合作用下涡轮盘结构的降维可靠性分析方法
Li et al. Numerical simulation and correlation research of multi-track overlapping laser quenching process for 40Cr steel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant