CN110687932A - 一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器 - Google Patents

一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器 Download PDF

Info

Publication number
CN110687932A
CN110687932A CN201910986899.1A CN201910986899A CN110687932A CN 110687932 A CN110687932 A CN 110687932A CN 201910986899 A CN201910986899 A CN 201910986899A CN 110687932 A CN110687932 A CN 110687932A
Authority
CN
China
Prior art keywords
secondary mirror
mirror
remote sensor
space optical
optical remote
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910986899.1A
Other languages
English (en)
Inventor
郭疆
李宪斌
薛栋林
邵明东
李元鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201910986899.1A priority Critical patent/CN110687932A/zh
Publication of CN110687932A publication Critical patent/CN110687932A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/10Control of position or direction without using feedback
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

一种空间光学遥感器次镜在轨调整方法,包括以下步骤:待空间光学遥感器发射至轨道后,检测空间光学遥感器的成像结果;分析成像结果,得出空间光学遥感器的波像差;判断空间光学遥感器的波像差是否满足需求;若否,在将空间光学遥感器的波像差进行光学解算后,根据光学解算的结果进行次镜的位置和姿态的在轨调整,直至空间光学遥感器的波像差满足需求;若是,则次镜的位置和姿态调整结束。上述空间光学遥感器次镜在轨调整方法,分析空间光学遥感器的成像结果后,进行次镜的位置和姿态的在轨调整,可以有效补偿光学系统中各光学元件的位姿误差,可以有效改善大口径长焦距离轴三反光学系统的在轨成像性能。此外,还提供一种空间光学遥感器。

Description

一种空间光学遥感器次镜在轨调整方法和一种空间光学遥 感器
技术领域
本发明涉及光学设备技术领域,尤其涉及一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器。
背景技术
空间光学遥感器目前已广泛应用于地球资源普查、地形测绘、海洋研究、气象预报等多个领域。随着空间遥感技术的不断发展,对空间光学遥感器的分辨率要求越来越高,光学系统的焦距和口径需要设计的越来越大,大口径和长焦距已经成为当前空间光学遥感领域的主要发展方向。
随着空间光学遥感器的口径和焦距不断增大,其尺寸和重量也急剧增加,空间光学遥感器在地面装调和检测时,由于重力影响无法完全消除,会使大尺寸反射镜及其支撑结构发生一定的重力变形,引起反射镜的面形误差和位姿误差,也会使遥感器的轻量化机身发生一定的重力变形,导致遥感器光学系统在地面装调和检测到最优状态时,各反射镜实际上已经包含了重力变形引入的面形误差和位姿误差。空间光学遥感器发射入轨后工作在空间微重力环境中,空间光学遥感器在地面装调时引入的重力变形会发生回弹释放,导致空间光学遥感器中各反射镜产生一定的面形精度误差和位姿误差,使得光学系统产生一定的波像差,从而影响空间光学遥感器的在轨成像质量。
发明内容
鉴于此,有必要提供一种可以有效改善在轨成像质量的一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器。
一种空间光学遥感器次镜在轨调整方法,包括以下步骤:
待空间光学遥感器发射至轨道后,检测所述空间光学遥感器的成像结果;
分析所述成像结果,得出所述空间光学遥感器的波像差;
判断所述空间光学遥感器的波像差是否满足需求;
若否,在将所述空间光学遥感器的波像差进行光学解算后,根据光学解算的结果进行次镜的位置和姿态的在轨调整,直至所述空间光学遥感器的波像差满足需求;
若是,则所述次镜的位置和姿态调整结束。
采用上述空间光学遥感器次镜在轨调整方法,待空间光学遥感器发射至轨道后,分析空间光学遥感器的成像结果可以得出空间光学遥感器的波像差,光学解算后进行次镜的位置和姿态的在轨调整,可以有效补偿光学系统中各光学元件的位姿误差,从而使空间光学遥感器的波像差满足需求,可以有效改善大口径长焦距离轴三反光学系统的在轨成像性能。
在一个实施例中,所述次镜的位置和姿态的在轨调整的操作中,根据所述空间光学遥感器的所述次镜的位置和姿态的允差来确定调整精度。
在一个实施例中,所述次镜的位置和姿态的在轨调整的操作中,所述次镜沿X方向的直线运动精度小于等于0.003mm;所述次镜沿Y方向的直线运动精度小于等于0.003mm;所述次镜沿Z方向的直线运动精度小于等于0.01mm。
在一个实施例中,所述次镜的位置和姿态的在轨调整的操作中,所述次镜绕X方向的转角精度小于等于1″;所述次镜绕Y方向的转角精度小于等于1″;所述次镜绕Z方向的转角精度小于等于1.5″。
在一个实施例中,所述次镜的位置和姿态的在轨调整的操作中,根据所述次镜对主镜和三镜的位姿误差补偿所需的调整量,确定所述次镜的调整范围。
在一个实施例中,所述次镜沿X方向、Y方向和Z方向的平移运动行程需要根据所述次镜对所述主镜和所述三镜的位姿误差补偿所需的调整量来确定。
在一个实施例中,所述次镜绕X方向、Y方向和Z方向的转角运动行程需要满足所述次镜对所述主镜和所述三镜的转角误差补偿的要求。
在一个实施例中,所述次镜的位置和姿态的在轨调整的操作中,对所述次镜进行沿X方向、Y方向和Z方向的平移运动和绕X方向、Y方向和Z方向的转角运动的六自由度运动调整。
一种空间光学遥感器,包括主镜、次镜和三镜;
所述主镜和所述三镜设于同一个主承力框架上;
所述次镜设于所述主镜和所述三镜的反射光路上,所述次镜设于调整机构上,所述调整机构驱动所述次镜进行位置和姿态的调整;
所述光线入射至所述主镜,经所述主镜反射至所述次镜,再经所述次镜反射至所述三镜。
上述空间光学遥感器,将主镜和三镜布置在同一个主承力框架上,装调时通过光学检测手段保证主镜和三镜的位姿准确。在地面装调时通过光学检测手段将次镜装调到最佳位姿,发射入轨后根据空间光学遥感器的成像结果判断次镜需要的调整量,通过次镜的调整机构实现次镜位姿的精密调整,可以有效补偿空间光学遥感器的光学系统因重力变形回弹释放引起的波像差,从而提高空间光学遥感器的成像质量。
在一个实施例中,所述调整机构驱动所述次镜进行六自由度运动进行位置和姿态的调整。
附图说明
图1为一实施方式的空间光学遥感器的TMA离轴三反式光学系统的示意图;
图2为一实施方式的便于采用空间光学遥感器次镜在轨调整方法的空间光学遥感器的光学系统的示意图;
图3为空间光学遥感器次镜在轨调整方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本发明中所说的固定连接,包括直接固定连接和间接固定。
如图1所示空间光学遥感器为某大口径长焦距离轴三反式空间光学遥感器。该空间光学遥感器采用TMA离轴三反式光学系统,包括主镜10、次镜20和三镜30。其中,光线入射至主镜10,经主镜10反射至次镜20,再经次镜20反射至三镜30,经三镜30反射至像面60。
如图2所示,提供一实施方式的可以采用空间光学遥感器次镜在轨调整方法进行次镜位姿调整的空间光学遥感器,包括主镜10、次镜20和三镜30。
主镜10和三镜30设于同一个主承力框架40上。
次镜20设于主镜10和三镜30的反射光路上,次镜20设于调整机构50上,调整机构50驱动次镜20进行位置和姿态的调整。
光线入射至主镜10,经主镜10反射至次镜20,再经次镜20反射至三镜30。经三镜30反射至像面60。
上述空间光学遥感器,将主镜10和三镜30布置在同一个主承力框架40上,装调时通过光学检测手段保证主镜10和三镜30的位姿准确。在地面装调时通过光学检测手段将次镜20装调到最佳位姿,发射入轨后根据空间光学遥感器的成像结果判断次镜20需要的调整量,通过次镜20的调整机构50实现次镜20位姿的精密调整,可以有效补偿空间光学遥感器的光学系统因重力变形回弹释放引起的波像差,从而提高空间光学遥感器的成像质量。
在一个实施例中,调整机构50驱动次镜20进行六自由度运动进行位置和姿态的调整。调整机构50驱动次镜20进行六自由度的姿态调整,次镜20的位置调整更为精确。
针对该光学系统进行设计优化,通过光学设计仿真可以得出系统中各光学元件的位置和姿态允差分配如表1所列。
表1光学系统中各光学元件的位姿允差
Figure BDA0002236976900000041
Figure BDA0002236976900000051
在空间光学遥感器为光机结构设计时,各反射镜需要通过设计柔性支撑结构来保证面形精度,各反射镜之间通过空间光学遥感器机身来保证相对位置关系,柔性支撑结构和轻量化机身在重力作用下会发生一定的变形。该空间光学遥感器光学系统中主镜10的口径最大,由于系统焦距长,主镜10与次镜20之间的间距也很大,经过仿真分析,在地面重力作用下,各反射镜支撑结构的变形量和遥感器机身的变形量叠加后,就已经超出了光学设计要求的光学元件位姿允差范围,因此必须考虑地面装调重力环境与在轨工作微重力环境变化对空间光学遥感器在轨实际成像性能的影响。
由于离轴三反光学系统中都是反射镜,各反射镜可以在背部设置调整装置来实现位姿调整。该光学系统中主镜10的口径和质量最大,受重力影响最大,主镜10本身的光学加工和支撑难度也最大,在地面装调时其面形精度对重力的倾角变化非常敏感,光学系统中主镜10的位姿允差也最为严格,因此在光机结构设计和地面装调时应以主镜10作为系统的位置基准,一般将主镜10与遥感器机身固连,并以主镜10为基准进行装调。装调时通过其他办法尽量减小重力对主镜10的影响,保证主镜10位姿引入的重力变形尽可能小,发射入轨后主镜10在空间微重力环境下发生重力变形释放导致的面形和位姿变化误差需要通过其他光学元件的位姿调整来进行补偿。
光学系统中还有次镜20和三镜30可以作为调整光学元件,通过上表1中给出的各光学元件的位姿允差分配可以看出,次镜20的位姿精度要求比三镜30更为严格,即次镜20的位姿误差对光学系统性能的影响更大,因此次镜20更适合作为调整元件。
另外,在大口径离轴三反式光学系统中,主镜10和三镜30的口径和重量一般都相对较大,而次镜20的口径和重量较小,将其作为调整环节不仅可以有效降低调整机构的负载和功耗,而且可以使调整机构小巧紧凑,从而有效减小空间光学遥感器的重量和功耗。
因此,如图3所示,还提供一实施方式的上述空间光学遥感器的次镜在轨调整方法,包括以下步骤:
S10、待空间光学遥感器发射至轨道后,检测空间光学遥感器的成像结果。
S20、分析成像结果,得出空间光学遥感器的波像差。
S20中,具体的,通过空间光学遥感器的成像结果分析,可以得到空间光学遥感器的光学系统存在的波像差的类型和大小。
S30、判断空间光学遥感器的波像差是否满足需求。
S40、若否,在将空间光学遥感器的波像差进行光学解算后,根据光学解算的结果进行次镜的位置和姿态的在轨调整,直至空间光学遥感器的波像差满足需求。
其中,在进行次镜20的位置和姿态的在轨调整的操作中,根据空间光学遥感器的次镜20的位置和姿态的允差来确定调整精度。根据次镜20对主镜10和三镜30的位姿误差补偿所需的调整量,确定其调整范围。即在具体的次镜20调整方案设计时,还需要通过光学设计和仿真分析来确定次镜20调整机构的调整精度和调整行程。
在一个实施例中,次镜20在X方向、Y方向、Z方向的偏离允差分别为小于0.03mm、0.03mm和0.1mm,考虑留一定的设计余量,因此,在进行次镜20的位置和姿态的在轨调整的操作中,次镜20沿X方向的直线运动精度应小于等于0.003mm;次镜20沿Y方向的直线运动精度应小于等于0.003mm;次镜20沿Z方向的直线运动精度应小于等于0.01mm。次镜20沿X方向、Y方向和Z方向的平移运动行程需要根据次镜20对主镜10和三镜30的位姿误差补偿所需的调整量来确定。
在一个实施例中,次镜20绕X方向、Y方向、Z方向的转角允差分别为小于4″、4″和6″,因此,在进行次镜20的位置和姿态的在轨调整的操作中,次镜20绕X方向的转角精度应小于等于1″;次镜20绕Y方向的转角精度应小于等于1″;次镜20绕Z方向的转角精度应小于等于1.5″。次镜20绕X方向、Y方向和Z方向的转角运动行程需要满足次镜20对主镜10和三镜30的转角误差补偿的要求。
在一个实施例中,次镜20的位置和姿态的在轨调整的操作中,对次镜20进行沿X方向、Y方向和Z方向的平移运动和绕X方向、Y方向和Z方向的转角运动的六自由度运动调整。
S50、若是,则次镜的位置和姿态调整结束。
采用上述空间光学遥感器次镜在轨调整方法对次镜20进行位姿调整,通过光学设计和分析可以得出,次镜20作为主镜10和三镜30之间的中间光学元件,将其设置为调整环节,单独对其进行位姿调整,可以有效补偿甚至消除主镜10和三镜30的位姿误差,仿真分析结果如表2所列。从仿真结果可以看出,通过次镜20的位姿调整对主镜10和三镜30的位姿误差进行补偿,在效果最好时可以使光学系统的MTF提升了30倍,因此采用上述空间光学遥感器次镜在轨调整方法对空间光学遥感器成像性能的改善效果非常明显。
表2次镜调整实现主镜和三镜位姿误差补偿的仿真结果
Figure BDA0002236976900000071
在地面完成空间光学遥感器光学系统的高精度装调,通过光学检测确保系统的性能满足设计指标要求,空间光学遥感器发射入轨后光机结构不可避免地发生重力变形回弹释放,导致空间光学遥感器的光学系统各光学元件产生一定的位姿误差,使光学系统产生一定的波像差。因此,通过采用上述空间光学遥感器次镜在轨调整方法,待空间光学遥感器发射至轨道后,分析空间光学遥感器的成像结果可以得出空间光学遥感器的波像差,光学解算后进行次镜20的位置和姿态的在轨调整,可以有效补偿光学系统中各光学元件的位姿误差,从而使空间光学遥感器的波像差满足需求,可以有效改善大口径长焦距离轴三反光学系统的在轨成像性能。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种空间光学遥感器次镜在轨调整方法,其特征在于,包括以下步骤:
待空间光学遥感器发射至轨道后,检测所述空间光学遥感器的成像结果;
分析所述成像结果,得出所述空间光学遥感器的波像差;
判断所述空间光学遥感器的波像差是否满足需求;
若否,在将所述空间光学遥感器的波像差进行光学解算后,根据光学解算的结果进行次镜的位置和姿态的在轨调整,直至所述空间光学遥感器的波像差满足需求;
若是,则所述次镜的位置和姿态调整结束。
2.如权利要求1所述的空间光学遥感器次镜在轨调整方法,其特征在于,所述次镜的位置和姿态的在轨调整的操作中,根据所述空间光学遥感器的所述次镜的位置和姿态的允差来确定调整精度。
3.如权利要求2所述的空间光学遥感器次镜在轨调整方法,其特征在于,所述次镜的位置和姿态的在轨调整的操作中,所述次镜沿X方向的直线运动精度小于等于0.003mm;所述次镜沿Y方向的直线运动精度小于等于0.003mm;所述次镜沿Z方向的直线运动精度小于等于0.01mm。
4.如权利要求2所述的空间光学遥感器次镜在轨调整方法,其特征在于,所述次镜的位置和姿态的在轨调整的操作中,所述次镜绕X方向的转角精度小于等于1″;所述次镜绕Y方向的转角精度小于等于1″;所述次镜绕Z方向的转角精度小于等于1.5″。
5.如权利要求1所述的空间光学遥感器次镜在轨调整方法,其特征在于,所述次镜的位置和姿态的在轨调整的操作中,根据所述次镜对主镜和三镜的位姿误差补偿所需的调整量,确定所述次镜的调整范围。
6.如权利要求5所述的空间光学遥感器次镜在轨调整方法,其特征在于,所述次镜沿X方向、Y方向和Z方向的平移运动行程需要根据所述次镜对所述主镜和所述三镜的位姿误差补偿所需的调整量来确定。
7.如权利要求5所述的空间光学遥感器次镜在轨调整方法,其特征在于,所述次镜绕X方向、Y方向和Z方向的转角运动行程需要满足所述次镜对所述主镜和所述三镜的转角误差补偿的要求。
8.如权利要求1所述的空间光学遥感器次镜在轨调整方法,其特征在于,所述次镜的位置和姿态的在轨调整的操作中,对所述次镜进行沿X方向、Y方向和Z方向的平移运动和绕X方向、Y方向和Z方向的转角运动的六自由度运动调整。
9.一种空间光学遥感器,其特征在于,包括主镜、次镜和三镜;
所述主镜和所述三镜设于同一个主承力框架上;
所述次镜设于所述主镜和所述三镜的反射光路上,所述次镜设于调整机构上,所述调整机构驱动所述次镜进行位置和姿态的调整;
所述光线入射至所述主镜,经所述主镜反射至所述次镜,再经所述次镜反射至所述三镜。
10.如权利要求9所述的空间光学遥感器,其特征在于,所述调整机构驱动所述次镜进行六自由度运动进行位置和姿态的调整。
CN201910986899.1A 2019-10-17 2019-10-17 一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器 Pending CN110687932A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910986899.1A CN110687932A (zh) 2019-10-17 2019-10-17 一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910986899.1A CN110687932A (zh) 2019-10-17 2019-10-17 一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器

Publications (1)

Publication Number Publication Date
CN110687932A true CN110687932A (zh) 2020-01-14

Family

ID=69113343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910986899.1A Pending CN110687932A (zh) 2019-10-17 2019-10-17 一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器

Country Status (1)

Country Link
CN (1) CN110687932A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505791A (zh) * 2020-06-04 2020-08-07 江苏北方湖光光电有限公司 一种六自由度次镜调校装置
CN113093361A (zh) * 2021-04-16 2021-07-09 中国科学院长春光学精密机械与物理研究所 空间相机在轨调节方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140063491A1 (en) * 2012-08-31 2014-03-06 Nikon Corporation Boresight error monitor for laser radar integrated optical assembly
CN104570265A (zh) * 2014-12-18 2015-04-29 中国科学院西安光学精密机械研究所 轻量化简单化高稳定同轴相机主次镜部件及安装方法
CN107608089A (zh) * 2017-08-31 2018-01-19 北京空间机电研究所 一种离散化的空间相机次镜精密调整固定方法
CN107728315A (zh) * 2017-11-14 2018-02-23 中国科学院长春光学精密机械与物理研究所 一种航天相机系统
CN108121049A (zh) * 2017-12-19 2018-06-05 北京空间机电研究所 一种多谱段多通道遥感相机镜头的装调测试方法
CN109522573A (zh) * 2017-09-20 2019-03-26 中国科学院长春光学精密机械与物理研究所 一种光学遥感相机主动光学系统的仿真方法
CN109737987A (zh) * 2018-12-29 2019-05-10 中国科学院长春光学精密机械与物理研究所 一种多光合一大口径空间相机在轨星上红外辐射定标系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140063491A1 (en) * 2012-08-31 2014-03-06 Nikon Corporation Boresight error monitor for laser radar integrated optical assembly
CN104570265A (zh) * 2014-12-18 2015-04-29 中国科学院西安光学精密机械研究所 轻量化简单化高稳定同轴相机主次镜部件及安装方法
CN107608089A (zh) * 2017-08-31 2018-01-19 北京空间机电研究所 一种离散化的空间相机次镜精密调整固定方法
CN109522573A (zh) * 2017-09-20 2019-03-26 中国科学院长春光学精密机械与物理研究所 一种光学遥感相机主动光学系统的仿真方法
CN107728315A (zh) * 2017-11-14 2018-02-23 中国科学院长春光学精密机械与物理研究所 一种航天相机系统
CN108121049A (zh) * 2017-12-19 2018-06-05 北京空间机电研究所 一种多谱段多通道遥感相机镜头的装调测试方法
CN109737987A (zh) * 2018-12-29 2019-05-10 中国科学院长春光学精密机械与物理研究所 一种多光合一大口径空间相机在轨星上红外辐射定标系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIDE ZHOU: "An alignment method for the reflective zoom system by applying vector wavefront aberration theory", 《OPTIK》 *
王茫茫 等: "空间相机次镜在轨校正仿真分析", 《航天返回与遥感》 *
赵东 等: "基于多视场波前传感的次镜位置误差检测方法", 《红外与激光工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505791A (zh) * 2020-06-04 2020-08-07 江苏北方湖光光电有限公司 一种六自由度次镜调校装置
CN111505791B (zh) * 2020-06-04 2023-08-15 江苏北方湖光光电有限公司 一种六自由度次镜调校装置
CN113093361A (zh) * 2021-04-16 2021-07-09 中国科学院长春光学精密机械与物理研究所 空间相机在轨调节方法

Similar Documents

Publication Publication Date Title
US10309691B1 (en) Heliostat correction system based on celestial body images and its method
CN109188648B (zh) 一种用于空间光学载荷地面重力卸载的浮动支撑装置
CN110687932A (zh) 一种空间光学遥感器次镜在轨调整方法和一种空间光学遥感器
CN102265201A (zh) 具有用于光学器件的主动控制的装置的空间光学系统
CN109375336B (zh) 一种连续调焦星敏感器
CN101713639A (zh) 基于四边形子面板四点支撑的射电望远镜共相检测方法
JP4591526B2 (ja) アンテナ装置
Woody et al. The CCAT 25m diameter submillimeter-wave telescope
CN107036550A (zh) 射电天文望远镜主动反射面边缘传感器系统及其检测方法
CN117347013B (zh) 大口径空间光学望远镜的地面模拟调整测量装置及方法
CN103245940A (zh) 激光测距机便携式光轴检测系统
Good et al. Performance verification testing for HET wide-field upgrade tracker in the laboratory
Hayashida et al. The optical system for the large size telescope of the Cherenkov Telescope Array
CN110160460B (zh) 一种基于数字摄影的金属结构变形测量装置及方法
CN208351001U (zh) 具有实时波前补偿功能的激光三维成像系统
CN110703406B (zh) 利用结构变形量补偿光学系统失调量的光学遥感器
CN114815128B (zh) 一种微纳遥感相机在轨实时成像调节系统
CN107783249A (zh) 一种空间主动热光学系统
EP1767972B1 (en) Reflecting mirror apparatus
CN203133275U (zh) 激光测距机光轴检测装置
Gubner Deformable mirror demonstration mission
CN113093357A (zh) 一种用于航空相机的快速补偿镜对准方法
US8455804B2 (en) Apparatus for adjusting optical mirrors
Martin et al. Design and manufacture of 8.4 m primary mirror segments and supports for the GMT
Nieto et al. Construction of a medium-sized Schwarzschild-Couder telescope as a candidate for the Cherenkov Telescope Array: development of the optical alignment system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200114

RJ01 Rejection of invention patent application after publication