CN110676526A - 一种具有多层管理体系和结构的模块化电池系统 - Google Patents

一种具有多层管理体系和结构的模块化电池系统 Download PDF

Info

Publication number
CN110676526A
CN110676526A CN201910964694.3A CN201910964694A CN110676526A CN 110676526 A CN110676526 A CN 110676526A CN 201910964694 A CN201910964694 A CN 201910964694A CN 110676526 A CN110676526 A CN 110676526A
Authority
CN
China
Prior art keywords
voltage
battery system
control unit
battery
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910964694.3A
Other languages
English (en)
Other versions
CN110676526B (zh
Inventor
李宁
李圣歌
曾旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lianfang Yuntian Technology Zhuhai Co Ltd
Original Assignee
Lianfang Yuntian Technology Zhuhai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lianfang Yuntian Technology Zhuhai Co Ltd filed Critical Lianfang Yuntian Technology Zhuhai Co Ltd
Priority to CN201910964694.3A priority Critical patent/CN110676526B/zh
Publication of CN110676526A publication Critical patent/CN110676526A/zh
Application granted granted Critical
Publication of CN110676526B publication Critical patent/CN110676526B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种具有多层管理体系和结构的模块化电池系统。包含:低电压电池系统、高电压电池系统、级联高电压电池系统。低电压电池系统通过低电压电池管理系统对一个低压从控制单元和功率控制单元进行管理,并结合相应的外围电气元件和锂电池电芯单元共同组成;高电压电池系统通过高电压电池管理系统对高压主控制单元及至少四个低压从控制单元进行管理,并结合相应的外围电气元件和锂电池电芯单元共同组成;级联高电压电池系统通过级联电池管理系统对至少两个高电压电池系统进行管理,支持高电压电池系统串联、并联或者串并联结合的方式进行电池系统的组合。多层管理体系和结构,可以充分根据实际应用需要自由组合不同用途的电池管理系统以适应不同应用场景的电池系统。

Description

一种具有多层管理体系和结构的模块化电池系统
技术领域
本发明属于电池领域,涉及一种多层级的电池管理系统。
背景技术
电池系统、尤其是在不间断电源、储能设备、电动车中所使用的电池系统应被设计为使得所述电池系统能满足不间断电源、储能设备、电动车在能支配的能量与能调用的电压方面的要求。
为了使这种能支配的电池系统来满足不同应用场景下能量和电压要求,需要有相应的电池管理系统组合策略来组合相关的电池系统模块,并通过相应的管理架构按照应用要求来运行。在所述低电压运行方式下只能进行低电压供电给负载,在所述高电压运行方式下只能进行高电压供电给负载。
电池系统也包含一种电池管理系统,所述电池管理系统用于根据当前负载使用需要和电池模块的组合策略操控所述低电压电池系统和高电压电池系统。对此,电池管理系统除了包含相关的多层结构的硬件控制电路模块单元外,还拥有如下相对应的软件,所述相对应的软件具有用于运行相对应的电池管理系统和电池系统的方法。
传统电池管理系统及使用传统电池管理系统的电池系统可以较好的应用在普通直流UPS及放电要求较低的交流UPS中。当高压直流UPS及放电功率要求较高的交流UPS使用传统电池管理系统来对锂电池系统进行管理时,就往往会存在高充放电电流无法有效控制、高电压电流采集干扰严重、较难扩展更高电压及更高容量等问题。
发明内容
按照本发明,可以通过多层管理体系和结构的模块化电池管理系统,能够有效的使采用该电池管理系统的电池系统工作在上述UPS环境中,可以适用于传统低电压的交直流UPS供电系统中,也可以使用于新型高电压的交直流UPS中,还可以用于各类大型储能型供电系统中。可以很好的适应这些供电系统的高充放电电流的有效控制、高电压电流的采集稳定和抗干扰能力、方便快速的进行供电电压由低到高和几乎无限容量扩容的需求。
一种具有多层管理体系和结构的模块化电池系统,包含:低电压电池系统、高电压电池系统、级联高电压电池系统,低电压电池系统通过低电压电池管理系统对一个低压从控制单元和功率控制单元进行管理,并结合相应的外围电气元件和锂电池电芯单元共同组成。
高电压电池系统通过高电压电池管理系统对高压主控制单元及至少四个低压从控制单元进行管理,并结合相应的外围电气元件和锂电池电芯单元共同组成。
级联高电压电池系统通过级联电池管理系统对至少两个高电压电池系统进行管理,支持高电压电池系统串联、并联或者串并联结合的方式进行电池系统的组合。
电池管理系统会建立多条通信总线,通过扫描通信总线上所挂载的不同控制单元上报的ID信息,自动识别当前的组合模式,电池管理系统通过自适应的方式调用对应电池系统的管理方法,对电池系统进行电池系统自检、电池系统初始化配置、电池系统待机引导、电池系统充放电管理、电池系统被动均衡管理、电池系统主动均衡管理、电池系统绝缘监测管理、电池系统运行参数输出管理。
电池管理系统监测到电池系统中所配置的低压从控制单元后会自动根据监测结果设定充电电流、充电电压、充电过充电流保护、充电过充电压保护、放电过放电流保护、放电过放电压保护等参数,自动调整电池系统工作状态。
电池管理系统监测到电池系统中如配置了扩展高压采集单元将会自动调用扩展电压采集算法,对普通采集电压值和扩展采集电压值进行比对计算,通过专有滤波算法进行处理,达到提高电压采集精度的目标,同时还可以扩展电压采集点,增加电池系统保护能力。
高压采集单元通过连接器和线缆直连在高压主控制单元完成高精度电压采集,实现具有高保护性的高电压电池系统。
电池管理系统监测到电池系统中配置了电流采集单元,电流采集单元通过连接器和线缆直连在高压主控制单元,并使用分流器替代互感器,完成高精度电流采集,会自动调用扩展电流采集算法,对电流采集进行增强型滤波处理,提高电池系统在大电流放电过程中的抗干扰能力,避免出现由于干扰所导致的电池系统放电中断等故障。
绝缘控制单元通过连接器和线缆直连在高压主控制单元完成绝缘监测功能,实现具有绝缘检测及绝缘失效保护功能的高电压电池系统。
存储控制单元通过连接器和线缆直连在高压主控制单元完成电池系统的运行数据存储,实现具有运行历史可查询的高电压电池系统。
显示终端控制单元通过连接器和线缆直连在高压主控制单元,完成运行参数显示及参数设定等功能,实现具有运行状态监控和参数设定功能。
所述高压主控制单元可以最多搭配三十个低压从控制单元,低压从控制单元通过连接器和线缆进行链式串接,最末端的低压从控制单元通过连接器和线缆与高压主控制单元直连。
所述低压从控制单元搭配一个功率控制单元,通过连接器和线缆直连可以实现12V-48V的低电压电池系统。
一个系统控制单元可以最多搭配八个高压主控制单元,这些高压主控制单元所控制的高压电池系统可以通过串联或并联的方式进行组合,也可以同时进行串并联组合,高压主控制单元通过连接器和线缆直连在系统控制单元,实现级联高电压电池系统,级联高电压电池系统可以提供更高的输出电压和更长久的输出时长。
本发明中采用多层管理体系和结构设计,可根据实际应用情况进行组合来实现具体的电池管理系统。每个模块除了具有独立的硬件设计和电路外,还具有独立的软件系统,可以实现独立的处理逻辑和算法。并通过各个模块间相互的硬件连接接口、软件通信协议、运行控制参量进行协同工作,来完成更复杂的电池管理逻辑和应用,实现不同电压需要的电池系统。
多层管理体系和结构,可以充分根据实际应用需要自由组合不同用途的电池管理系统以适应不同应用场景的电池系统。
数据总线自适应,可以减少实际应用中电池管理系统的二次开发成本。
可以根据使用中的需要,快速调整结构配置,实现电池管理系统的功能调整。
用途广泛,采用本发明的设计方案的电池管理系统和具有这种电池管理系统的电池系统,能够广泛适用于UPS、储能系统、电动工具、电动车等。
附图说明
图1 是低电压电池系统结构示意图;
图2 是高电压电池系统基本配置示意图;
图3 是高电压电池系统的扩展配置中高压采集单元配置示意图;
图4 是高电压电池系统的扩展配置中电流采集单元配置示意图;
图5 是高电压电池系统的扩展配置中绝缘控制单元配置示意图;
图6 是高电压电池系统的扩展配置中存储控制单元配置示意图;
图7 是高电压电池系统的扩展配置中显示终端控制单元配置示意图;
图8 是高电压电池系统的扩展配置中存储、显示终端、电流采集、高压采集、绝缘控制集成配置示意图;
图9 是级联高电压电池系统的两串联两并联配置示意图。
附图标记:11、低电压电池系统;12、高电压电池系统;13、联高电压电池系统;20、电池管理系统;21、低电压电池管理系统;22、高电压电池管理系统;23、级联电池管理系统;31、低压从控制单元;32、功率控制单元;33、高压采集单元;34、电流采集单元;35、高压主控制单元;36、系统控制单元;37、绝缘控制单元;2、通信总线;5、高压采集线束;6、12V电源和串口线束;9、电源和控制线束;10、低压从控单元级联线束;28、电压和温度采集线束;38、存储控制单元;39、显示终端控制单元。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面通过附图说明和具体实施实例对本发明进行进一步详细说明。
电池管理系统20包含低压从控制单元31、功率控制单元32、高压采集单元33、电流采集单元34、高压主控制单元35、系统控制单元36、绝缘控制单元37、存储控制单元38、显示终端控制单元39。通过多层级的组合上述模块化单元组件,最终实现通过低电压电池管理系统21控制低电压电池系统11、通过高电压电池管理系统22控制高电压电池系统12和通过级联电池管理系统23控制级联高电压电池系统13。
电池系统10分为低电压电池系统11、高电压电池系统12、级联高电压电池系统13。
低电压电池系统11通过低电压电池管理系统21对一个低压从控制单元31和功率控制单元32进行管理,并结合相应的外围电气元件和锂电池电芯单元共同组成。
低压从控制单元主要由采集滤波电路、ID识别隔离电路、单片机MC9S08DZ60接口电路及CAN通信隔离电路等组成。其中采集芯片BQ76PL455的模拟电路(电压和温度的采集)采用电池电源供电,数字电路(通信)采用与单片机相同的隔离电源供电,这种处理方式使得采集精度更高数值更稳定,同时隔离的CAN总线通信使得数据上传更可靠。支持6至16节串联单体电池电压采集,支持4路差分温度采集。
功率控制单元主要由电源降稳压电路、MOS驱动电路、电流采集电路、ID识别隔离电路、单片机MC9S12XEP100接口电路及CAN通信隔离电路等组成。其中降压电路采用宽电压输入7.5V-100V恒准时同步降压芯片LM5017,以灵活适用6至16节低压电池包电源输入。
高电压电池系统12通过高电压电池管理系统22对高压主控制单元35及至少四个低压从控制单元31进行管理,并结合相应的外围电气元件和锂电池电芯单元共同组成。
高电压电池系统12在前述基础上还可以扩展高压采集单元33、电流采集单元34、绝缘控制单元37、存储控制单元38、显示终端控制单元39分别实现高精度电压采集、高精度电流采集、电路绝缘监测、运行数据日志存储、数字式外界显示屏控制等扩展功能。
高电压电池系统12在前述中所扩展的各个单元可以根据实际应用需要进行选择,可以选择其中的一个单元或多个单元,也可以选择全部单元。
高压转换控制单元主要由开关电源、熔断器、功率二极管、分流器、功率继电器及电流传感器等组成。其中开关电源将输入的高电压进行降压隔离处理以提供12V电源,熔断器和二极管对高压主回路进行过流及防反接保护,继电器执行充放电及告警开关处理。
高压主控制单元主要由电压转换稳压电路、继电器驱动电路、PWM风扇驱动电路、ID识别隔离电路、485通信隔离电路、232通信隔离电路、单片机MC9S12XEP100接口电路及CAN通信隔离电路等组成。其中电压转换稳压电路输出正负12V和5V等电压,为与之相连的各类控制模块提供稳定精准的电源。
高压采集单元主要由采样滤波隔离电路、ID识别隔离电路、单片机MC9S08DZ60接口电路及CAN通信隔离电路等组成。其中三路电压即电池电压、充电机电压和放电电压采样模拟部分应用差分加法负反馈运算电路,数字部分采用超小型、低功耗、16位模数转换器ADS1115,同时采用隔离通信上传数据,最终获得高精度的电压值。
电流采集单元主要由采样滤波电路、ID识别隔离电路、单片机MC9S08DZ60接口电路及CAN通信隔离电路等组成。其中电流采样采用双向零漂移、具有增强型PWM抑制功能、四种可用的固定增益电流检测放大器INA240,使得各种应用场景所采的电流依然精准。
绝缘控制单元主要由MOS互锁切换电路、采样滤波电路、ID识别隔离电路、单片机MC9S08DZ60接口电路及CAN通信隔离电路等组成。其中MOS互锁切换电路利用N沟道和P沟道导通电压互斥性从硬件上实现电池正极和负极不会同时对地导通,增加硬件电路可靠性。电压采样模拟部分应用差分负反馈运算电路,数字部分采用超小型、低功耗、16位模数转换器ADS1115,正负对地电压采用不平衡电桥法。
存储控制单元主要由CH376扩展电路、单片机MC9S08DZ60接口电路及CAN通信隔离电路等组成。支持最大32G容量的SD卡。
显示终端控制单元采用串口彩色液晶屏,通过Modbus协议可以实时显示电压、电流、温度、实时告警和历史记录等数据,同时解锁可以设置充放电电流等一些参数值。
级联高电压电池系统13通过级联电池管理系统23对至少两个高电压电池系统12进行管理,支持高电压电池系统12串联、并联或者串并联结合的方式进行电池系统的组合。
假定高压电池系统每1组的额定电压和额定容量都相同,即额定电压DC220V,额定容量25Ah,2串2并后级联高电压电池系统的额定电压DC440V,额定容量50Ah。
电池管理系统20会建立多条通信总线,通过扫描通信总线上所挂载的不同控制单元上报的ID信息,自动识别当前的组合模式。
电池管理系统20通过自适应的方式调用对应电池系统的管理方法,对电池系统进行电池系统自检、电池系统初始化配置、电池系统待机引导、电池系统充放电管理、电池系统被动均衡管理、电池系统主动均衡管理、电池系统绝缘监测管理、电池系统运行参数输出管理等。
电池管理系统20监测到电池系统中所配置的低压从控制单元31后会自动根据监测结果设定充电电流、充电电压、充电过充电流保护、充电过充电压保护、放电过放电流保护、放电过放电压保护等参数,自动调整电池系统工作状态。
电池管理系统20监测到电池系统中如配置了扩展高压采集单元33将会自动调用扩展电压采集算法,对普通采集电压值和扩展采集电压值进行比对计算,通过专有滤波算法进行处理,达到提高电压采集精度的目标,同时还可以扩展电压采集点,增加电池系统保护能力。
电池管理系统20监测到电池系统中如配置了电流采集单元34将会自动调用扩展电流采集算法,对电流采集进行增强型滤波处理,提高电池系统在大电流放电过程中的抗干扰能力,避免出现由于干扰所导致的电池系统放电中断等故障。
电池管理系统从硬件角度可以通过连接器和线缆进行连接,从软件角度通过数据总线协议进行数据交互和指令传输。通常有如下连接方式:
1)一个低压从控制单元31搭配一个功率控制单元32,通过连接器和线缆直连可以实现12V-48V的低电压电池系统。
2)一个高压主控制单元35可以最多搭配三十个低压从控制单元31,低压从控制单元31通过连接器和线缆进行链式串接,最末端的低压从控制单元31通过连接器和线缆与高压主控制单元35直连,可以支持目前UPS、储能系统、电动车等主流应用电池系统的电压需要,可以实现相应电压需要的高电压电池系统。
3)在2)连接方式中,可以通过增加一个高压采集单元33通过连接器和线缆直连在高压主控制单元35完成高精度电压采集,实现具有高保护性的高电压电池系统。
4)在2)连接方式中,可以通过增加一个电流采集单元34通过连接器和线缆直连在高压主控制单元35,并使用分流器替代互感器,完成高精度电流采集,实现具有高精度电流采集功能的高电压电池系统。
5)在2)连接方式中,可以通过增加一个绝缘控制单元37通过连接器和线缆直连在高压主控制单元35完成绝缘监测功能,实现具有绝缘检测及绝缘失效保护功能的高电压电池系统。
6)在2)连接方式中,可以通过增加一个存储控制单元38通过连接器和线缆直连在高压主控制单元35完成电池系统的运行数据存储,实现具有运行历史可查询的高电压电池系统。
7)在2)连接方式中,可以通过增加一个显示终端控制单元39通过连接器和线缆直连在高压主控制单元35,完成运行参数显示及参数设定等功能,同时取代普通指示灯,实现具有运行状态监控和参数设定功能的高电压电池系统。
8)在3)、4)、5)、6)、7)的连接方式中,可以通过组合,在一个电池系统中同时实现这些连接方式中的一个或多个,实现具有高精度电压采集、高精度电流采集、绝缘检测、数据存储和显示控制等组合功能的高电压电池系统。
9)一个系统控制单元36可以最多搭配八个高压主控制单元35,这些高压主控制单元35所控制的高压电池系统可以通过串联或并联的方式进行组合,也可以同时进行串并联组合,高压主控制单元35通过连接器和线缆直连在系统控制单元36,实现级联高电压电池系统,级联高电压电池系统可以提供更高的输出电压和更长久的输出时长。
电池管理系统所包含的各个层级的单元模块均具有各自的控制软件,可以根据组合策略进行多层级组合管理,各层级之间通过数据总线进行数据交互和指令传输,并通过自动扫描及运行控制参量的设置来动态调整运行模式。
低电压电池管理系统可以至少包含一个低压从控制单元和功率控制单元,所述组合策略描述了低电压电池系统所需的电池管理系统的最小应用形式。
高电压电池管理系统可以至少包含四个低压从控制单元、一个高压主控制单元,所述组合策略描述了高电压电池系统所需的电池管理系统的最小应用形式。
级联电池管理系统还可以至少包含两个高电压电池管理系统和一个系统控制单元,所述组合策略描述了级联高电压电池系统所需的电池管理系统的最小应用形式。
电池管理系统可以通过增配高压采集单元来获取更高精度的电压采集,同时对电池系统提供更加可靠的输入保护。
电池管理系统可以通过增配电流采集单元来获取更高精度的电流采集,同时支持更大的电流检测量程。
电池管理系统可以通过增配绝缘控制单元来增加绝缘可靠性检测,同时对电池系统提供漏电保护功能。
电池管理系统可以通过增配存储控制单元来增加电池系统运行日志的记录。
按照本发明的方法、按照本发明的电池管理系统以及按照本发明的电池系统,在集中式交流不间断电源、在集中式直流不间断电源、在分布式交流不间断电源、在分布式支流不间断电源、在电力储能设备或者在电动车辆中得到应用。
低压从控制单元31、功率控制单元32、高压采集单元33、电流采集单元34、高压主控制单元35、系统控制单元36、绝缘控制单元37、存储控制单元38、显示终端控制单元39通过连接器进行连接,通过数据总线进行数据通信,通过专有标识符在数据总线上进行身份声明。所以各个单元的控制软件都会自动识别数据总线上所挂载的硬件单元有哪些,同时根据所挂载的单元情况自动调整各自的运行模式。
电池管理系统20监测到电池系统中如配置了绝缘控制单元37将会自动调用绝缘监测算法,对电池系统电路中的绝缘情况进行监测跟踪,当出现绝缘情况下降时可及时给出告警或主动进行电池保护处理。
电池管理系统20监测到电池系统中如配置了存储控制单元38将会自动根据配置参数将电池系统运行日志通过存储控制单元38记录在存储卡中,同时会监测存储卡中记录数据所占用的空间并自动进行历史数据调整。
高压主控制单元35会通过获取低压从控制单元31上报的电芯数据,主动对电芯进行充放电均衡控制,以保证电芯达到均衡的效果,增加电池系统的使用寿命。
当数据总线上包含有系统控制单元36时,所挂载的高压主控制单元35将不再负责控制低压从控制单元31对电池系统电芯进行充放电均衡控制,控制权交由系统控制单元36统一处理,以达到整体电池系统能够实现电芯均衡的效果,增加电池系统的使用寿命。
所述电池管理系统包含多层结构组件,可以根据实际使用需求进行动态组合、扩展以及适配,用于管理相应的电池系统,而且所述的电池系统式能够以低电压和高电压多种运行方式来运行,在所述的低电压运行方式下只有部分模块组合进电池系统,在所述高电压运行方式下可以部分也可以全部模块组合进电池系统,无论是低电压运行的电池系统还是高电压运行的电池系统都可以适用于各类不间断电源的锂电池备源供电、储能设备的锂电池备源管理、电动车的锂电池单元管理等场景。本发明也涉及上位领域使用这种电池管理系统的电池系统。
滤波和算法:
电压和电流采集软件滤波都是采用的中位值平均滤波法。
中位值平均滤波法:
方法:相当于“中位值滤波法”+“算术平均滤波法”。连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。
优点:对于偶然出现的脉冲性干扰,可消除由其引起的采样值偏差。对周期干扰有良好的抑制作用。
缺点:比较浪费RAM。
算法实现
#define N 14
void insert_sort(word *array,word n) //插入排序法
{
byte i,j;
word temp;
for(i=1 ;i < n; i++)
{
temp=array[i];
for(j=i;j>0&&array[j-1]>temp;j--)
{
array[j]=array[j-1];
}
array[j]=temp;
}
}
word AverageValue_Calculate(word *array,word n) //中值平均滤波
{
byte i = 0,num = 0;
word temp;
dword temp_sum = 0,temp1,temp2;
temp = *(array+n/2);
for(i=0; i< n; i++)
{
temp1 = *(array+i);
temp2 = temp;
if((temp1*10>temp2*9) && (temp1*10<temp2*11))
{
temp_sum += *(array+i);
num++;
}
}
if(num > 0)
temp = (word)(temp_sum/num);
return temp;
}
word filter()
{
byte i;
word temp,readbuf[N];
for(i=0;i< N:i++)
{
readbuf[N]=get_ad();
delay();
}
insert_sort(readbuf,N);
temp= AverageValue_Calculate(readbuf,N);
return temp;
}
以高压采样为例,详解如何计算实际电压值:
高压采集控制单元负责电池、充电机和负载三路电压采集,由于三路共地,故通过软件计算判断哪路正负极接反或者哪路未连接,从而提高高电压电池系统整体安全性。
处理流程:
首先判断采样值数据最高位,根据最高位是0(正常)或是1(反接)来判断正负极是否反接,如没有任何一路反接,然后判断是否有一路或者二路未连接(未连接包含真正未接和虚接二种情况),最后根据硬件电路比例关系进行数值换算,最终得到准确有效的实际电压值。
#define REF_SCOPE 6.144 // FS = ±6.144V ADS1115 全范围比例
#define REF_PRECI 32768 // 2^15 ADS1115 精度(16-1)
#define REF_RATIO 100 // 采集电路比例系数 1:100
#define REF2K_MAX 45 // 2路未接 依据电压取值范围和电路比例计算
#define REF2K_MIN 35 // 2路未接
#define REF1K_MAX 30 // 1路未接
#define REF1K_MIN 20 // 1路未接
word v_real[3]; // 3路电压值
void get_real_volt()
{
byte I;
static byte direct_flag[4],unconnet_flag[4];
word v_sample[4], v_comp[3],v_ref[2];
// v_sample[0]:加法电路的参照电压 实时采集精度更高
for(i=0;i< 4:i++)
{
v_sample[i]= filter();
if((v_sample[i]&0x8000)== 0x8000) //判断最高位
direct_flag[i]=1; //正负极接反
else
direct_flag[i]=0; //正常
}
v_comp[0]= v_sample[1]- v_sample[0]; //电池电压
v_comp[1]= v_sample[2]- v_sample[0]; //充电机电压
v_comp[2]= v_sample[3]- v_sample[0]; //负载电压
if((direct_flag[1]==0)&&( direct_flag[2]==0)&&( direct_flag[3]==0)) //未接反
{
/* 先判断2路未接 */
if((v_comp[0]> v_comp[1])&&( v_comp[0]> v_comp[2]))
// case1: 电池接了,另2路未接情况
{
v_ref[0]= v_comp[0]/ v_comp[1];
v_ref[1]= v_comp[0]/ v_comp[2];
if(((REF2K_MIN< v_ref[0])&&( v_ref[0]< REF2K_MAX))&&
( (REF2K_MIN< v_ref[1])&&( v_ref[1]< REF2K_MAX)))
{
unconnet_flag[0]=0; //电池接了 0=接了 1=未接
unconnet_flag[1]=1; //
unconnet_flag[2]=1;
unconnet_flag[3]=1; // 2路未接 标志
}
else
{
unconnet_flag[0]=0; //电池接了
unconnet_flag[1]=0; //
unconnet_flag[2]=0;
unconnet_flag[3]=0; // 2路未接 标志
}
//以下与上流程一样,参数替换便可
}
/* 1路未接 */
if(unconnet_flag[3] !=1)
{
if((v_comp[0]> v_comp[2])&&( v_comp[1]> v_comp[2]))
// case1: 电池和充电机接了,另1路未接
{
v_ref[0]= v_comp[0]/ v_comp[2];
v_ref[1]= v_comp[1]/ v_comp[2];
if(((REF1K_MIN< v_ref[0])&&( v_ref[0]< REF1K_MAX))&&
( (REF1K_MIN< v_ref[1])&&( v_ref[1]< REF1K_MAX)))
{
unconnet_flag[0]=0; //电池接了 0=接了 1=未接
unconnet_flag[1]=0; //
unconnet_flag[2]=1;
}
else
{
unconnet_flag[0]=0; //电池接了
unconnet_flag[1]=0; //
unconnet_flag[2]=0;
}
//以下与上流程一样,参数替换便可
}
}
/* 计算电压值 */
for(i=0;i<3;i++)
{
v_real[i]=
Figure 668937DEST_PATH_IMAGE001
*REF_RATIO; //电压实际值
}
}
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种具有多层管理体系和结构的模块化电池系统,包含:低电压电池系统(11)、高电压电池系统(12)、级联高电压电池系统(13),高电压电池系统(12)通过高电压电池管理系统(22)对高压主控制单元(35)及至少四个低压从控制单元(31)进行管理,并结合相应的外围电气元件和锂电池电芯单元共同组成;级联高电压电池系统(13)通过级联电池管理系统(23)对至少两个高电压电池系统(12)进行管理,支持高电压电池系统(12)串联、并联或者串并联结合的方式进行电池系统的组合。
2.根据权利要求1所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:电池管理系统(20)会建立多条通信总线,通过扫描通信总线上所挂载的不同控制单元上报的ID信息,自动识别当前的组合模式;电池管理系统(20)通过自适应的方式调用对应电池系统的管理方法,对电池系统进行电池系统自检、电池系统初始化配置、电池系统待机引导、电池系统充放电管理、电池系统被动均衡管理、电池系统主动均衡管理、电池系统绝缘监测管理、电池系统运行参数输出管理;电池管理系统(20)监测到电池系统中所配置的低压从控制单元(31)后会自动根据监测结果设定充电电流、充电电压、充电过充电流保护、充电过充电压保护、放电过放电流保护、放电过放电压保护等参数,自动调整电池系统工作状态。
3.根据权利要求1所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:电池管理系统(20)监测到电池系统中如配置了扩展高压采集单元(33)将会自动调用扩展电压采集算法,对普通采集电压值和扩展采集电压值进行比对计算,通过专有滤波算法进行处理,达到提高电压采集精度的目标,同时还可以扩展电压采集点。
4.根据权利要求1或2所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:高压采集单元(33)通过连接器和线缆直连在高压主控制单元(35)完成高精度电压采集,实现具有高保护性的高电压电池系统。
5.根据权利要求1或2所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:电池管理系统(20)监测到电池系统中配置了电流采集单元(34),电流采集单元(34)通过连接器和线缆直连在高压主控制单元(35),并使用分流器替代互感器,完成高精度电流采集,会自动调用扩展电流采集算法,对电流采集进行增强型滤波处理,提高电池系统在大电流放电过程中的抗干扰能力,避免出现由于干扰所导致的电池系统放电中断等故障。
6.根据权利要求1或2所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:绝缘控制单元(37)通过连接器和线缆直连在高压主控制单元(35)完成绝缘监测功能,实现具有绝缘检测及绝缘失效保护功能的高电压电池系统。
7.根据权利要求1或2所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:存储控制单元(38)通过连接器和线缆直连在高压主控制单元(35)完成电池系统的运行数据存储,实现具有运行历史可查询的高电压电池系统;显示终端控制单元(39)通过连接器和线缆直连在高压主控制单元(35),完成运行参数显示及参数设定等功能,实现具有运行状态监控和参数设定功能。
8.根据权利要求1或2所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:所述高压主控制单元(35)可以最多搭配三十个低压从控制单元(31),低压从控制单元(31)通过连接器和线缆进行链式串接,最末端的低压从控制单元(31)通过连接器和线缆与高压主控制单元(35)直连。
9.根据权利要求1或2所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:低电压电池系统(11)通过低电压电池管理系统(21)对一个低压从控制单元(31)和功率控制单元(32)进行管理,并结合相应的外围电气元件和锂电池电芯单元共同组成;所述低压从控制单元(31)搭配一个功率控制单元(32),通过连接器和线缆直连可以实现12V-48V的低电压电池系统。
10.根据权利要求1或2所述的一种具有多层管理体系和结构的模块化电池系统,其特征在于:一个系统控制单元(36)可以最多搭配八个高压主控制单元(35),这些高压主控制单元(35)所控制的高压电池系统可以通过串联或并联的方式进行组合,也可以同时进行串并联组合,高压主控制单元(35)通过连接器和线缆直连在系统控制单元(36),实现级联高电压电池系统,级联高电压电池系统可以提供更高的输出电压和更长久的输出时长。
CN201910964694.3A 2019-10-11 2019-10-11 一种具有多层管理体系和结构的模块化电池系统 Active CN110676526B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910964694.3A CN110676526B (zh) 2019-10-11 2019-10-11 一种具有多层管理体系和结构的模块化电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910964694.3A CN110676526B (zh) 2019-10-11 2019-10-11 一种具有多层管理体系和结构的模块化电池系统

Publications (2)

Publication Number Publication Date
CN110676526A true CN110676526A (zh) 2020-01-10
CN110676526B CN110676526B (zh) 2023-01-31

Family

ID=69081632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910964694.3A Active CN110676526B (zh) 2019-10-11 2019-10-11 一种具有多层管理体系和结构的模块化电池系统

Country Status (1)

Country Link
CN (1) CN110676526B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200772A (zh) * 2011-04-18 2011-09-28 奇瑞汽车股份有限公司 一种分布式电池管理模组编号自动识别系统
CN202712883U (zh) * 2012-03-31 2013-01-30 惠州市亿能电子有限公司 一种适用于多簇锂电池组并联使用的电池管理系统
CN103887834A (zh) * 2012-12-20 2014-06-25 中国移动通信集团甘肃有限公司 一种蓄电池组柔性均衡充放电管理整流模块、装置及系统
CN105337327A (zh) * 2014-08-07 2016-02-17 南京理工自动化研究院有限公司 基于n/m冗余均衡策略的动力锂电池管理系统
US20160229307A1 (en) * 2013-09-24 2016-08-11 Robert Bosch Gmbh Method for Automatically Recognizing Controllers in Battery Management Systems
CN105990857A (zh) * 2015-01-29 2016-10-05 国家电网公司 一种磷酸铁锂电池的管理系统和soc标定方法
CN106208235A (zh) * 2016-08-18 2016-12-07 联方云天科技(北京)有限公司 一种锂电池充电被动均衡的预测控制方法
CN106532150A (zh) * 2016-12-02 2017-03-22 中国船舶重工集团公司第七〇九研究所 一种模块化的高压大容量锂电池组可控拓扑结构
CN206099446U (zh) * 2016-10-17 2017-04-12 三峡大学 一种分布式电池管理系统
CN108448180A (zh) * 2018-04-10 2018-08-24 中国船舶重工集团公司第七0四研究所 一种船舶电池管理系统
CN108599291A (zh) * 2018-04-13 2018-09-28 万佳(珠海)磁性材料科技有限公司 一种嵌入式bms多级级联电池管理系统及方法
CN109327036A (zh) * 2018-11-30 2019-02-12 国网山东省电力公司青岛供电公司 一种用于提高电网电能质量的级联型储能系统及控制方法
CN208849523U (zh) * 2018-10-31 2019-05-10 山东鲁能智能技术有限公司 一种储能电池分级管理及控制系统
CN110061551A (zh) * 2019-06-06 2019-07-26 南通国轩新能源科技有限公司 一种电池管理系统及方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200772A (zh) * 2011-04-18 2011-09-28 奇瑞汽车股份有限公司 一种分布式电池管理模组编号自动识别系统
CN202712883U (zh) * 2012-03-31 2013-01-30 惠州市亿能电子有限公司 一种适用于多簇锂电池组并联使用的电池管理系统
CN103887834A (zh) * 2012-12-20 2014-06-25 中国移动通信集团甘肃有限公司 一种蓄电池组柔性均衡充放电管理整流模块、装置及系统
US20160229307A1 (en) * 2013-09-24 2016-08-11 Robert Bosch Gmbh Method for Automatically Recognizing Controllers in Battery Management Systems
CN105337327A (zh) * 2014-08-07 2016-02-17 南京理工自动化研究院有限公司 基于n/m冗余均衡策略的动力锂电池管理系统
CN105990857A (zh) * 2015-01-29 2016-10-05 国家电网公司 一种磷酸铁锂电池的管理系统和soc标定方法
CN106208235A (zh) * 2016-08-18 2016-12-07 联方云天科技(北京)有限公司 一种锂电池充电被动均衡的预测控制方法
CN206099446U (zh) * 2016-10-17 2017-04-12 三峡大学 一种分布式电池管理系统
CN106532150A (zh) * 2016-12-02 2017-03-22 中国船舶重工集团公司第七〇九研究所 一种模块化的高压大容量锂电池组可控拓扑结构
CN108448180A (zh) * 2018-04-10 2018-08-24 中国船舶重工集团公司第七0四研究所 一种船舶电池管理系统
CN108599291A (zh) * 2018-04-13 2018-09-28 万佳(珠海)磁性材料科技有限公司 一种嵌入式bms多级级联电池管理系统及方法
CN208849523U (zh) * 2018-10-31 2019-05-10 山东鲁能智能技术有限公司 一种储能电池分级管理及控制系统
CN109327036A (zh) * 2018-11-30 2019-02-12 国网山东省电力公司青岛供电公司 一种用于提高电网电能质量的级联型储能系统及控制方法
CN110061551A (zh) * 2019-06-06 2019-07-26 南通国轩新能源科技有限公司 一种电池管理系统及方法

Also Published As

Publication number Publication date
CN110676526B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
EP3141983B1 (en) Power supply method and apparatus
US9478981B2 (en) Battery system having identifiers and energy storage system including the same
WO2012033254A1 (en) Energy storage system and controlling method of the same
US20190356159A1 (en) Rack-mounted ups device for data centers
KR102415123B1 (ko) 배터리 팩 및 이를 포함하는 에너지 저장 시스템
CA2942091C (en) Device and method for wiring a battery management system
KR102595174B1 (ko) 배터리 시스템
WO2018016735A1 (ko) 배터리 시스템
KR20180104873A (ko) 리튬 배터리 보호 시스템
CN107769188A (zh) 开关电源并机系统
CN110635184B (zh) 一种具有多层管理体系和结构的模块化电池系统
CN107425572A (zh) 一种动力电池组的能量智能管理系统
CN112600264B (zh) 并联电池包的控制方法、系统、电子设备及车辆
CN210608604U (zh) 一种高压电池系统
CN110676526B (zh) 一种具有多层管理体系和结构的模块化电池系统
CN110867946A (zh) 一种交直流混供一体化电源
CN110649678B (zh) 一种高压电池系统
CN110943476A (zh) 多级ups并联分布式控制系统及其接线电路
CN205195389U (zh) 不间断电源
CN114448084A (zh) 一种便携式直流电源
CN210608605U (zh) 一种低压电池系统
KR101965655B1 (ko) 배터리 모듈 시스템 및 그의 구동방법
CN106026356A (zh) 一种实现电池扩容的方法
CN220570342U (zh) 多蓄电模块并联的电池装置和供电系统
CN210806840U (zh) 一种交直流混供一体化电源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant