CN110676442A - Method for preparing sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing atomic layer deposition technology - Google Patents
Method for preparing sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing atomic layer deposition technology Download PDFInfo
- Publication number
- CN110676442A CN110676442A CN201910782018.4A CN201910782018A CN110676442A CN 110676442 A CN110676442 A CN 110676442A CN 201910782018 A CN201910782018 A CN 201910782018A CN 110676442 A CN110676442 A CN 110676442A
- Authority
- CN
- China
- Prior art keywords
- sulfur
- carbon
- positive electrode
- lithium
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 63
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 239000011593 sulfur Substances 0.000 title claims abstract description 51
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000000231 atomic layer deposition Methods 0.000 title claims abstract description 26
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 24
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 18
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 17
- 239000002071 nanotube Substances 0.000 title claims abstract description 15
- 238000005516 engineering process Methods 0.000 title claims abstract description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 72
- 239000011787 zinc oxide Substances 0.000 claims abstract description 29
- 239000002131 composite material Substances 0.000 claims abstract description 18
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 13
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 10
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 claims abstract description 8
- 239000011654 magnesium acetate Substances 0.000 claims abstract description 8
- 235000011285 magnesium acetate Nutrition 0.000 claims abstract description 8
- 229940069446 magnesium acetate Drugs 0.000 claims abstract description 8
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 8
- 238000009987 spinning Methods 0.000 claims abstract description 7
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002121 nanofiber Substances 0.000 claims description 43
- 239000000243 solution Substances 0.000 claims description 27
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 claims description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000012300 argon atmosphere Substances 0.000 claims description 8
- 239000011247 coating layer Substances 0.000 claims description 8
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 159000000003 magnesium salts Chemical class 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 239000000376 reactant Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 239000010406 cathode material Substances 0.000 abstract description 7
- 230000009286 beneficial effect Effects 0.000 abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 4
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 2
- 239000004917 carbon fiber Substances 0.000 abstract description 2
- 238000003763 carbonization Methods 0.000 abstract description 2
- 230000001351 cycling effect Effects 0.000 abstract description 2
- 238000010041 electrostatic spinning Methods 0.000 abstract description 2
- 229910002090 carbon oxide Inorganic materials 0.000 abstract 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract 1
- 239000000835 fiber Substances 0.000 abstract 1
- 229910052749 magnesium Inorganic materials 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 abstract 1
- 230000008018 melting Effects 0.000 abstract 1
- 238000002844 melting Methods 0.000 abstract 1
- ZBQLSHTXSSTFEW-UHFFFAOYSA-N [C+4].[O-2].[Mg+2].[O-2].[O-2] Chemical compound [C+4].[O-2].[Mg+2].[O-2].[O-2] ZBQLSHTXSSTFEW-UHFFFAOYSA-N 0.000 description 11
- 229920001021 polysulfide Polymers 0.000 description 10
- 239000005077 polysulfide Substances 0.000 description 10
- 150000008117 polysulfides Polymers 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- -1 Al2O3 Chemical class 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- YQCIWBXEVYWRCW-UHFFFAOYSA-N methane;sulfane Chemical compound C.S YQCIWBXEVYWRCW-UHFFFAOYSA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/407—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The invention provides a method for preparing a sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing an atomic layer deposition technology. The method is characterized in that magnesium acetate is added into polyacrylonitrile spinning solution, a polyacrylonitrile film containing magnesium oxide is obtained through electrostatic spinning, magnesium oxide-doped carbon fiber is obtained through carbonization, zinc oxide is deposited on the surface of the fiber through atomic layer deposition, a carbon/magnesium oxide @ zinc oxide composite material is obtained, and a carbon/magnesium oxide @ zinc oxide sulfur-loaded material is obtained through hot melting sulfur loading and is applied to a lithium sulfur battery positive electrode material. The method utilizes the atomic layer deposition method in the process of preparing the lithium-sulfur battery cathode material, is beneficial to controlling the thickness and the uniformity of the wrapping layer, simultaneously realizes one-step doping of the cathode material, provides the preparation method of the composite material with simple process, and obtains the lithium-sulfur battery cathode material with good cycling stability and high specific capacity.
Description
Technical Field
The invention relates to a preparation method of a battery material, in particular to a method for preparing a sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing an atomic layer deposition technology, and belongs to the field of preparation of lithium-sulfur batteries.
Background
In recent years, with lithium ion batteries, the demand for high energy density of energy storage devices has gradually become unsatisfied. The elemental sulfur has rich reserves, low price and environmental protection, and has high theoretical energy density (2600Wh kg-1) and theoretical specific capacity (1675mAh g-1) and becomes a hotspot of current research.
Currently, the commercialization of lithium sulfur batteries needs to overcome the following disadvantages: firstly, elemental sulfur has poor conductivity (5 multiplied by 10 < -30 > Scm < -1 >, 25 ℃) and is not beneficial to electron transmission; secondly, the volume of the elemental sulfur used as the positive electrode material of the lithium-sulfur battery is easy to expand (approximately equal to 80%); third, during the charging and discharging process, the polysulfide intermediate is easily dissolved in the electrolyte to cause the loss of active materials, and the shuttle effect is easily formed to cause the capacity loss. Therefore, the stability and the capacity of the positive electrode material of the lithium-sulfur battery are improved, and the method has important significance.
Currently, there is a wide range of interest in using electron conducting hosts to absorb polysulfides, such as carbon/sulfur materials, polymer/sulfur materials, metal oxide materials, and lithium sulfide. Particularly, the carbon negative electrode material mainly comprising graphite and amorphous carbon materials is introduced, so that the capacity of the lithium-sulfur battery is remarkably improved. However, the interaction between the carbon material and the polysulfide is weak, so that the loss of the polysulfide cannot be avoided, metal oxides such as Al2O3, SiO2, TiO2, MnO2 and the like can effectively absorb the polysulfide and improve the electron transmission efficiency, and meanwhile, the volume expansion of the positive electrode material in the charge-discharge process can be effectively inhibited by preparing a core-shell structure. In the field of preparation of lithium-sulfur battery cathode materials, chinese patent (CN 106654231B) "a lithium-sulfur battery cathode material and a preparation method thereof" uses zinc oxide and dopamine to prepare a dopamine/flower-like zinc oxide composite material in a composite manner, then carries out carbon treatment to obtain a three-dimensional flower-like carbon structure, carries sulfur with the structure as a carrier, and finally wraps a layer of conductive polymer PDA on the obtained carbon-sulfur composite material to obtain the lithium-sulfur battery cathode material; in chinese patent (CN 109742359 a) "lithium-sulfur battery positive electrode material, its preparation method, positive electrode sheet and lithium-sulfur battery", a composite material in which at least two metal sulfides are tightly embedded on the surface of graphene is prepared, forming a conductive network structure, and providing a channel for rapid transmission of electrons and ions.
Disclosure of Invention
In order to solve the problems of poor elemental sulfur conductivity, serious charge and discharge capacity loss and the like of the conventional lithium-sulfur battery, the invention provides a method for preparing a sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing an atomic layer deposition technology, the material can effectively solve the problems of loss of active sulfur and shuttle effect of the lithium-sulfur battery positive electrode material, the cycling stability of the battery is improved, and the related preparation method is simple and effective.
In order to achieve the purpose, the technical scheme of the invention adopts the following steps:
1) mixing polyacrylonitrile, magnesium salt and N, N-dimethylformamide solution, stirring at room temperature for 10h to obtain precursor polymer solution, pouring the solution into a disposable injector, and spinning at high pressure of 13.5kV, low pressure of-2.5 kV and rotation speed of 200rpm for 8h to obtain a membrane;
2) pre-oxidizing the film obtained in the step 1) in air for 3h, and then treating the film for 3h in a nitrogen atmosphere to obtain nano fibers;
3) reacting with diethyl zinc and H under the environment of 1800Pa and 100 DEG C2Taking O as a reactant, taking the nanofiber obtained in the step 2) as a substrate, and growing a ZnO coating layer with the thickness of 40nm through certain ALD (atomic layer deposition) circulation to obtain the nanofiber wrapped by zinc oxide;
4) mixing the zinc oxide-coated nanofiber obtained in the step 3) with sulfur according to a certain proportion, carrying sulfur in an argon atmosphere to obtain a sulfur-containing nanofiber, cooling to room temperature, washing sulfur adsorbed on the surface with a certain volume of carbon disulfide/alcohol solution, and drying the obtained product at 60 ℃ for 6 hours to obtain the sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material.
The molecular weight of the polyacrylonitrile is 150000, the concentration of the polyacrylonitrile in the mixed solution is 13.6 wt%, and the magnesium salt is selected from magnesium acetate, and the concentration of the magnesium salt in the mixed solution is 5.4 wt%; the pre-oxidation temperature is 230 ℃, and the treatment temperature under the nitrogen atmosphere is 900 ℃; the ratio of the zinc oxide coated nanofiber to sulfur is 3:7, carrying sulfur under the argon atmosphere for 12 hours at 155 ℃; the volume ratio of the carbon disulfide to the alcohol solution is 1: 9.
the certain ALD cycles are 200, 250, 300 and 350 cycles.
The composite material is a nitrogen-rich material, and can realize one-step doping of magnesium oxide and easy control of the thickness of a zinc oxide wrapping layer, and the thickness of the composite material is about 40-70 nm.
The carbon-magnesium oxide/sulfur @ zinc oxide composite material provided by the invention is prepared by adopting the method.
The invention also provides a lithium-sulfur battery positive plate, which comprises a current collector and a coating material arranged on the surface of the current collector, wherein the coating material comprises the carbon-magnesium oxide/sulfur @ zinc oxide composite material, a binder and a conductive agent.
The invention also provides a lithium-sulfur battery, which comprises a positive plate made of the carbon-magnesium oxide/sulfur @ zinc oxide composite material.
According to the preparation method, the polyacrylonitrile film doped with the magnesium acetate is obtained through an electrostatic spinning technology, the carbon nanofiber doped with the magnesium oxide is obtained through carbonization, the carbon-magnesium oxide @ zinc oxide composite material is obtained through wrapping the carbon nanofiber through an atomic layer deposition technology, the anode material of the lithium-sulfur battery is obtained after sulfur is loaded, the preparation method is simple, and the cost is low. The magnesium oxide doping is beneficial to improving the adsorption effect on polysulfide, inhibiting shuttle of polysulfide, and wrapping a zinc oxide layer to obtain a core-shell structure which is beneficial to limiting the volume expansion of a positive electrode material in the charging and discharging processes of a lithium-sulfur battery, and zinc oxide can provide more active sites for polysulfide and reduce the loss of polysulfide.
The invention has the beneficial effects that:
according to the invention, magnesium oxide is introduced in the process of preparing the carbon fiber, so that one-step doping is realized, the adsorption effect on polysulfide is improved, and the complexity of the preparation of the composite material is reduced; the prepared nanofiber is wrapped by the atomic layer deposition technology, the operation is simple, the coating layer is uniform, and the thickness is easy to control. Through the doping and coating effects, the loss of active substances in the charging/discharging process is reduced, and the electrochemical performance of the lithium-sulfur battery is improved.
Drawings
Fig. 1 is an SEM image of the zinc oxide-coated nanofiber composite prepared in example 1.
Figure 2 is an SEM image of the carbon-magnesium oxide/sulfur @ zinc oxide nanofiber composite prepared in example 1.
Fig. 3 is a cycle performance diagram of the carbon-magnesium oxide/sulfur and carbon-magnesium oxide/sulfur @ zinc oxide nanofiber composite material prepared in example 1 as a lithium sulfur battery cathode material at a rate of 0.5C.
Detailed Description
The present invention will be further described with reference to the following specific examples.
Example 1
1) Mixing 1.5g of polyacrylonitrile with the molecular weight of 150000, 0.6g of magnesium acetate and 11g of N, N-dimethylformamide solution, stirring at room temperature for 10h to prepare a precursor polymer solution, then pouring the solution into a disposable injector, and spinning for 8h at the high pressure of 13.5kV, the low pressure of-2.5 kV and the rotating speed of 200rpm to obtain a membrane;
2) pre-oxidizing the film obtained in the step 1) in air at 230 ℃ for 3h, and then treating the film at 900 ℃ for 3h in a nitrogen atmosphere to obtain nano fibers;
3) reacting with diethyl zinc and H under the environment of 1800Pa and 100 DEG C2Taking O as a reactant, taking the nanofiber obtained in the step 2) as a substrate, and growing a ZnO coating layer with the thickness of 40nm through 200-circle ALD (atomic layer deposition) circulation to obtain the nanofiber coated by zinc oxide;
4) mixing the zinc oxide-coated nanofiber obtained in the step 3) with sulfur according to the weight ratio of 3:7, carrying sulfur at 155 ℃ for 12h under the argon atmosphere to obtain sulfur-containing nanofiber, cooling to room temperature, and washing sulfur adsorbed on the surface with carbon disulfide/alcohol solution with the volume ratio of 1: 9. And drying the obtained product at 60 ℃ for 6h to obtain the sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material.
Example 2:
1) mixing 1.5g of polyacrylonitrile with the molecular weight of 150000, 0.6g of magnesium acetate and 11g of N, N-dimethylformamide solution, stirring at room temperature for 10h to prepare a precursor polymer solution, then pouring the solution into a disposable injector, and spinning for 8h at the high pressure of 13.5kV, the low pressure of-2.5 kV and the rotating speed of 200rpm to obtain a membrane;
2) pre-oxidizing the film obtained in the step 1) in air at 230 ℃ for 3h, and then treating the film at 900 ℃ for 3h in a nitrogen atmosphere to obtain nano fibers;
3) reacting with diethyl zinc and H under the environment of 1800Pa and 100 DEG C2Taking O as a reactant, taking the nanofiber obtained in the step 2) as a substrate, and growing a ZnO coating layer with the thickness of 50nm through 250 cycles of ALD (atomic layer deposition) to obtain the nanofiber coated by zinc oxide;
4) mixing the zinc oxide-coated nanofiber obtained in the step 3) with sulfur according to the weight ratio of 3:7, carrying sulfur at 155 ℃ for 12h under the argon atmosphere to obtain sulfur-containing nanofiber, cooling to room temperature, and washing sulfur adsorbed on the surface with carbon disulfide/alcohol solution with the volume ratio of 1: 9. And drying the obtained product at 60 ℃ for 6h to obtain the sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material.
Example 3:
1) mixing 1.5g of polyacrylonitrile with the molecular weight of 150000, 0.6g of magnesium acetate and 11g of N, N-dimethylformamide solution, stirring at room temperature for 10h to prepare a precursor polymer solution, then pouring the solution into a disposable injector, and spinning for 8h at the high pressure of 13.5kV, the low pressure of-2.5 kV and the rotating speed of 200rpm to obtain a membrane;
2) pre-oxidizing the film obtained in the step 1) in air at 230 ℃ for 3h, and then treating the film at 900 ℃ for 3h in a nitrogen atmosphere to obtain nano fibers;
3) reacting with diethyl zinc and H under the environment of 1800Pa and 100 DEG C2Taking O as a reactant, taking the nanofiber obtained in the step 2) as a substrate, and growing a ZnO coating layer with the thickness of 60nm through 300-circle ALD (atomic layer deposition) circulation to obtain the nanofiber coated by zinc oxide;
4) mixing the zinc oxide-coated nanofiber obtained in the step 3) with sulfur according to the weight ratio of 3:7, carrying sulfur at 155 ℃ for 12h under the argon atmosphere to obtain sulfur-containing nanofiber, cooling to room temperature, and washing sulfur adsorbed on the surface with carbon disulfide/alcohol solution with the volume ratio of 1: 9. And drying the obtained product at 60 ℃ for 6h to obtain the sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material.
Example 4:
1) mixing 1.5g of polyacrylonitrile with the molecular weight of 150000, 0.6g of magnesium acetate and 11g of N, N-dimethylformamide solution, stirring at room temperature for 10h to prepare a precursor polymer solution, then pouring the solution into a disposable injector, and spinning for 8h at the high pressure of 13.5kV, the low pressure of-2.5 kV and the rotating speed of 200rpm to obtain a membrane;
2) pre-oxidizing the film obtained in the step 1) in air at 230 ℃ for 3h, and then treating the film at 900 ℃ for 3h in a nitrogen atmosphere to obtain nano fibers;
3) reacting with diethyl zinc and H under the environment of 1800Pa and 100 DEG C2Taking O as a reactant, taking the nanofiber obtained in the step 2) as a substrate, and growing a ZnO coating layer with the thickness of 70nm through 350-circle ALD (atomic layer deposition) circulation to obtain the nanofiber coated by zinc oxide;
4) mixing the zinc oxide-coated nanofiber obtained in the step 3) with sulfur according to the weight ratio of 3:7, carrying sulfur at 155 ℃ for 12h under the argon atmosphere to obtain sulfur-containing nanofiber, cooling to room temperature, and washing sulfur adsorbed on the surface with carbon disulfide/alcohol solution with the volume ratio of 1: 9. And drying the obtained product at 60 ℃ for 6h to obtain the sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material.
Table 1 shows the characterization results of the morphology and size of the carbon-magnesia/sulfur @ zinc oxide nanofibers prepared in example 1, example 2, example 3 and example 4. From the data in Table 1, it is clear that the carbon-magnesia/sulfur @ zinc oxide nanofiber zinc oxide coating layers prepared according to examples 1,2, 3 and 4 have thicknesses of 40nm, 50nm, 60nm and 70nm, respectively. The carbon-magnesium oxide/sulfur @ zinc oxide nano fibers with different sizes can be obtained by adopting the preparation method disclosed by the invention, and the diameters of the carbon-magnesium oxide/sulfur @ zinc oxide nano fibers are distributed between 40nm and 70 nm. The carbon-magnesium oxide/sulfur @ zinc oxide nanofibers prepared in examples 1,2, 3 and 4 were used as positive electrode materials of lithium-sulfur batteries, and electrochemical tests were performed on the carbon-magnesium oxide/sulfur @ zinc oxide nanofibers, which were prepared in example 2 and had a 50nm coating thickness, as positive electrode materials of lithium-sulfur batteries, and the batteries obtained were the best in cycle performance, the first cycle discharge capacity at 0.5C rate was 1130.513mAh g-1, the carbon-magnesium oxide/sulfur @ zinc oxide nanofibers, which were prepared in example 4 and had a 70nm coating thickness, as positive electrode materials of lithium-sulfur batteries, were the worst in cycle performance, and the first cycle discharge capacity at 0.5C rate was 989.476mAh g-1.
TABLE 1
The above description is only a part of the embodiments of the present invention, and the protection scope of the present invention is not limited to the above embodiments, and does not represent all technical solutions under the concept of the present invention. It should be noted that those skilled in the art, upon being motivated by this patent conception and specific embodiment, may recognize numerous additions and modifications which may be made without departing from the principles of the present invention, such as insubstantial modifications of determining different catalyst and oxidant amounts, different temperatures, etc., based on different wastewater and contaminant concentrations, and such modifications and refinements are considered to be within the scope of the present invention.
Claims (4)
1. A method for preparing a sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing an atomic layer deposition technology is characterized by comprising the following steps of:
1) mixing polyacrylonitrile, magnesium salt and N, N-dimethylformamide solution, stirring at room temperature for 10h to obtain precursor polymer solution, pouring the solution into a disposable injector, and spinning at high pressure of 13.5kV, low pressure of-2.5 kV and rotation speed of 200rpm for 8h to obtain a membrane;
2) pre-oxidizing the film obtained in the step 1) in air for 3h, and then treating the film for 3h in a nitrogen atmosphere to obtain nano fibers;
3) under the environment of 1800Pa and 100 ℃, taking diethyl zinc and H2O as reactants and the nanofiber obtained in the step 2) as a substrate, and growing a ZnO coating layer with the thickness of 40nm through a certain ALD cycle to obtain the nanofiber wrapped by zinc oxide;
4) mixing the zinc oxide-coated nanofiber obtained in the step 3) with sulfur according to a certain proportion, carrying sulfur in an argon atmosphere to obtain a sulfur-containing nanofiber, cooling to room temperature, washing sulfur adsorbed on the surface with a certain volume of carbon disulfide/alcohol solution, and drying the obtained product at 60 ℃ for 6 hours to obtain the sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material.
2. The method for preparing the sulfur/carbon @ metal oxide nanotube lithium sulfur battery positive electrode material by utilizing the atomic layer deposition technology as claimed in claim 1, wherein the method comprises the following steps: the molecular weight of the polyacrylonitrile is 150000, the concentration of the polyacrylonitrile in the mixed solution is 13.6 wt%, and the magnesium salt is selected from magnesium acetate, and the concentration of the magnesium salt in the mixed solution is 5.4 wt%; the pre-oxidation temperature is 230 ℃, and the treatment temperature under the nitrogen atmosphere is 900 ℃; the ratio of the zinc oxide coated nanofiber to sulfur is 3:7, carrying sulfur under the argon atmosphere for 12 hours at 155 ℃; the volume ratio of the carbon disulfide to the alcohol solution is 1: 9.
3. the method for preparing the sulfur/carbon @ metal oxide nanotube lithium sulfur battery positive electrode material by utilizing the atomic layer deposition technology as claimed in claim 1, wherein the method comprises the following steps: the certain ALD cycles are 200, 250, 300 and 350 cycles.
4. The method for preparing the sulfur/carbon @ metal oxide nanotube lithium sulfur battery positive electrode material by utilizing the atomic layer deposition technology as claimed in claim 1, wherein the method comprises the following steps: the composite material is a nitrogen-rich material, and can realize one-step doping of magnesium oxide and easy control of the thickness of a zinc oxide wrapping layer, and the thickness of the composite material is about 40-70 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910782018.4A CN110676442B (en) | 2019-08-23 | 2019-08-23 | Method for preparing sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing atomic layer deposition technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910782018.4A CN110676442B (en) | 2019-08-23 | 2019-08-23 | Method for preparing sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing atomic layer deposition technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110676442A true CN110676442A (en) | 2020-01-10 |
CN110676442B CN110676442B (en) | 2020-10-20 |
Family
ID=69075550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910782018.4A Active CN110676442B (en) | 2019-08-23 | 2019-08-23 | Method for preparing sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing atomic layer deposition technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110676442B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111483984A (en) * | 2020-04-21 | 2020-08-04 | 肇庆市华师大光电产业研究院 | Preparation method of lithium-sulfur battery positive electrode material |
CN112331850A (en) * | 2020-09-24 | 2021-02-05 | 厦门大学 | Battery self-supporting hierarchical structure material and preparation method and application thereof |
FR3108602A1 (en) * | 2020-03-25 | 2021-10-01 | Saft | Treatment of carbon particles and their use for the preparation of electrodes resistant to the oxidation of the electrolyte |
CN113823791A (en) * | 2021-09-14 | 2021-12-21 | 西安交通大学 | Lithium-sulfur battery positive electrode barrier layer material and preparation method thereof |
CN114284479A (en) * | 2021-12-22 | 2022-04-05 | 博路天成新能源科技有限公司 | Preparation method of novel carbon-silicon negative electrode material |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103184685A (en) * | 2013-03-19 | 2013-07-03 | 浙江理工大学 | Preparation method of photocatalytic functional fabric based on titanium dioxide/magnesium oxide core-shell nanorod |
CN107275551A (en) * | 2017-05-16 | 2017-10-20 | 清华大学 | Lithium-sulfur cell and its component, and application of the functional material layer in lithium-sulfur cell |
CN108321369A (en) * | 2017-12-28 | 2018-07-24 | 肇庆市华师大光电产业研究院 | A kind of macropore carbon/zinc oxide/sulphur composite material and preparation method can be used for lithium-sulfur cell and application |
US20180269487A1 (en) * | 2017-03-14 | 2018-09-20 | Board Of Trustees Of The University Of Arkansas | Inhibiting Sulfur Shuttle Behaviors In High-Energy Lithium-Sulfur Batteries |
CN108682816A (en) * | 2018-05-18 | 2018-10-19 | 华中科技大学 | A kind of high face carrying capacity lithium sulphur composite positive pole and preparation method thereof |
US20180351146A1 (en) * | 2017-06-05 | 2018-12-06 | Tsinghua University | Method for making a lithium-sulfur battery separator |
CN109004205A (en) * | 2018-08-07 | 2018-12-14 | 河北工业大学 | A kind of preparation method of lithium sulfur battery anode material |
CN109037554A (en) * | 2018-06-26 | 2018-12-18 | 长沙矿冶研究院有限责任公司 | A kind of Ni/C composite nano-fiber membrane applied to lithium-sulfur cell and preparation method thereof and lithium-sulfur cell |
-
2019
- 2019-08-23 CN CN201910782018.4A patent/CN110676442B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103184685A (en) * | 2013-03-19 | 2013-07-03 | 浙江理工大学 | Preparation method of photocatalytic functional fabric based on titanium dioxide/magnesium oxide core-shell nanorod |
US20180269487A1 (en) * | 2017-03-14 | 2018-09-20 | Board Of Trustees Of The University Of Arkansas | Inhibiting Sulfur Shuttle Behaviors In High-Energy Lithium-Sulfur Batteries |
CN107275551A (en) * | 2017-05-16 | 2017-10-20 | 清华大学 | Lithium-sulfur cell and its component, and application of the functional material layer in lithium-sulfur cell |
US20180351146A1 (en) * | 2017-06-05 | 2018-12-06 | Tsinghua University | Method for making a lithium-sulfur battery separator |
CN108321369A (en) * | 2017-12-28 | 2018-07-24 | 肇庆市华师大光电产业研究院 | A kind of macropore carbon/zinc oxide/sulphur composite material and preparation method can be used for lithium-sulfur cell and application |
CN108682816A (en) * | 2018-05-18 | 2018-10-19 | 华中科技大学 | A kind of high face carrying capacity lithium sulphur composite positive pole and preparation method thereof |
CN109037554A (en) * | 2018-06-26 | 2018-12-18 | 长沙矿冶研究院有限责任公司 | A kind of Ni/C composite nano-fiber membrane applied to lithium-sulfur cell and preparation method thereof and lithium-sulfur cell |
CN109004205A (en) * | 2018-08-07 | 2018-12-14 | 河北工业大学 | A kind of preparation method of lithium sulfur battery anode material |
Non-Patent Citations (2)
Title |
---|
X. L. LI 等: ""Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures"", 《NANOSCALE RES LETT》 * |
黄美红 等: "ZnO纳米材料在锂硫电池正极中的应用", 《化工新型材料》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3108602A1 (en) * | 2020-03-25 | 2021-10-01 | Saft | Treatment of carbon particles and their use for the preparation of electrodes resistant to the oxidation of the electrolyte |
CN111483984A (en) * | 2020-04-21 | 2020-08-04 | 肇庆市华师大光电产业研究院 | Preparation method of lithium-sulfur battery positive electrode material |
CN112331850A (en) * | 2020-09-24 | 2021-02-05 | 厦门大学 | Battery self-supporting hierarchical structure material and preparation method and application thereof |
CN113823791A (en) * | 2021-09-14 | 2021-12-21 | 西安交通大学 | Lithium-sulfur battery positive electrode barrier layer material and preparation method thereof |
CN113823791B (en) * | 2021-09-14 | 2023-03-28 | 西安交通大学 | Lithium-sulfur battery positive electrode barrier layer material and preparation method thereof |
CN114284479A (en) * | 2021-12-22 | 2022-04-05 | 博路天成新能源科技有限公司 | Preparation method of novel carbon-silicon negative electrode material |
Also Published As
Publication number | Publication date |
---|---|
CN110676442B (en) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110676442B (en) | Method for preparing sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing atomic layer deposition technology | |
CN112467111B (en) | Conductive carbon substrate loaded graphene aerogel composite electrode and preparation method thereof | |
CN111362254A (en) | Preparation method and application of nitrogen-doped carbon nanotube-loaded phosphorus-doped cobaltosic oxide composite material | |
CN112531281A (en) | Preparation method of modified diaphragm for lithium-sulfur battery based on nano metal hydroxide-carbon composite material | |
CN109065808B (en) | Preparation method of functional interlayer for lithium-sulfur battery | |
CN109326768B (en) | Sodium ion battery cathode, preparation method thereof and sodium ion battery | |
CN111653783B (en) | Porous boron nitride fiber/multiwalled carbon nanotube/sulfur composite lithium-sulfur battery positive electrode material | |
CN115425194A (en) | Iron telluride/carbon nanofiber composite material, preparation method thereof and application thereof in sodium-ion battery | |
CN114944476A (en) | MoS 2 /Fe 2 O 3 Heterostructure @ porous carbon fiber composite material and preparation method and application thereof | |
CN116683017A (en) | High-energy-density sodium-free negative electrode sodium battery | |
CN112259714A (en) | Solid-state battery composite electrode plate, preparation method thereof and solid-state battery comprising solid-state battery composite electrode plate | |
CN116936777B (en) | Positive and negative electrode materials of lithium-sulfur battery, and preparation method and application thereof | |
CN113943016A (en) | Binary transition metal sulfide material and application thereof | |
CN112750992B (en) | Molybdenum disulfide/titanium dioxide/graphene composite material | |
CN115341309B (en) | Porous silver doped hard carbon composite material and preparation method and application thereof | |
CN111613792A (en) | Nickel-containing oxide electrode material and preparation, application and storage methods thereof | |
CN116470017A (en) | Antimony triselenide/carbon fiber composite material, preparation method thereof and application thereof in potassium ion battery | |
CN112599737B (en) | Sodium ion battery transition metal sulfide carbon composite negative electrode material and preparation method and application thereof | |
CN112993223B (en) | Lithium ion battery cathode material with double-layer coating structure and preparation method thereof | |
CN115036480A (en) | Lithium-sulfur battery positive electrode material, preparation method thereof and lithium-sulfur battery | |
CN112204779B (en) | Positive electrode for lithium secondary battery containing goethite and lithium secondary battery comprising same | |
KR20200061176A (en) | Ngative electrode material for secondary battery, lithium secondary battery comprising the same, manufacturing method for the same | |
CN112201904B (en) | Diaphragm intermediate layer material of lithium-sulfur battery, and preparation method and application thereof | |
CN114927650B (en) | Preparation method and application of silicon-based negative electrode coated by high-molecular polyurea coating | |
CN108807914A (en) | A kind of anode material of lithium battery of graphene coated and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |