CN110672916A - Open-type digital direct current measuring device - Google Patents

Open-type digital direct current measuring device Download PDF

Info

Publication number
CN110672916A
CN110672916A CN201911005411.9A CN201911005411A CN110672916A CN 110672916 A CN110672916 A CN 110672916A CN 201911005411 A CN201911005411 A CN 201911005411A CN 110672916 A CN110672916 A CN 110672916A
Authority
CN
China
Prior art keywords
digital
signal
direct current
square wave
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911005411.9A
Other languages
Chinese (zh)
Inventor
阳桂蓉
王嘉
吴晓斌
唐小平
戚继飞
张翅飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mianyang Weibo Electronic Co Ltd
Original Assignee
Mianyang Weibo Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mianyang Weibo Electronic Co Ltd filed Critical Mianyang Weibo Electronic Co Ltd
Priority to CN201911005411.9A priority Critical patent/CN110672916A/en
Publication of CN110672916A publication Critical patent/CN110672916A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/18Screening arrangements against electric or magnetic fields, e.g. against earth's field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/30Structural combination of electric measuring instruments with basic electronic circuits, e.g. with amplifier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

The invention discloses an open-type digital direct current measuring device, which comprises: the power module is used for supplying power to square wave oscillator and voltage conversion module, voltage conversion module is connected with the follower of summing, the direct current of quilt survey passes current transformer's magnetic core, current transformer's output is connected with square wave oscillator's input, square wave oscillator's output and current transformer's input and amplifier input are all connected, the output of amplifier is connected with the input of the follower of summing, the analog voltage signal of follower output of summing directly sends into digital conversion circuit, realize zero point and rated value compensation through inside calibration software and handle, digital conversion circuit outputs the RS485 digital quantity communication signal that accords with rated specification. The device can realize uninterrupted measurement of the direct current low current signal under the condition of ensuring that the performance is not reduced, and is convenient to install and maintain.

Description

Open-type digital direct current measuring device
Technical Field
The invention relates to the technical field of current detection, in particular to an open-type digital direct current measuring device.
Background
The invention is mainly based on direct current small current measurement, the measurement range is dozens of mA-hundreds of mA, the measurement aiming at the direct current signals is generally based on the magnetic modulation technology, and is mostly based on a closed loop structure, the installation and the maintenance are inconvenient, and the cost is high.
Disclosure of Invention
Aiming at the defects in the prior art, the invention provides the open-type digital direct current measuring device which can realize uninterrupted measurement of direct current signals (dozens of mA-hundreds of mA) under the condition of ensuring that the performance is not reduced and is convenient to install and maintain.
In order to achieve the above object, the present invention provides an open-type digital dc current measuring device, comprising:
the device comprises a power supply module, a square wave oscillator, a current transformer, a filter, an amplifier, a voltage conversion module, a summation follower, a digital conversion circuit and a zero point and rated value compensation module; wherein, power module is used for supplying power to square wave oscillator and voltage conversion module, voltage conversion module is connected with the follower of summing, the direct current of surveying passes current transformer's magnetic core, current transformer's output is connected with square wave oscillator's input, square wave oscillator's output and current transformer's input and amplifier input are all connected, the output of amplifier is connected with the input of the follower of summing, the analog voltage signal of the follower output of summing directly sends into digital conversion circuit, realize zero point and rated value compensation through inside calibration software and handle, digital conversion circuit outputs the RS485 digital communication signal that accords with rated specification. Preferably, the square wave oscillator modulates an input direct current signal to be detected, the modulated signal is demodulated through a filter, the filtered signal is amplified through an amplifier, the amplified signal is transmitted to the digital conversion circuit through the summing follower, and the amplified signal is converted into a digital communication signal capable of realizing RS485 communication through digital processing.
Preferably, the DC current of the measured DC current ranges from 50mA to 900 mA.
Preferably, current transformer is open-type current transformer, and open-type current transformer is used for as the component that has the energy storage time delay effect, and the direct current signal of being surveyed modulates through square wave oscillator, specifically embodies: when the detected direct current signal does not exist, the square wave oscillator outputs a standard square wave signal with the duty ratio of 1: 1; when a direct current signal to be measured with a certain amplitude exists, the output duty ratio of the square-wave oscillator changes, and a certain linear relation exists between the output duty ratio and the input signal.
Preferably, the magnetic core of the current transformer is manufactured by stamping, staggered, laminated and riveting.
Preferably, the magnetic core material of the current transformer is permalloy.
Preferably, the magnetic core of the current transformer is processed into a magnetic ring assembly through winding, and the exterior of the magnetic ring assembly is encapsulated by permalloy.
Preferably, the filter is an infinite gain filter, and is used for averaging signals and demodulating the detected direct current signal.
Preferably, the digital conversion circuit is used for processing the acquired analog signals, converting the analog signals into digital signals suitable for RS485 communication, and performing zero point and rated value compensation on the analog signals output by the front end based on the zero point and rated value compensation module, so that signals with sizes meeting requirements are obtained later, and the zero point and the rated value of the device are calibrated.
Preferably, the summation follower is used for raising the analog signal amplified by demodulation by a certain amplitude for processing by the digital conversion circuit.
One or more technical schemes provided by the invention at least have the following technical effects or advantages:
the device can realize uninterrupted measurement of a signal with small direct current (dozens of mA-hundreds of mA) under the condition of ensuring that the performance of a product is not reduced, and the product is convenient to install and maintain. In addition, the sensor has an RS485 communication function and can return the acquired signals to the acquisition system in real time.
Drawings
The accompanying drawings, which are included to provide a further understanding of the embodiments of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention;
FIG. 1 is a schematic diagram of an open-ended digital DC current measurement device according to the present application;
FIG. 2 is a schematic diagram of a power supply module of the present application;
FIG. 3 is a schematic diagram of a square wave oscillator, filter, scaling up, voltage conversion and summing follower circuit of the present application;
FIG. 4 is a diagram of a digital processing output and port protection circuit according to the present application.
Detailed Description
In order that the above objects, features and advantages of the present invention can be more clearly understood, a more particular description of the invention will be rendered by reference to the appended drawings. It should be noted that the embodiments and features of the embodiments of the present application may be combined with each other without conflicting with each other.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention, however, the present invention may be practiced in other ways than those specifically described and thus the scope of the present invention is not limited by the specific embodiments disclosed below.
Referring to fig. 1, the present application provides an on-state digital dc current measuring device, comprising:
the device comprises a power supply module, a square wave oscillator, a current transformer, a filter, an amplifier, a voltage conversion module, a summation follower, a digital conversion circuit and a zero point and rated value compensation module; wherein, power module is used for supplying power to square wave oscillator and voltage conversion module, voltage conversion module is connected with the follower of summing, the direct current of surveying passes current transformer's magnetic core, current transformer's output is connected with square wave oscillator's input, square wave oscillator's output and current transformer's input and amplifier input are all connected, the output of amplifier is connected with the input of the follower of summing, the analog voltage signal of the follower output of summing directly sends into digital conversion circuit, realize zero point and rated value compensation through inside calibration software and handle, digital conversion circuit outputs the RS485 digital communication signal that accords with rated specification.
The detection principle is shown in figure 1, a power supply outside the sensor is converted into power supply +/-VR required by a square wave oscillator through proper processing, the input detected direct current signal is modulated through the square wave oscillator, the signal is demodulated and amplified through infinite gain filtering and amplification, and then the signal is converted into a digital communication signal capable of realizing RS485 communication through digital processing.
To be able to start oscillation, the oscillator circuit must satisfy two basic conditions of phase and amplitude. In addition, in terms of circuit structure, positive feedback and elements with energy storage delay function are required to exist, and meanwhile, in order to obtain stable oscillation amplitude finally, a negative feedback link cannot be completely absent, so that the oscillation amplitude is stable when positive and negative feedback is balanced. In fig. 1, the main function of the open-type current transformer is to provide an element with an energy storage delay function.
The measured direct current signal is modulated through a square wave oscillator, and the method is specifically embodied as follows: when the detected direct current signal does not exist, the square wave oscillator outputs a standard square wave signal with the duty ratio of 1: 1; when a direct current signal to be measured with a certain amplitude exists, the output duty ratio of the square-wave oscillator changes, and a certain linear relation exists between the output duty ratio and the input signal. The sensor realizes effective detection of the detected direct current signal based on the magnetic modulation principle. Specifically, the following description is provided: the size of the measured direct current signal is mainly related to the designed current transformer, and the detection precision is influenced when the measured direct current signal exceeds a certain measurement range. In addition, in order to ensure the modulation precision, the positive and negative power supplies are required to be stable and should not be too large.
The inductance L of the open-type current transformer serving as an energy storage element cannot be too small, because the smaller L is, the faster the current increasing or decreasing speed of the open-type current transformer is, the shorter the time from one turnover to the next turnover of the operational amplifier is, the shorter the oscillation period is, and once the time is shorter than the minimum response time of the operational amplifier, the operational amplifier loses response and does not turn over any more, so that the oscillation cannot be realized. On the other hand, the circuit needs to store energy by an inductor during oscillation, and the smaller the inductor, the less energy is stored, and less than a certain amount is not enough to start the circuit.
Magnetic core structure: the open-type current transformer is used as a signal modulation link, and key parameters of performance modulation performance are inductance L, saturation magnetic induction Br and the like. The inductor L is only dependent on the number of turns of a coil, the magnetic permeability of a magnetic core and the size, the structure and the shape of the coil, and the magnetic core is machined in a stamping, staggered, laminated and riveting mode in order to ensure that the open-type current transformer has the same performance parameters of a closed loop.
Selecting a magnetic core material: the magnetic properties are highly uniform and the permeability is high enough to be two of the most basic main requirements for the transformer core, and of course, in practical implementation, attention is paid to the effects of hysteresis and eddy currents, so that the core also has soft enough magnetic properties and high enough resistivity. In this case, a permalloy of a highly magnetic conductive material is selected in view of processing.
Shielding a magnetic ring assembly: the magnetic core is processed into a magnetic ring assembly through a certain required winding. Because the direct current signal to be measured is less, in order to reduce low-frequency magnetic field interference, the outside of the magnetic ring component is packaged by adopting permalloy, and the shielding layer mainly plays a role in shielding low-frequency size interference and positioning and fixing.
An infinite gain filter: the infinite gain filter has the main functions of solving the average value of signals and demodulating the direct current signals to be detected. Because the waveform output by the square wave oscillator cannot be absolutely symmetrical, the zero of the infinite gain filter cannot be completely zero. In order to ensure the demodulation precision, a digital conversion circuit at the rear end designs corresponding zero point compensation through software.
A digital conversion circuit: the digital conversion circuit is mainly used for processing the acquired analog signals and converting the analog signals into digital signals suitable for RS485 communication. In order to ensure the detection precision, software is adopted to carry out zero point and rated value compensation on the analog signal output by the front end, so that a signal with proper size is obtained later, and the zero point and the rated value of the sensor are calibrated. A summation follower: the summation follower is mainly used for raising the analog signal amplified by demodulation by a certain amplitude for processing by the digital conversion circuit.
Fig. 2-4 are circuit diagrams for implementing the apparatus.
Wherein, this device is specifically as follows characteristics:
(1) the device has small volume and an open structure, and is convenient for on-site wiring and installation;
(2) the magnetic ring in the device adopts a customized structure, so that the magnetic performance is ensured not to be reduced;
(3) the device adopts a digital processing method and realizes the offset and sensitivity error compensation through software;
(4) the output of the device adopts RS485 output, and the interconnection and communication with an external system can be realized;
(5) the internal components and the output of the device adopt the modes of grounding, shielding and the like, thereby effectively reducing the interference of the ground and the surrounding magnetic field.
While preferred embodiments of the present invention have been described, additional variations and modifications in those embodiments may occur to those skilled in the art once they learn of the basic inventive concepts. Therefore, it is intended that the appended claims be interpreted as including preferred embodiments and all such alterations and modifications as fall within the scope of the invention.
It will be apparent to those skilled in the art that various changes and modifications may be made in the present invention without departing from the spirit and scope of the invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include such modifications and variations.

Claims (10)

1. An open-ended digital dc current measuring device, said device comprising:
the device comprises a power supply module, a square wave oscillator, a current transformer, a filter, an amplifier, a voltage conversion module, a summation follower, a digital conversion circuit and a zero point and rated value compensation module; wherein, power module is used for supplying power to square wave oscillator and voltage conversion module, voltage conversion module is connected with the follower of summing, the direct current of surveying passes current transformer's magnetic core, current transformer's output is connected with square wave oscillator's input, square wave oscillator's output and current transformer's input and amplifier input are all connected, the output of amplifier is connected with the input of the follower of summing, the analog voltage signal of the follower output of summing directly sends into digital conversion circuit, realize zero point and rated value compensation through inside calibration software and handle, digital conversion circuit outputs the RS485 digital communication signal that accords with rated specification.
2. The on-off digital DC current measuring device according to claim 1, wherein the square wave oscillator modulates the input DC current signal to be measured, the modulated signal is demodulated and amplified by the filter and the proportional amplifier, the amplified signal is transmitted to the digital conversion circuit by the summation follower, and the digital signal is converted into a digital communication signal capable of realizing RS485 communication by digital processing.
3. The open-type digital direct current measuring device according to claim 1, wherein the direct current of the measured direct current has a magnitude ranging from 50mA to 900 mA.
4. The on-off digital direct current measuring device according to claim 1, wherein the current transformer is an on-off current transformer, the on-off current transformer is used as an element having an energy storage delay function, and the measured direct current signal is modulated by a square wave oscillator, specifically: when the detected direct current signal does not exist, the square wave oscillator outputs a standard square wave signal with the duty ratio of 1: 1; when a direct current signal to be measured with a certain amplitude exists, the output duty ratio of the square-wave oscillator changes, and a certain linear relation exists between the output duty ratio and the input signal.
5. The open-type digital DC current measuring device according to claim 1, wherein the magnetic core of the current transformer is manufactured by stamping, cross-lamination and riveting.
6. The open-ended digital direct current measuring device according to claim 1, wherein the magnetic core material of the current transformer is permalloy.
7. The open-type digital direct current measuring device according to claim 1, wherein the magnetic core of the current transformer is wound to form a magnetic ring assembly, and the magnetic ring assembly is externally encapsulated by permalloy.
8. The on-duty digital dc current measuring device according to claim 1, wherein the filter is an infinite gain filter for averaging signals and demodulating the measured dc current signal.
9. The on-off digital direct current measuring device according to claim 1, wherein the digital conversion circuit is configured to process the acquired analog signal, convert the processed analog signal into a digital signal suitable for RS485 communication, perform zero-point and rated value compensation on the analog signal output from the front end based on the zero-point and rated value compensation module, obtain a signal with a size meeting a requirement later, and calibrate the zero-point and rated value of the device.
10. The on-resistance digital DC current measuring device according to claim 1, wherein the summation follower is implemented to raise the demodulated and amplified analog signal by a certain amplitude for processing by the digital conversion circuit.
CN201911005411.9A 2019-10-22 2019-10-22 Open-type digital direct current measuring device Pending CN110672916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911005411.9A CN110672916A (en) 2019-10-22 2019-10-22 Open-type digital direct current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911005411.9A CN110672916A (en) 2019-10-22 2019-10-22 Open-type digital direct current measuring device

Publications (1)

Publication Number Publication Date
CN110672916A true CN110672916A (en) 2020-01-10

Family

ID=69083914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911005411.9A Pending CN110672916A (en) 2019-10-22 2019-10-22 Open-type digital direct current measuring device

Country Status (1)

Country Link
CN (1) CN110672916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260666A (en) * 2020-10-10 2021-01-22 浙江巨磁智能技术有限公司 Fluxgate circuit implementation method in low-frequency closed loop and high-frequency open loop
CN112763938A (en) * 2020-12-24 2021-05-07 唐新颖 Residual leakage detection method based on fluxgate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201397357Y (en) * 2009-04-07 2010-02-03 绵阳市维博电子有限责任公司 Wide-aperture direct current leakage current detection sensor
CN206684224U (en) * 2017-04-10 2017-11-28 比亚迪股份有限公司 Vehicle and the current sensor for vehicle
CN108320896A (en) * 2018-05-02 2018-07-24 北京环磁伟业科技有限公司 A kind of mutual inductor and production method using ultracrystallite punching, permalloy shielding
CN108387860A (en) * 2018-04-03 2018-08-10 山东浩特电气有限公司 A kind of electromagnetic current transducer and its error compensating method
CN109212304A (en) * 2018-11-01 2019-01-15 东北电力大学 The detection method of digital Weak current alternating current-direct current sensor based on direct current carrier communication technology
CN208833894U (en) * 2018-04-27 2019-05-07 江苏诺森特电子科技有限公司 A kind of automatic zero set calibration circuit of resistance welding current monitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201397357Y (en) * 2009-04-07 2010-02-03 绵阳市维博电子有限责任公司 Wide-aperture direct current leakage current detection sensor
CN206684224U (en) * 2017-04-10 2017-11-28 比亚迪股份有限公司 Vehicle and the current sensor for vehicle
CN108387860A (en) * 2018-04-03 2018-08-10 山东浩特电气有限公司 A kind of electromagnetic current transducer and its error compensating method
CN208833894U (en) * 2018-04-27 2019-05-07 江苏诺森特电子科技有限公司 A kind of automatic zero set calibration circuit of resistance welding current monitor
CN108320896A (en) * 2018-05-02 2018-07-24 北京环磁伟业科技有限公司 A kind of mutual inductor and production method using ultracrystallite punching, permalloy shielding
CN109212304A (en) * 2018-11-01 2019-01-15 东北电力大学 The detection method of digital Weak current alternating current-direct current sensor based on direct current carrier communication technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260666A (en) * 2020-10-10 2021-01-22 浙江巨磁智能技术有限公司 Fluxgate circuit implementation method in low-frequency closed loop and high-frequency open loop
CN112260666B (en) * 2020-10-10 2024-04-05 浙江巨磁智能技术有限公司 Method for realizing fluxgate circuit with low-frequency closed loop and high-frequency open loop
CN112763938A (en) * 2020-12-24 2021-05-07 唐新颖 Residual leakage detection method based on fluxgate

Similar Documents

Publication Publication Date Title
US8907664B2 (en) Non-intrusive monitoring of power and other parameters
US6323634B1 (en) Magnetic sensor apparatus, current sensor apparatus and magnetic sensor element
JP6499650B2 (en) Apparatus for detecting an AC component in a DC circuit and use of the apparatus
CN100501415C (en) Highly anti-interference alternating-current/magnetic field sensor
CN106771477B (en) Large-caliber high-sensitivity high-voltage direct current cable leakage current detection sensor
CN101295924B (en) Method and device for eliminating mutual inductance coupling electromagnetic interference
CN203590195U (en) Improved simulation integrating circuit based on PCB Rogowski coil current transformer
CN106574950A (en) Current transducer with fluxgate detector
CN110672916A (en) Open-type digital direct current measuring device
CN105606963B (en) A kind of test circuit leaking high-frequency current for measuring cable
CN108459193A (en) Alternating current measuring device
CN111198297A (en) Signal acquisition device based on Rogowski coil and zero-flux current sensor
CN100516919C (en) Three terminal type magnetic flow gate sensor
CN110794191A (en) Magnetic modulation type direct current leakage protection device for inhibiting zero drift influence
CN203249967U (en) Nonlinear load electric energy metering device
CN110672915A (en) Direct current measuring method based on open type structure
GB2461207A (en) Magnetic sensor with compensation for lead and coil resistance
CN208125798U (en) Open type leakage current sensor
CN111198298A (en) Data acquisition device suitable for multiple current sensor
CN201053988Y (en) Highly antijamming AC current/ magnetic field sensor
CN204272030U (en) A kind of amplifier module of water detector
CN209878876U (en) Magnetic modulation alternating current-direct current residual current detection system based on single positive power supply
CN209803221U (en) Current sampling circuit structure and device
CN103344826A (en) Nonlinear load electric energy metering device
CN209102793U (en) A kind of hollow coil AC current sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110

RJ01 Rejection of invention patent application after publication