CN110672027A - 一种基于相干梯度敏感干涉的条纹自动处理装置 - Google Patents
一种基于相干梯度敏感干涉的条纹自动处理装置 Download PDFInfo
- Publication number
- CN110672027A CN110672027A CN201910937847.5A CN201910937847A CN110672027A CN 110672027 A CN110672027 A CN 110672027A CN 201910937847 A CN201910937847 A CN 201910937847A CN 110672027 A CN110672027 A CN 110672027A
- Authority
- CN
- China
- Prior art keywords
- medium
- fixed
- grating
- rotating
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/161—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明涉及一种基于相干梯度敏感干涉的条纹自动处理装置,属于全场干涉类光学测量技术领域。本发明装置利用不同折射率对光程和传播方向的影响,在两个光栅之间安装两个楔形透明介质,通过移动两个透明介质的相对位置来实现调控经过这两个透明介质的光的光程差,光束在条纹自动处理装置中传播时,通过同步调整两个旋转介质之间的距离和两个固定介质之间的距离,即可实现条纹的自动处理。本发明可精准有效地控制相干梯度敏感干涉测量中的光程差,提高相干梯度敏感干涉方法的测量精度。此外,本发明还解决了在使用相干梯度敏感干涉方法同时测量两个方向的变形梯度时实现同步自动处理条纹的难题。
Description
技术领域
本发明涉及一种基于相干梯度敏感干涉的条纹自动处理装置,属于全场干涉类光学测量技术领域。
背景技术
相干梯度敏感干涉(Coherent Gradient Sensing,以下简称CGS)方法是美国国家工程学院(NAE)院士Rosakis等人在1989年提出的一种全场干涉类光学测量方法,单光路透射式CGS光路图如图1所示。与现有的常规测量方法相比较,该方法具有的全场、非接触、实时测量、精度高,抗振,测量灵敏度和范围易调整等优点,已经被广泛的应用到静动态断裂研究、膜基结构的残余应力测量等领域。然而,CGS方法发展至今30余年,仍然有许多需要进一步完善的地方,特别是针对CGS条纹的处理方法发展缓慢。目前针对CGS条纹的后处理方法通常采用灰度中心线提取法或者采用傅里叶分析法,但上述方法其精度较低,且对于复杂无规律的条纹处理存在很大困难。相移法是条纹处理方法中公认的精度最高的方法,可实现自动化操作,具备较大优势。但是,由于CGS是一种自干涉方法,与传统的光弹、云纹法、电子剪切干涉法等方法在干涉原理上有着根本的不同,这致使在CGS方法引入相移实现条纹自动处理方面带来较大难度。此外,市场上缺乏便于操作的CGS相移装置,进一步限制了该方法的发展与应用。
发明内容
本发明的目的是提出一种基于相干梯度敏感干涉的条纹自动处理装置,以提高相干梯度敏感干涉方法的测量精度,同时解决在同时测量两个方向的变形梯度时难以实现同步自动处理条纹的难题。
本发明提出的基于相干梯度敏感干涉的条纹自动处理装置,包括:前旋转光栅12、后旋转光栅15、前旋转介质13、后旋转介质14、前固定光栅16、后固定光栅19、前固定介质17、后固定介质18和固定基座20。所述的前旋转光栅12、前旋转介质13、后旋转介质14和后旋转光栅15同光轴安装,其中,前旋转光栅12镶嵌在前旋转光栅支架121上的第一旋转框122中,前旋转介质13镶嵌在前旋转介质支架131上的第二旋转框132中,后旋转光栅15镶嵌在后旋转光栅支架151上的第三旋转框152中,前旋转光栅支架121、前旋转介质支架131和后旋转光栅支架151分别安装在固定基座20的一侧,前旋转介质13和后旋转介质14的相对位置关系如图6所示,前旋转介质13和后旋转介质14分别为几何尺寸相同的三角棱镜,两个三角棱镜的斜面和直角面分别互相平行,后旋转介质14镶嵌在后旋转介质框141上,后旋转介质框141与连接支架203的一端固定,连接支架203通过固定支架202固定在固定基座20的中间,连接支架203与运动导轨201相对固定,如图5所示。前固定光栅16、前固定介质17、后固定介质18和后固定光栅19同光轴安装,其中,固定光栅16、前固定介质17和后固定光栅19分别通过前固定光栅支架161、前固定介质支架171和后固定光栅支架191安装在固定基座20的另一侧,后固定介质18固定在连接支架203的另一端,前固定介质17和后固定介质18的相对位置与前旋转介质13和后旋转介质14的相对位置关系相同,前固定介质17和后固定介质18分别为几何尺寸相同的三角棱镜,两个三角棱镜的斜面和直角面分别互相平行前。
本发明提出的基于相干梯度敏感干涉的条纹自动处理装置,其优点是:
1、本发明的基于相干梯度敏感干涉的条纹自动处理装置,由于通过控制装置中相移透明介质的相对位置来改变光程差,原理简明。
2、本条纹自动处理装置,其结构简单,经济成本低,且不需要改变原有测量系统光路布置,使用时操作简易。
3、本条纹自动处理装置,可有效控制光折射后的光程,且输入与输出量呈现良好的线性,因此可以精准有效地控制相干梯度敏感干涉测量中的光程差,提高相干梯度敏感干涉方法的测量精度。
4、本发明的基于相干梯度敏感干涉的条纹自动处理装置,由于装置中的介质和光栅可通过旋转框架调节衍射面的空间角度,因此可以在使用相干梯度敏感干涉方法测量任意两个方向的变形梯度时实现条纹的同步自动处理。
附图说明
图1是已有技术中单光路透射式CGS光路图。
图2是利用本发明提出的基于相干梯度敏感干涉的条纹自动处理装置的使用状态光路图。
图3是图2所示的双方向同步测量透射式CGS光路图中基于相干梯度敏感干涉的条纹自动处理装置11的结构等轴图示意图。
图4是图3所示的条纹自动处理装置的俯视图。
图5是图3中的运动导轨201、连接支架203和后旋转介质支架141的装配结构示意图。
图6是图3中的旋转光栅和旋转介质装配的空间位置的平面关系。
图7是本发明条纹自动处理装置的结果图。
图1-图6中,1是激光器,2是扩束凸透镜,3是准直凸透镜,4是试样,5是前光栅,6是后光栅,7是汇集透镜,8是CCD相机,9是平面反射镜,10是分光棱镜,11是基于相干梯度敏感干涉的条纹自动处理装置,12是前旋转光栅,121是前旋转光栅支架,122是第一旋转框,13是前旋转介质,131是前旋转介质支架,132是第二旋转框,14是后旋转介质,141是后旋转介质支架,15是后旋转光栅,151是后旋转光栅支架,152是第三旋转框,16是前固定光栅,161是前固定光栅支架,17是前固定介质,171是前固定介质支架,18是后固定介质,19是后固定光栅,191是后固定光栅支架,20是固定基座,201是运动导轨,202是固定支架,203是连接支架。
具体实施方式
本发明提出的基于相干梯度敏感干涉的条纹自动处理装置,其结构如图3和图4所示,包括:前旋转光栅12、后旋转光栅15、前旋转介质13、后旋转介质14、前固定光栅16、后固定光栅19、前固定介质17、后固定介质18和固定基座20。所述的前旋转光栅12、前旋转介质13、后旋转介质14和后旋转光栅15同光轴安装,其中,前旋转光栅12镶嵌在前旋转光栅支架121上的第一旋转框122中,前旋转介质13镶嵌在前旋转介质支架131上的第二旋转框132中,后旋转光栅15镶嵌在后旋转光栅支架151上的第三旋转框152中,前旋转光栅支架121、前旋转介质支架131和后旋转光栅支架151分别安装在固定基座20的一侧,前旋转介质13和后旋转介质14的相对位置关系如图6所示,前旋转介质13和后旋转介质14分别为几何尺寸相同的三角棱镜,两个三角棱镜的斜面和直角面分别互相平行,后旋转介质14镶嵌在后旋转介质框141上,后旋转介质框141与连接支架203的一端固定,连接支架203通过固定支架202固定在固定基座20的中间,连接支架203与运动导轨201相对固定,如图5所示。前固定光栅16、前固定介质17、后固定介质18和后固定光栅19同光轴安装,其中,固定光栅16、前固定介质17和后固定光栅19分别通过前固定光栅支架161、前固定介质支架171和后固定光栅支架191安装在固定基座20的另一侧,后固定介质18固定在连接支架203的另一端,前固定介质17和后固定介质18的相对位置与前旋转介质13和后旋转介质14的相对位置关系相同,前固定介质17和后固定介质18分别为几何尺寸相同的三角棱镜,两个三角棱镜的斜面和直角面分别互相平行前,如图3中所示。
本发明的基于相干梯度敏感干涉的条纹自动处理装置,其工作原理和工作过程如下:
其中的前旋转光栅12,前旋转光栅支架121,第一旋转框122、前旋转介质13,前旋转介质支架131,第二旋转框132,后旋转介质14,后旋转介质支架141,后旋转光栅15,后旋转光栅支架151、第三旋转框152共同组成旋转组合;其中旋转光栅12和后旋转光栅15的功能是实现光束衍射;前旋转光栅支架121、第一旋转框122、后旋转光栅支架151、第三旋转框152用于固定旋转光栅,并实现旋转;前旋转介质13,后旋转介质14实现改变光线传播方向;前旋转介质支架131、第二旋转框132,后旋转介质支架141用于固定旋转介质,并实现旋转。
其中的前固定光栅16,前固定光栅支架161,前固定介质17,前固定介质支架171,后固定介质18,后固定光栅19,后固定光栅支架191共同组成固定组合。其中前固定光栅16,后固定光栅19实现光束衍射;前固定光栅支架161,后固定光栅支架191用来固定光栅16、19;前固定介质17,后固定介质18实现改变光线传播方向,前固定介质支架171用于固定介质17。
其中的固定基座20,固定支架202,连接支架203,运动导轨201共同组成支撑组合。其中固定基座20的作用是将条纹自动处理装置中左右的部件进行固定;固定支架202是用来连接后旋转介质支架和连接支架203,连接支架203是用来固定后固定介质18。
在本发明装置的应用状态中,一束平行光进入到条纹自动处理装置中的旋转组合时,平行光首先到达前旋转光栅,穿过前旋转光栅后发生衍射,进入到前旋转介质;通过前旋转介质时,由于介质的折射率与空气不一样,光线发生折射,然后穿出前旋转介质到达后旋转介质,此时光线再次发生折射现象,光线传播方向重新被调整,然后到达后旋转光栅,光束在通过后旋转光栅时,已发生衍射的光束再次发生衍射,穿出条纹自动处理装置;另外一束平行光进入到条纹自动处理装置中的固定组合时,平行光首先到达前固定光栅,穿过前固定光栅后发生衍射,进入到前固定介质;通过前固定介质时,由于介质的折射率与空气不一样,光线发生折射,然后穿出前固定介质到达后固定介质,此时光线再次发生折射现象,光线传播方向重新被调整,然后到达后固定光栅,光束在通过后固定光栅时,已发生衍射的光束再次发生衍射,穿出条纹自动处理装置。光束在条纹自动处理装置中传播时,通过同步调整两个旋转介质之间的相对位置和两个固定介质之间的相对位置x2,即可实现条纹的自动处理;通过旋转组合调整前、后旋转光栅衍射角度的空间位置(此时要求前、后旋转光栅和前、后旋转介质的调整方向和角度一致),即可实现对任意两个方向的条纹自动处理。
本发明的一个应用实例的光路图如图2所示,包括激光器1、扩束凸透镜2、准直凸透镜3、汇集透镜7、CCD相机8、三个平面反射镜9、分光棱镜10和本发明的基于相干梯度敏感干涉的条纹自动处理装置11。波长为532nm激光器1发出线形激光,经过扩束凸透镜2,然后再经过准直凸透镜3,此时激光束被转化成一束准直平行光.然后经过三个平面反射镜9中的第一个后光束发生反射,穿过待测试样4,然后到达分光棱镜10的前表面,分光棱镜10将激光束一分为二,一束平行光穿过分光棱镜10的前表面,到达三个平面反射镜9中的第二个,然后进入到本发明的条纹自动处理装置(旋转组合),然后通过条纹自动处理装置,到达汇聚透镜7,在通过汇聚透镜7时,平行光束被汇聚点光源进入到CCD相机8,相机采集图像;另外一束平行光到达分光棱镜10的前表面后被反射到三个平面反射镜9中的第三个,然后进入到发明的条纹自动处理装置(固定组合),然后通过条纹自动处理装置,到达另一个汇聚透镜7,在通过汇聚透镜7时,平行光束被汇聚点光源进入到另一个CCD相机,然后相机采集图像。
上述应用实例的操作过程如下:
1、将本发明的条纹自动处理装置置于图2所示的测量光路中;
2、调整条纹自动处理装置中前固定光栅和后固定光栅的加持状态,使两个光栅上的栅线平行;
3、调整条纹自动处理装置中前固定介质和后固定介质的加持状态,使两个固定相移透明介质与光栅空间位置关系满足图6所示的关系;
4、调整前旋转光栅和后旋转光栅的加持状态,使两个光栅上的栅线平行;
5、调整前旋转介质和后旋转介质的加持状态,使两个旋转相移透明介质与步骤4中的光栅空间位置关系满足图6所示;
6、当需要获得实验测量结果时,将运动导轨201分别移动4次,每一次移动后都需要用相机记录条纹图。每次移动(x/522)/4mm(x是指实验过程中的激光波长,如果激光器波长为522nm的时候,每次移动0.25mm)。获得的4张条纹图,即是依次经过4步处理后的同一时刻的变形条纹图;
7、保持前固定光栅、后固定光栅、前固定介质和后固定介质的位置不变,通过旋转模块同步调整前旋转光栅、后旋转光栅、前旋转介质和后旋转介质的位置,满足步骤4和5的要求,即可实现改变变形梯度的测量方向,然后重复步骤6,即可实现解决CGS测量过程中任意两个方向同步实现条纹相移的装置。本实施例的效果图如图7所示,图7中,横坐标为操作过程中运动导轨201的平移距离,纵坐标为平行光通过条纹自动处理装置后,因运动导轨201的平移导致的光程差,从图中可以看出本发明的输入与输出量呈现良好的线性,且测量精度高。
本发明的上述应用实例中,条纹自动处理装置的入射光的角度为0度,使用的激光器发出的激光波长为522nm。旋转介质和固定介质分别为楔形三棱柱透明介质,材质为光学玻璃,特征参数θ=30°和x1=19mm,折射率为n=1.5168,x2为两个旋转介质之间的相对位置,如图6中所示。其中,前旋转光栅支架121、第一旋转框122、前旋转介质支架131、第二旋转框132、后旋转介质支架141、后旋转光栅支架151、第三旋转框152、前固定光栅支架161、前固定介质支架171、后固定光栅支架191、固定基座20、运动导轨201、固定支架20和连接支架203的用材均为为铝合金,光栅为40line/mm的透射式衍射光栅,CCD为普通工业相机。
Claims (1)
1.一种基于相干梯度敏感干涉的条纹自动处理装置,其特征在于包括:前旋转光栅(12)、后旋转光栅(15)、前旋转介质(13)、后旋转介质(14)、前固定光栅(16)、后固定光栅(19)、前固定介质(17)、后固定介质(18)和固定基座(20);所述的前旋转光栅(12)、前旋转介质(13)、后旋转介质(14)和后旋转光栅(15)同光轴安装,其中,前旋转光栅(12)镶嵌在前旋转光栅支架(121)上的第一旋转框(122)中,前旋转介质(13)镶嵌在前旋转介质支架(131)上的第二旋转框(132)中,后旋转光栅(15)镶嵌在后旋转光栅支架(151)上的第三旋转框(152)中,前旋转光栅支架(121)、前旋转介质支架(131)和后旋转光栅支架(151)分别安装在固定基座(20)的一侧,前旋转介质(13)和后旋转介质(14)分别为几何尺寸相同、材质相同的三角棱镜,两个三角棱镜的空间位置关系为斜面和直角面分别互相平行,后旋转介质(14)镶嵌在后旋转介质框(141)上,后旋转介质框(141)与连接支架(203)的一端固定,连接支架(203)通过固定支架202固定在固定基座(20)的中间,连接支架(203)与运动导轨(201)相对固定;所述的前固定光栅(16)、前固定介质(17)、后固定介质(18)和后固定光栅(19)同光轴安装,其中,固定光栅(16)、前固定介质(17)和后固定光栅(19)分别通过前固定光栅支架(161)、前固定介质支架(171)和后固定光栅支架(191)安装在固定基座(20)的另一侧,后固定介质(18)固定在连接支架(203)的另一端,前固定介质(17)和后固定介质(18)分别为几何尺寸相同、材质相同的三角棱镜,两个三角棱镜的空间位置关系为斜面和直角面分别互相平行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910937847.5A CN110672027B (zh) | 2019-09-30 | 2019-09-30 | 一种基于相干梯度敏感干涉的条纹自动处理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910937847.5A CN110672027B (zh) | 2019-09-30 | 2019-09-30 | 一种基于相干梯度敏感干涉的条纹自动处理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110672027A true CN110672027A (zh) | 2020-01-10 |
CN110672027B CN110672027B (zh) | 2020-07-03 |
Family
ID=69080333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910937847.5A Active CN110672027B (zh) | 2019-09-30 | 2019-09-30 | 一种基于相干梯度敏感干涉的条纹自动处理装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110672027B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113295105A (zh) * | 2021-05-06 | 2021-08-24 | 清华大学 | 一种空间载波调制装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4682892A (en) * | 1982-08-13 | 1987-07-28 | The Goodyear Tire & Rubber Company | Method and apparatus for speckle-shearing interferometric deformation analysis |
CN1800834A (zh) * | 2006-01-20 | 2006-07-12 | 清华大学 | 一种提取相干梯度敏感干涉条纹级数的方法 |
CN1800835A (zh) * | 2006-01-20 | 2006-07-12 | 清华大学 | 一种提取相干梯度敏感干涉条纹级数的方法及其装置 |
CN103064043A (zh) * | 2012-12-31 | 2013-04-24 | 兰州大学 | 用于测试磁性薄膜材料力和磁耦合的测试装置及测试方法 |
CN106847721A (zh) * | 2015-12-07 | 2017-06-13 | 超科技公司 | 用cgs干涉仪表征处理诱发晶片形状以用于过程控制的系统及方法 |
-
2019
- 2019-09-30 CN CN201910937847.5A patent/CN110672027B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4682892A (en) * | 1982-08-13 | 1987-07-28 | The Goodyear Tire & Rubber Company | Method and apparatus for speckle-shearing interferometric deformation analysis |
CN1800834A (zh) * | 2006-01-20 | 2006-07-12 | 清华大学 | 一种提取相干梯度敏感干涉条纹级数的方法 |
CN1800835A (zh) * | 2006-01-20 | 2006-07-12 | 清华大学 | 一种提取相干梯度敏感干涉条纹级数的方法及其装置 |
CN103064043A (zh) * | 2012-12-31 | 2013-04-24 | 兰州大学 | 用于测试磁性薄膜材料力和磁耦合的测试装置及测试方法 |
CN106847721A (zh) * | 2015-12-07 | 2017-06-13 | 超科技公司 | 用cgs干涉仪表征处理诱发晶片形状以用于过程控制的系统及方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113295105A (zh) * | 2021-05-06 | 2021-08-24 | 清华大学 | 一种空间载波调制装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110672027B (zh) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1060267C (zh) | 利用衍射光学显现表面轮廓的方法和装置 | |
EP2602583B1 (en) | Low coherence interferometric system for phase stepping shearography combined with 3D profilometry | |
US4325637A (en) | Phase modulation of grazing incidence interferometer | |
US3572937A (en) | Method and apparatus for interferometric measurement of machine slide roll | |
KR20030052498A (ko) | 오목면과 홀로그램을 가지는 비구면 측정장치 및 방법 | |
CN110057543B (zh) | 基于同轴干涉的波面测量装置 | |
KR20100134609A (ko) | 물체의 표면 형태를 측정하기 위한 장치 및 방법 | |
CN101033937A (zh) | 光学干涉测量中分光、成像及同步移相的方法和装置 | |
US5995224A (en) | Full-field geometrically-desensitized interferometer employing diffractive and conventional optics | |
CN105181298A (zh) | 多次反射式激光共焦长焦距测量方法与装置 | |
CN105333815B (zh) | 一种基于光谱色散线扫描的超横向分辨率表面三维在线干涉测量系统 | |
KR20210048528A (ko) | 표면 형상 계측 장치 및 표면 형상 계측 방법 | |
CN104515470A (zh) | 全息扫描曝光二维工作台位移和摆角测量光路结构 | |
CN203687880U (zh) | 一种光学位移测量系统 | |
IL112395A (en) | Optical device and a method of utilizing such device for optically examining objects | |
CN113295105B (zh) | 一种空间载波调制装置 | |
Ohyama et al. | Optical interferometry for measuring instantaneous thickness of transparent solid and liquid films | |
CN110672027B (zh) | 一种基于相干梯度敏感干涉的条纹自动处理装置 | |
CN101614526A (zh) | 测量厚度和折射率的双共焦方法及测量装置 | |
CN210486808U (zh) | 一种针对镜面表面变形梯度的双方向同步在线测量系统 | |
CN112082490B (zh) | 一种基于Talbot像和COMS相机结构的位移传感器 | |
CN103411687A (zh) | 基于三角数字全息测量空间相干性的系统与方法 | |
CN1447111A (zh) | 测量薄膜折射率的方法及装置 | |
US3232165A (en) | Interferometer having plural slit source | |
CN206601106U (zh) | 基于多波长显微干涉的三维形貌检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |