CN110671358A - A vane design method with controllable load and vane pump designed therefor - Google Patents

A vane design method with controllable load and vane pump designed therefor Download PDF

Info

Publication number
CN110671358A
CN110671358A CN201910871573.4A CN201910871573A CN110671358A CN 110671358 A CN110671358 A CN 110671358A CN 201910871573 A CN201910871573 A CN 201910871573A CN 110671358 A CN110671358 A CN 110671358A
Authority
CN
China
Prior art keywords
axial
blade
impeller
streamline
vane pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910871573.4A
Other languages
Chinese (zh)
Inventor
谭磊
孙伟华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201910871573.4A priority Critical patent/CN110671358A/en
Publication of CN110671358A publication Critical patent/CN110671358A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明公开了一种可控载荷的叶片设计方法及其设计的叶片泵,其中,叶轮包括:轮毂和叶片,叶片沿轴线方向设置于轮毂的外围面,叶片具有连接轮毂的轮毂侧和相对远离轮毂的轮缘侧,且叶片的相对两端具有进口端和出口端,叶片的速度矩沿轴面流线的分布规律符合预设函数。根据本发明实施例叶轮,能够使叶片载荷分布更加均匀,从而提高叶片泵的水力和空化特性,进而延长叶片泵的使用寿命和该装置效率。

Figure 201910871573

The invention discloses a blade design method with a controllable load and a designed blade pump, wherein the impeller includes a hub and blades, the blades are arranged on the peripheral surface of the hub along the axis direction, and the blades have a hub side connected to the hub and relatively far away from the hub. On the rim side of the hub, and the opposite ends of the blades have inlet and outlet ends, the distribution law of the velocity moment of the blade along the axial streamline conforms to a preset function. According to the impeller of the embodiment of the present invention, the blade load distribution can be made more uniform, thereby improving the hydraulic and cavitation characteristics of the vane pump, thereby prolonging the service life of the vane pump and the efficiency of the device.

Figure 201910871573

Description

一种可控载荷的叶片设计方法及其设计的叶片泵A vane design method with controllable load and vane pump designed therefor

技术领域technical field

本发明涉及叶片式泵设计技术领域,特别涉及一种可控载荷的叶片设计方法及其设计的叶片泵。The invention relates to the technical field of vane pump design, in particular to a vane design method with a controllable load and a vane pump designed therefor.

背景技术Background technique

叶片泵作为各行各业应用最为广泛的通用机械,它不仅应用于石油、化工、水利、灌溉等工农业领域,也包括南水北调、三峡水电站、核电站等国家战略性工程,甚至是潜艇、舰船和航空航天等尖端技术领域。据统计,泵的耗油量约占全国总油耗的5%,耗电量约占全国总发电量的20%,在石油和化工工业中更分别高达59%和26%。我国大力提倡节能减排、建设节约型社会,因此对叶片泵的叶轮进行优化设计以提高其水力特性具有重大意义。As the most widely used general machinery in all walks of life, vane pumps are not only used in industrial and agricultural fields such as petroleum, chemical industry, water conservancy, and irrigation, but also in national strategic projects such as the South-to-North Water Diversion Project, the Three Gorges Hydropower Station, and the nuclear power plant, and even submarines, ships and other national strategic projects. Aerospace and other cutting-edge technology fields. According to statistics, the fuel consumption of pumps accounts for about 5% of the country's total fuel consumption, and the electricity consumption accounts for about 20% of the country's total power generation. In the petroleum and chemical industries, it is as high as 59% and 26% respectively. my country vigorously advocates energy conservation and emission reduction, and builds a conservation-minded society. Therefore, it is of great significance to optimize the design of the impeller of the vane pump to improve its hydraulic characteristics.

然而,现有的叶片泵,由于叶轮设计不合理,导致流体进入叶轮后,流体对叶片产生的载荷分布不均,从而影响叶轮泵的水力和空化特性,进而降低叶片的使用寿命和该装置效率。However, in the existing vane pump, due to the unreasonable design of the impeller, after the fluid enters the impeller, the load generated by the fluid on the vane is unevenly distributed, thereby affecting the hydraulic and cavitation characteristics of the impeller pump, thereby reducing the service life of the vane and the device. efficiency.

发明内容SUMMARY OF THE INVENTION

本发明旨在至少在一定程度上解决相关技术中的技术问题之一。The present invention aims to solve one of the technical problems in the related art at least to a certain extent.

为此,本发明的一个目的在于提出一种可控载荷的叶片泵的叶轮。To this end, an object of the present invention is to provide an impeller of a vane pump with a controllable load.

本发明的另一个目的在于提出一种叶片泵的叶轮的制作方法。Another object of the present invention is to provide a method for manufacturing an impeller of a vane pump.

为达到上述目的,本发明一方面实施例提出了一种叶片泵的叶轮,包括:轮毂和叶片,其中,所述叶片沿轴线方向设置于所述轮毂的外围面,所述叶片具有连接所述轮毂的轮毂侧和相对远离所述轮毂的轮缘侧,且所述叶片的相对两端具有进口端和出口端,所述叶片的速度矩沿轴面流线的分布规律符合预设函数。In order to achieve the above object, an embodiment of the present invention provides an impeller of a vane pump, comprising: a hub and blades, wherein the blades are arranged on the peripheral surface of the hub along an axis direction, and the blades have a connection to the The hub side of the hub and the rim side relatively far from the hub, and the opposite ends of the blade have inlet and outlet ends, and the distribution law of the velocity moment of the blade along the axial streamline conforms to a preset function.

本发明实施例的叶片泵的叶轮,能够使叶片载荷分布更加均匀,进而提高叶片泵的水力和空化特性,从而延长叶片泵叶片的使用寿命并提升该装置的效率。The impeller of the vane pump of the embodiment of the present invention can make the vane load distribution more uniform, thereby improving the hydraulic and cavitation characteristics of the vane pump, thereby prolonging the service life of the vane pump vane and improving the efficiency of the device.

另外,根据本发明上述实施例的叶片泵的叶轮还可以具有以下附加的技术特征:In addition, the impeller of the vane pump according to the above embodiments of the present invention may also have the following additional technical features:

进一步地,在本发明的一个实施例中,所述预设函数为:Further, in an embodiment of the present invention, the preset function is:

Cur=Cu1r1+(Cu2r2-Cu1r1)·f(x),C u r=C u1 r 1 +(C u2 r 2 -C u1 r 1 )·f(x),

其中,Cu1r1为所述轴面流线在所述叶片进口端的速度矩,Cu2r2为所述轴面流线在所述叶片出口端的速度矩,f(x)为所述轴面流线各处速度矩的分布规律的无量纲三次多项式函数,x对应于所述轴面流线上的预定位置与所述进口端之间沿所述轴面流线的长度和所述轴面流线的总长度之间的比值。Wherein, C u1 r 1 is the velocity moment of the axial streamline at the inlet end of the blade, C u2 r 2 is the velocity moment of the axial streamline at the outlet end of the blade, and f(x) is the shaft The dimensionless cubic polynomial function of the distribution law of velocity moments around the surface streamline, x corresponds to the length of the axial streamline between the predetermined position on the axial streamline and the inlet end and the axis The ratio between the total lengths of the surface streamlines.

进一步地,在本发明的一个实施例中,所述分布规律的无量纲三次多项式函数为:Further, in an embodiment of the present invention, the dimensionless cubic polynomial function of the distribution law is:

f(x)=(K1+K2-2)·x3+(-2K1-K2+3)·x2+K1·x。f(x)=(K 1 +K 2 −2)·x 3 +(−2K 1 −K 2 +3)·x 2 +K 1 ·x.

进一步地,在本发明的一个实施例中,所述参数K1和所述参数K2满足如下关系式:Further, in an embodiment of the present invention, the parameter K 1 and the parameter K 2 satisfy the following relationship:

0≤K1≤3,0≤K2≤3。0≤K 1 ≤3, 0≤K 2 ≤3.

为达到上述目的,本发明另一方面实施例提出了一种叶片泵的叶轮的制作方法,叶轮为采用上述实施例所述的叶片泵的叶轮,其中,方法包括:根据叶轮的使用要求确定所述叶片上从所述轮毂侧到所述轮缘侧的方向上的至少两个轴面流线上的速度矩Cu1r1、速度矩Cu2r2以及相应的无量纲三次多项式函数f(x),以确定所述叶片的形状;根据所述至少两个轴面流线利用插值法确定叶轮上其他位置的轴面流线,以制作得到预定形状的叶轮。In order to achieve the above purpose, another embodiment of the present invention proposes a method for making an impeller of a vane pump, where the impeller adopts the impeller of the vane pump described in the above embodiments, wherein the method includes: determining the required impeller according to the use requirements of the impeller. The velocity moment C u1 r 1 , the velocity moment C u2 r 2 and the corresponding dimensionless cubic polynomial function f ( x) to determine the shape of the blade; use interpolation to determine the axial streamlines at other positions on the impeller according to the at least two axial streamlines, so as to manufacture an impeller with a predetermined shape.

本发明实施例的叶片泵的叶轮的制作方法,能够使叶片载荷分布更加均匀,进而提高叶片泵的水力和空化特性,从而延长叶片泵叶片的使用寿命并提升该装置的效率。The manufacturing method of the impeller of the vane pump in the embodiment of the present invention can make the blade load distribution more uniform, thereby improving the hydraulic and cavitation characteristics of the vane pump, thereby prolonging the service life of the vane pump vane and improving the efficiency of the device.

另外,根据本发明上述实施例的叶片泵的叶轮的制作方法还可以具有以下附加的技术特征:In addition, the manufacturing method of the impeller of the vane pump according to the above-mentioned embodiment of the present invention may also have the following additional technical features:

进一步地,在本发明的一个实施例中,所述速度矩Cu1r1、速度矩Cu2r2沿轴面流线的分布规律符合预设函数,其中,所述预设函数为:Further, in an embodiment of the present invention, the distribution law of the velocity moment C u1 r 1 and the velocity moment C u2 r 2 along the axial streamline conforms to a preset function, wherein the preset function is:

Cur=Cu1r1+(Cu2r2-Cu1r1)·f(x),C u r=C u1 r 1 +(C u2 r 2 -C u1 r 1 )·f(x),

其中,Cu1r1为所述轴面流线在所述叶片进口端的速度矩,Cu2r2为所述轴面流线在所述叶片出口端的速度矩,f(x)为所述轴面流线各处速度矩的分布规律的无量纲三次多项式函数,x对应于所述轴面流线上的预定位置与所述进口端之间沿所述轴面流线的长度和所述轴面流线的总长度之间的比值。Wherein, C u1 r 1 is the velocity moment of the axial streamline at the inlet end of the blade, C u2 r 2 is the velocity moment of the axial streamline at the outlet end of the blade, and f(x) is the shaft The dimensionless cubic polynomial function of the distribution law of velocity moments around the surface streamline, x corresponds to the length of the axial streamline between the predetermined position on the axial streamline and the inlet end and the axis The ratio between the total lengths of the surface streamlines.

进一步地,在本发明的一个实施例中,所述分布规律的无量纲三次多项式函数为:Further, in an embodiment of the present invention, the dimensionless cubic polynomial function of the distribution law is:

f(x)=(K1+K2-2)·x3+(-2K1-K2+3)·x2+K1·x。f(x)=(K 1 +K 2 −2)·x 3 +(−2K 1 −K 2 +3)·x 2 +K 1 ·x.

进一步地,在本发明的一个实施例中,所述参数K1和所述参数K2满足如下关系式:Further, in an embodiment of the present invention, the parameter K 1 and the parameter K 2 satisfy the following relationship:

0≤K1≤3,0≤K2≤3。0≤K 1 ≤3, 0≤K 2 ≤3.

进一步地,在本发明的一个实施例中,所述至少两个轴面流线包括所述叶片的轮毂侧的轴面流线、所述叶片的轮缘侧的轴面流线。Further, in an embodiment of the present invention, the at least two axial streamlines include an axial streamline on the hub side of the blade and an axial streamline on the rim side of the blade.

进一步地,在本发明的一个实施例中,所述插值方法为样条插值方法、Lagrange插值方法、Newton插值方法、Hermite插值方法或分段插值方法。Further, in an embodiment of the present invention, the interpolation method is a spline interpolation method, a Lagrange interpolation method, a Newton interpolation method, a Hermite interpolation method or a piecewise interpolation method.

本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.

附图说明Description of drawings

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:

图1为根据本发明实施例的叶片泵的叶轮的结构示意图;1 is a schematic structural diagram of an impeller of a vane pump according to an embodiment of the present invention;

图2为根据本发明实施例的叶片泵的叶轮的制作方法的流程图;2 is a flowchart of a method for manufacturing an impeller of a vane pump according to an embodiment of the present invention;

图3为根据本发明实施例的叶片泵优化设计模型轮毂侧、轮缘侧沿轴面流线长度的叶片相对速度矩分布规律示意图。3 is a schematic diagram of the distribution law of the relative velocity moment of the vane along the length of the axial plane streamline on the hub side and the rim side of the optimal design model of the vane pump according to an embodiment of the present invention.

具体实施方式Detailed ways

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present invention and should not be construed as limiting the present invention.

下面参照附图描述根据本发明实施例提出的可控载荷的叶片设计方法及其设计的叶片泵,首先将参照附图描述根据本发明实施例提出的叶片泵的叶轮。The vane design method for a controllable load and the designed vane pump according to the embodiments of the present invention will be described below with reference to the drawings. First, the impeller of the vane pump according to the embodiments of the present invention will be described with reference to the drawings.

图1是本发明一个实施例的叶片泵的叶轮的结构示意图。FIG. 1 is a schematic structural diagram of an impeller of a vane pump according to an embodiment of the present invention.

如图1所示,该叶片泵的叶轮100包括:轮毂10和叶片20。As shown in FIG. 1 , the impeller 100 of the vane pump includes: a hub 10 and blades 20 .

其中,叶片20沿轴线方向设置于轮毂10的外围面,叶片20具有连接轮毂10的轮毂侧和相对远离轮毂的轮缘侧,且叶片20的相对两端具有进口端和出口端,叶片的速度矩沿轴面流线的分布规律符合预设函数。本发明实施例的叶轮100相比传统的叶片泵叶轮的设计方法,能够使叶片载荷分布更加均匀,从而提高叶片泵的水力和空化特性,进而延长叶片泵的使用寿命。Wherein, the blade 20 is arranged on the peripheral surface of the hub 10 along the axial direction, the blade 20 has a hub side connected to the hub 10 and a rim side relatively far from the hub, and the opposite ends of the blade 20 have an inlet end and an outlet end. The distribution law of the moment along the axial streamline conforms to the preset function. Compared with the traditional vane pump impeller design method, the impeller 100 of the embodiment of the present invention can make the vane load distribution more uniform, thereby improving the hydraulic and cavitation characteristics of the vane pump, thereby prolonging the service life of the vane pump.

具体而言,叶片泵可以为叶片泵,叶片20沿轴线方向安装在轮毂10外围面,叶片20具有连接轮毂10的轮毂侧23和远离轮毂10的轮缘侧24,且叶片相对两端具有进口端和出口端,叶片20在轴面流线上的速度矩符合函数Cur=Cu1r1+(Cu2r2-Cu1r1)·f(x)。Specifically, the vane pump can be a vane pump. The vane 20 is installed on the outer surface of the hub 10 along the axial direction. At the end and the outlet end, the velocity moment of the blade 20 on the axial streamline conforms to the function C u r=C u1 r 1 +(C u2 r 2 -C u1 r 1 )·f(x).

其中,Cu1r1为轴面流线在进口端21的速度矩,Cu2r2为轴面流线在出口端22的速度矩,f(x)为轴面流线各处速度矩的分布规律的无量纲三次多项式函数,x对应于轴面流线上的预定位置与进口端21之间沿该轴面流线的长度和该轴面流线的总长度之间的比值,f(x)为根据设计要求确定的无量纲三次多项式函数,f(x)∈[0,1],f(0)=0,f(1)=1,Cu1r1、Cu2r2为根据设计要求确定的参数。Among them, C u1 r 1 is the velocity moment of the axial streamline at the inlet end 21, C u2 r 2 is the velocity moment of the axial streamline at the outlet end 22, f(x) is the velocity moment of the axial streamline everywhere The dimensionless cubic polynomial function of the distribution law, x corresponds to the ratio between the predetermined position on the axial streamline and the length of the axial streamline between the inlet end 21 and the total length of the axial streamline, f( x) is a dimensionless cubic polynomial function determined according to design requirements, f(x)∈[0,1], f(0)=0, f(1)=1, C u1 r 1 , C u2 r 2 are based on Design requirements to determine the parameters.

在本发明的一个实施例中,无量纲三次多项式函数可以表示成f(x)=a·x3+b·x2+c·x+d的形式,其中,f(0)=0,也就是说,d=0(1);f(1)=1,也即a+b+c=1(2)。In one embodiment of the present invention, the dimensionless cubic polynomial function can be expressed in the form of f(x)=a·x 3 +b·x 2 +c·x+d, where f(0)=0, also That is, d=0(1); f(1)=1, that is, a+b+c=1(2).

此外,叶片20的轴面流线上的速度矩分布规律符合函数Cur=Cu1r1+(Cu2r2-Cu1r1)·f(x),通过合理给定Cu1r1、Cu2r2的值,也即叶片20的进口端和出口端的速度矩是设计的预定值,此预定值可以按照设计经验进行取值,也可以根据叶片泵叶轮设计手册上的数值选取。In addition, the distribution law of the velocity moment on the axial streamline of the blade 20 conforms to the function C u r=C u1 r 1 +(C u2 r 2 -C u1 r 1 )·f(x), by reasonably specifying C u1 r 1. The value of C u2 r 2 , that is, the velocity moment at the inlet end and the outlet end of the vane 20, is a predetermined value of the design. This predetermined value can be selected according to the design experience, or can be selected according to the value in the vane pump impeller design manual .

一些实施例中,f’(0)=K1,f’(1)=K2,其中K1、K2是根据设计要求选定的参数,三次多项式函数为f(x)=(K1+K2-2)·x3+(-2K1-K2+3)·x2+K1·x。其中,f’(x)=3ax2+2bx+c,f’(0)=K1,f’(1)=K2,可以得出c=K1(3),3a+2b+c=K2(4)。联立方程(1)、(2)、(3)和(4)可得a=K1+K2-2,b=-2K1-K2+3,c=K1,d=0,也即f(x)=(K1+K2-2)·x3+(-2K1-K2+3)·x2+K1·x。此外,K1、K2、Cu1r1、Cu2r2是根据设计要求选定的参数,这样,x为唯一变量,x与Cur存在一一对应关系,通过确定x的值即可确定叶片20的轴面流线速度矩,进而确定叶片分布规律,这样,便于加工生产。In some embodiments, f'(0)=K 1 , f'(1)=K 2 , wherein K 1 and K 2 are parameters selected according to design requirements, and the cubic polynomial function is f(x)=(K 1 +K 2 -2)·x 3 +(-2K 1 -K 2 +3)·x 2 +K 1 ·x. Among them, f'(x)=3ax 2 +2bx+c, f'(0)=K 1 , f'(1)=K 2 , it can be concluded that c=K 1 (3), 3a+2b+c= K 2 (4). Simultaneous equations (1), (2), (3) and (4) can obtain a=K 1 +K 2 -2, b=-2K 1 -K 2 +3, c=K 1 , d=0, That is, f(x)=(K 1 +K 2 −2)·x 3 +(−2K 1 −K 2 +3)·x 2 +K 1 ·x. In addition, K 1 , K 2 , C u1 r 1 , and C u2 r 2 are parameters selected according to the design requirements. In this way, x is the only variable, and there is a one-to-one correspondence between x and C ur . By determining the value of x, that is, The axial streamline velocity moment of the blade 20 can be determined, and then the distribution law of the blade can be determined, which is convenient for processing and production.

进一步地,可以理解,基于三次多项式函数对叶轮100进行设计优化时,通过改变K1、K2、Cu1r1、Cu2r2这四个参数,从而可以改变从叶片20进口端21至叶片20出口端22的轴面流线速度矩变化规律,进而影响叶片的形状。Further, it can be understood that when optimizing the design of the impeller 100 based on the cubic polynomial function, by changing the four parameters K 1 , K 2 , C u1 r 1 , and C u2 r 2 , it is possible to change the parameters from the inlet end 21 of the blade 20 to the The change law of the axial streamline velocity moment at the outlet end 22 of the blade 20, which in turn affects the shape of the blade.

综上,本发明实施例提出的叶片泵的叶轮,能够使叶片载荷分布更加均匀,进而提高叶片泵的水力和空化特性,从而延长叶片泵叶片的使用寿命并提升该装置的效率。To sum up, the impeller of the vane pump proposed by the embodiment of the present invention can make the vane load distribution more uniform, thereby improving the hydraulic and cavitation characteristics of the vane pump, thereby prolonging the service life of the vane pump vanes and improving the efficiency of the device.

其次参照附图描述根据本发明实施例提出的叶片泵的叶轮的制作方法。Next, the method for manufacturing the impeller of the vane pump according to the embodiment of the present invention will be described with reference to the accompanying drawings.

图2是本发明一个实施例的叶片泵的叶轮的制作方法的流程图。FIG. 2 is a flowchart of a method for manufacturing an impeller of a vane pump according to an embodiment of the present invention.

如图2所示,该叶片泵的叶轮的制作方法,叶轮为采用上述实施例的叶片泵的叶轮,其中,方法包括以下步骤:As shown in Figure 2, the manufacturing method of the impeller of the vane pump, the impeller is the impeller of the vane pump of the above-mentioned embodiment, wherein, the method comprises the following steps:

在步骤S201中,根据叶轮的使用要求确定叶片上从轮毂侧到轮缘侧的方向上的至少两个轴面流线上的速度矩Cu1r1、速度矩Cu2r2以及相应的无量纲三次多项式函数f(x),以确定叶片的形状。In step S201 , the velocity moment C u1 r 1 , the velocity moment C u2 r 2 and the corresponding infinite amount on at least two axial streamlines on the blade in the direction from the hub side to the rim side are determined according to the usage requirements of the impeller Dimensional cubic polynomial function f(x) to determine the shape of the blade.

在本发明的一个实施例中,至少两个轴面流线包括叶片的轮毂侧的轴面流线、叶片的轮缘侧的轴面流线。In one embodiment of the present invention, the at least two axial streamlines include an axial streamline on the hub side of the blade and an axial streamline on the rim side of the blade.

例如,如图1和图3所示,至少两个轴面流线包括叶片20的轮毂侧23的轴面流线、叶片20的轮缘侧24的轴面流线。通过叶片20上沿轴面流线各点处的叶片20速度矩,从而确定叶片20的形状。For example, as shown in FIGS. 1 and 3 , the at least two axial streamlines include an axial streamline on the hub side 23 of the blade 20 and an axial streamline on the rim side 24 of the blade 20 . The shape of the blade 20 is determined by the velocity moment of the blade 20 at each point along the axial plane streamline on the blade 20 .

进一步地,在本发明的一个实施例中,速度矩Cu1r1、速度矩Cu2r2沿轴面流线的分布规律符合预设函数,其中,预设函数为:Further, in an embodiment of the present invention, the distribution law of the velocity moment C u1 r 1 and the velocity moment C u2 r 2 along the axial streamline conforms to a preset function, wherein the preset function is:

Cur=Cu1r1+(Cu2r2-Cu1r1)·f(x),C u r=C u1 r 1 +(C u2 r 2 -C u1 r 1 )·f(x),

其中,Cu1r1为轴面流线在叶片进口端的速度矩,Cu2r2为轴面流线在叶片出口端的速度矩,f(x)为轴面流线各处速度矩的分布规律的无量纲三次多项式函数,x对应于轴面流线上的预定位置与进口端之间沿轴面流线的长度和轴面流线的总长度之间的比值,f(x)为根据设计要求确定的连续函数。Among them, C u1 r 1 is the velocity moment of the axial streamline at the inlet end of the blade, C u2 r 2 is the velocity moment of the axial streamline at the outlet end of the blade, and f(x) is the distribution law of the velocity moment around the axial streamline A dimensionless cubic polynomial function of A definite continuous function is required.

进一步地,在本发明的一个实施例中,分布规律的无量纲三次多项式函数为:f(x)=(K1+K2-2)·x3+(-2K1-K2+3)·x2+K1·x。其中,参数K1和参数K2满足如下关系式:0≤K1≤3,0≤K2≤3。需要说明的是,本领域技术人员可以根据设计要求给定Cu1r1、Cu2r2、K1、K2,在此不做具体限定。通过给定Cu1r1、Cu2r2、K1、K2这四个参数,即可确定一条轴面流线上的叶片的速度矩,从而确定叶片几何形状;其中,Cu1r1、Cu2r2可以根据设计要求结合经验优选,K1、K2可以在0到2的范围内任意取值。Further, in an embodiment of the present invention, the dimensionless cubic polynomial function of the distribution law is: f(x)=(K 1 +K 2 -2)·x 3 +(-2K 1 -K 2 +3) · x 2 +K 1 · x. Wherein, the parameter K 1 and the parameter K 2 satisfy the following relational expressions: 0≤K 1 ≤3, 0≤K 2 ≤3. It should be noted that those skilled in the art can specify C u1 r 1 , C u2 r 2 , K 1 , and K 2 according to design requirements, which are not specifically limited herein. By giving four parameters of C u1 r 1 , C u2 r 2 , K 1 , and K 2 , the velocity moment of the blade on an axial streamline can be determined, thereby determining the blade geometry; where C u1 r 1 , C u2 r 2 can be optimized according to design requirements and experience, and K 1 and K 2 can be arbitrarily set in the range of 0 to 2.

在步骤S202中,根据至少两个轴面流线利用插值法确定叶轮上其他位置的轴面流线,以制作得到预定形状的叶轮。In step S202, an interpolation method is used to determine axial streamlines at other positions on the impeller according to the at least two axial streamlines, so as to manufacture an impeller with a predetermined shape.

可选地,在本发明的一个实施例中,插值方法可以为样条插值方法、Lagrange插值方法、Newton插值方法、Hermite插值方法或分段插值方法等。Optionally, in an embodiment of the present invention, the interpolation method may be a spline interpolation method, a Lagrange interpolation method, a Newton interpolation method, a Hermite interpolation method, a piecewise interpolation method, or the like.

下面将通过具体实施例并结合图1和图3对叶片泵的叶轮的制作方法进行进一步阐述。The manufacturing method of the impeller of the vane pump will be further described below through specific embodiments and in conjunction with FIG. 1 and FIG. 3 .

首先根据叶轮100的实际工作状况,确定轮毂侧23的轴面流线的速度矩Cu1,23r1,23、速度矩Cu2,23r2,23的数值,以及三次多项式函数f(x)中K23,1和K23,2的值,同时确定轮缘侧24的轴面流线的速度矩Cu1,24r1,24、速度矩Cu2,24r2,24的数值,以及三次多项式函数f(x)中K24,1和K24,2的值,有利地,为了方便生产,Cu2,23r2,23-Cu1,23r1,23=Cu2,24r2,24-Cu1,24r1,24,这样,也就确定了叶片20两端轴面与轮毂侧23和轮缘侧24的速度矩,进而确定叶片20的形状。可以知道,在轮毂侧23轴面流线到轮缘侧24轴面流线之间还有无数条轴面流线,这些轴面流线是无法穷举的,因此,可以利用插值法来确定其它位置的轴面流线,这样,轮毂10上叶片20的形状被确定。当然,上述实施例仅是示意性的,并不能理解为对本发明保护范围的限制,例如,也可以选择轮缘侧24轴面流线和轮毂侧23轴面流线中间的任意两条或三条或更多条轴面流线。Firstly, according to the actual working conditions of the impeller 100, determine the velocity moment C u1,23 r 1,23 and velocity moment C u2,23 r 2,23 of the axial streamline of the hub side 23 , and the cubic polynomial function f(x ) in the values of K 23,1 and K 23,2 , while determining the value of the velocity moment C u1,24 r 1,24 and the velocity moment C u2,24 r 2,24 of the axial streamline of the rim side 24, and the values of K 24,1 and K 24,2 in the cubic polynomial function f(x), advantageously, for ease of production, C u2,23 r 2,23 -C u1,23 r 1,23 =C u2,24 r 2,24 -C u1,24 r 1,24 , in this way, the velocity moments between the axial surfaces at both ends of the blade 20 and the hub side 23 and the rim side 24 are determined, thereby determining the shape of the blade 20 . It can be known that there are countless axial streamlines between the 23 axial streamlines on the hub side and the 24 axial streamlines on the rim side. These axial streamlines cannot be exhausted. Therefore, the interpolation method can be used to determine Axial streamlines at other locations, so that the shape of the blades 20 on the hub 10 is determined. Of course, the above embodiments are only illustrative, and should not be construed as limiting the scope of protection of the present invention. For example, any two or three between the axial streamlines on the rim side 24 and the axial streamlines on the hub side 23 can also be selected. or more axial streamlines.

根据本发明实施例的叶轮100的制作方法,通过步骤S201和S202,可以设计出一个满足三次多项式函数的叶轮100,这种叶轮100的制作方法设计简单,实施方便,将该种叶轮100的制作方法运用到叶片泵的参数优化设计上,能够使叶片载荷分布更加均匀,从而提高叶片泵的水力和空化特性,进而延长叶片泵的使用寿命和效率。According to the manufacturing method of the impeller 100 according to the embodiment of the present invention, through steps S201 and S202, an impeller 100 that satisfies the cubic polynomial function can be designed. The manufacturing method of the impeller 100 is simple in design and convenient in implementation. The method is applied to the parameter optimization design of the vane pump, which can make the vane load distribution more uniform, thereby improving the hydraulic and cavitation characteristics of the vane pump, thereby prolonging the service life and efficiency of the vane pump.

需要说明的是,前述对叶片泵的叶轮实施例的解释说明也适用于该实施例的叶片泵的叶轮的制作方法,此处不再赘述。It should be noted that, the foregoing explanations on the embodiment of the impeller of the vane pump are also applicable to the manufacturing method of the impeller of the vane pump of this embodiment, which will not be repeated here.

根据本发明实施例提出的叶片泵的叶轮的制作方法,能够使叶片载荷分布更加均匀,进而提高叶片泵的水力和空化特性,从而延长叶片泵叶片的使用寿命并提升该装置的效率。The method for manufacturing the impeller of the vane pump according to the embodiment of the present invention can make the blade load distribution more uniform, thereby improving the hydraulic and cavitation characteristics of the vane pump, thereby prolonging the service life of the vane pump vane and improving the efficiency of the device.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.

Claims (10)

1.一种叶片泵的叶轮,其特征在于,包括:1. an impeller of a vane pump, is characterized in that, comprises: 轮毂;和叶片,所述叶片沿轴线方向设置于所述轮毂的外围面,所述叶片具有连接所述轮毂的轮毂侧和相对远离所述轮毂的轮缘侧,且所述叶片的相对两端具有进口端和出口端,所述叶片的速度矩沿轴面流线的分布规律符合预设函数。a hub; and a blade, the blade is disposed on the peripheral surface of the hub in the axial direction, the blade has a hub side connected to the hub and a rim side relatively remote from the hub, and opposite ends of the blade Having an inlet end and an outlet end, the distribution law of the velocity moment of the blade along the axial streamline conforms to a preset function. 2.根据权利要求1所述的叶片泵的叶轮,其特征在于,所述预设函数为:2. The impeller of the vane pump according to claim 1, wherein the preset function is: Cur=Cu1r1+(Cu2r2-Cu1r1)·f(x),C u r=C u1 r 1 +(C u2 r 2 -C u1 r 1 )·f(x), 其中,Cu1r1为所述轴面流线在所述叶片进口端的速度矩,Cu2r2为所述轴面流线在所述叶片出口端的速度矩,f(x)为所述轴面流线各处速度矩的分布规律的无量纲三次多项式函数,x对应于所述轴面流线上的预定位置与所述进口端之间沿所述轴面流线的长度和所述轴面流线的总长度之间的比值。Wherein, C u1 r 1 is the velocity moment of the axial streamline at the inlet end of the blade, C u2 r 2 is the velocity moment of the axial streamline at the outlet end of the blade, and f(x) is the shaft The dimensionless cubic polynomial function of the distribution law of velocity moments around the surface streamline, x corresponds to the length of the axial streamline between the predetermined position on the axial streamline and the inlet end and the axis The ratio between the total lengths of the surface streamlines. 3.根据权利要求2所述的叶片泵的叶轮,其特征在于,所述分布规律的无量纲三次多项式函数为:3. the impeller of vane pump according to claim 2, is characterized in that, the dimensionless cubic polynomial function of described distribution law is: f(x)=(K1+K2-2)·x3+(-2K1-K2+3)·x2+K1·x。f(x)=(K 1 +K 2 −2)·x 3 +(−2K 1 −K 2 +3)·x 2 +K 1 ·x. 4.根据权利要求3所述的叶片泵的叶轮,其特征在于,所述参数K1和所述参数K2满足如下关系式:4. The impeller of a vane pump according to claim 3, wherein the parameter K 1 and the parameter K 2 satisfy the following relational expression: 0≤K1≤3,0≤K2≤3。0≤K 1 ≤3, 0≤K 2 ≤3. 5.一种叶片泵的叶轮的制作方法,其特征在于,叶轮为采用权利要求1-4任一项所述的叶片泵的叶轮,其中,方法包括:5. A method of making an impeller of a vane pump, wherein the impeller adopts the impeller of the vane pump of any one of claims 1-4, wherein the method comprises: 根据叶轮的使用要求确定所述叶片上从所述轮毂侧到所述轮缘侧的方向上的至少两个轴面流线上的速度矩Cu1r1、速度矩Cu2r2以及相应的无量纲三次多项式函数f(x),以确定所述叶片的形状;Determine the velocity moment C u1 r 1 , the velocity moment C u2 r 2 and the corresponding velocity moment C u1 r 1 on at least two axial streamlines on the blade in the direction from the hub side to the rim side according to the usage requirements of the impeller a dimensionless cubic polynomial function f(x) to determine the shape of the blade; 根据所述至少两个轴面流线利用插值法确定叶轮上其他位置的轴面流线,以制作得到预定形状的叶轮。According to the at least two axial streamlines, an interpolation method is used to determine axial streamlines at other positions on the impeller, so as to manufacture an impeller with a predetermined shape. 6.根据权利要求5所述的制作方法,其特征在于,所述速度矩Cu1r1、速度矩Cu2r2沿轴面流线的分布规律符合预设函数,其中,所述预设函数为:6 . The manufacturing method according to claim 5 , wherein the distribution law of the velocity moment C u1 r 1 and the velocity moment C u2 r 2 along the axial streamline conforms to a preset function, wherein the preset The function is: Cur=Cu1r1+(Cu2r2-Cu1r1)·f(x),C u r=C u1 r 1 +(C u2 r 2 -C u1 r 1 )·f(x), 其中,Cu1r1为所述轴面流线在所述叶片进口端的速度矩,Cu2r2为所述轴面流线在所述叶片出口端的速度矩,f(x)为所述轴面流线各处速度矩的分布规律的无量纲三次多项式函数,x对应于所述轴面流线上的预定位置与所述进口端之间沿所述轴面流线的长度和所述轴面流线的总长度之间的比值。Wherein, C u1 r 1 is the velocity moment of the axial streamline at the inlet end of the blade, C u2 r 2 is the velocity moment of the axial streamline at the outlet end of the blade, and f(x) is the shaft The dimensionless cubic polynomial function of the distribution law of velocity moments around the surface streamline, x corresponds to the length of the axial streamline between the predetermined position on the axial streamline and the inlet end and the axis The ratio between the total lengths of the surface streamlines. 7.根据权利要求6所述的制作方法,其特征在于,所述分布规律的无量纲三次多项式函数为:7. preparation method according to claim 6 is characterized in that, the dimensionless cubic polynomial function of described distribution law is: f(x)=(K1+K2-2)·x3+(-2K1-K2+3)·x2+K1·x。f(x)=(K 1 +K 2 −2)·x 3 +(−2K 1 −K 2 +3)·x 2 +K 1 ·x. 8.根据权利要求7所述的制作方法,其特征在于,所述参数K1和所述参数K2满足如下关系式:8. The production method according to claim 7, wherein the parameter K 1 and the parameter K 2 satisfy the following relational expression: 0≤K1≤3,0≤K2≤3。0≤K 1 ≤3, 0≤K 2 ≤3. 9.根据权利要求5所述的制作方法,其特征在于,所述至少两个轴面流线包括所述叶片的轮毂侧的轴面流线、所述叶片的轮缘侧的轴面流线。9 . The manufacturing method according to claim 5 , wherein the at least two axial streamlines include an axial streamline on the hub side of the blade and an axial streamline on the rim side of the blade. 10 . . 10.根据权利要求5-9任意一项所述的制作方法,其特征在于,所述插值方法为样条插值方法、Lagrange插值方法、Newton插值方法、Hermite插值方法或分段插值方法。10 . The production method according to claim 5 , wherein the interpolation method is a spline interpolation method, a Lagrange interpolation method, a Newton interpolation method, a Hermite interpolation method or a piecewise interpolation method. 11 .
CN201910871573.4A 2019-09-16 2019-09-16 A vane design method with controllable load and vane pump designed therefor Pending CN110671358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910871573.4A CN110671358A (en) 2019-09-16 2019-09-16 A vane design method with controllable load and vane pump designed therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910871573.4A CN110671358A (en) 2019-09-16 2019-09-16 A vane design method with controllable load and vane pump designed therefor

Publications (1)

Publication Number Publication Date
CN110671358A true CN110671358A (en) 2020-01-10

Family

ID=69077973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910871573.4A Pending CN110671358A (en) 2019-09-16 2019-09-16 A vane design method with controllable load and vane pump designed therefor

Country Status (1)

Country Link
CN (1) CN110671358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048050A (en) * 2021-03-31 2021-06-29 清华大学 Blade design method based on segmented quartic function distribution speed moment and blade pump designed by same
CN113969855A (en) * 2021-10-15 2022-01-25 清华大学 Blade modification method for suppressing the hump of water pump turbine pump working condition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529643A (en) * 2017-09-15 2018-01-02 西安理工大学 It is a kind of to take into account waterpower, the francis turbine runner multi-point optimization method of strength character
CN108446452A (en) * 2018-02-27 2018-08-24 江苏大学 A kind of mixed-flow pump impeller Robust Optimal Design

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107529643A (en) * 2017-09-15 2018-01-02 西安理工大学 It is a kind of to take into account waterpower, the francis turbine runner multi-point optimization method of strength character
CN108446452A (en) * 2018-02-27 2018-08-24 江苏大学 A kind of mixed-flow pump impeller Robust Optimal Design

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张勤昭等: ""速度矩分布规律对混流泵叶轮设计的影响"", 《排灌机械工程学报》 *
曹树良等: ""高比转速混流泵叶轮设计方法"", 《江苏大学学报》 *
邴浩等: ""速度矩分布规律的参数化描述及对混流泵性能的影响"", 《农业工程学报》 *
马文昌等: ""基于速度矩分布的喷水推进泵反设计及抗汽蚀性能分析"", 《江苏科技大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048050A (en) * 2021-03-31 2021-06-29 清华大学 Blade design method based on segmented quartic function distribution speed moment and blade pump designed by same
CN113969855A (en) * 2021-10-15 2022-01-25 清华大学 Blade modification method for suppressing the hump of water pump turbine pump working condition
CN113969855B (en) * 2021-10-15 2022-08-02 清华大学 Blade modification method for suppressing the hump of water pump turbine pump working condition

Similar Documents

Publication Publication Date Title
CN105626574B (en) A kind of high-lift axial-flow pump impeller Hydraulic Design Method
CN109625226B (en) A Design Method of Axial Flow High Power Density Water Jet Propulsion Pump
CN102251983A (en) Optimization design method of impellor for cavitation-erosion-resistant centrifugal fan
CN102207101A (en) CFD (Computational Fluid Dynamics)-based modeling design method for nuclear main pump and designed million-kilowatt-grade nuclear main pump impeller
CN102086884A (en) Four working condition-point hydraulic design method of impeller of centrifugal pump
CN110671358A (en) A vane design method with controllable load and vane pump designed therefor
CN108984983A (en) A kind of blade angle optimization method improving adjustable torque converter overall efficiency
CN109026186A (en) A kind of passive control technology of polynary coupling inhibiting the loss of radial-flow turbine blade tip clearance stream
CN208024625U (en) The impeller of vane-type oil-gas mixing pump
CN104699888B (en) A Design Method of Hydraulic Turbine Based on Pump Turbine
CN103994095A (en) Designing method of multiphase mixed transportation axial flow pump impeller
CN208252159U (en) A kind of industrial steam turbine high efficiency drum grade movable vane piece
CN105090048B (en) Micro- head flow velocity type turbine pump
CN104235055B (en) A kind of hydraulic model method for designing of big diameter elbow slurry circulating pump
CN108194150B (en) Large-load efficient regulating-stage stationary blade of industrial steam turbine
CN108005950B (en) Impeller of vane type oil-gas mixed transportation pump and design method thereof
CN109446576B (en) Iterative calculation method for geometric parameters of centrifugal impeller with saturated power characteristics
CN103591244B (en) Double-worm gear hydraulic pitch
CN111911423B (en) Centrifugal pump impeller limit outer diameter measuring and optimizing method based on PIV
CN108266234B (en) Efficient rotary drum-level stator blade of industrial steam turbine
CN108019374B (en) Asymmetric impeller for centrifugal pump
CN104912851A (en) Channel type guide valve designing method
CN113339267B (en) Cambered high-energy-density blade design method and vane pump designed by same
CN206175298U (en) Centrifugal hydraulic turbine impeller
CN204878042U (en) Novel axial -flow impeller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110