CN110667109B - 基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机 - Google Patents

基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机 Download PDF

Info

Publication number
CN110667109B
CN110667109B CN201910898702.9A CN201910898702A CN110667109B CN 110667109 B CN110667109 B CN 110667109B CN 201910898702 A CN201910898702 A CN 201910898702A CN 110667109 B CN110667109 B CN 110667109B
Authority
CN
China
Prior art keywords
layer
slice thickness
slice
dimensional model
outer contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910898702.9A
Other languages
English (en)
Other versions
CN110667109A (zh
Inventor
张鹏
彭国祥
孙路伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN201910898702.9A priority Critical patent/CN110667109B/zh
Publication of CN110667109A publication Critical patent/CN110667109A/zh
Application granted granted Critical
Publication of CN110667109B publication Critical patent/CN110667109B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)

Abstract

本发明提供一种基于Delta机械臂的光固化3D打印机切片方法,包括如下步骤:计算三维模型的高度、提取三维模型的外轮廓,根据高度数据和外轮廓曲线形状得到切片层数及其对应的切片厚度;根据切片层数、切片厚度得到每层的切片形状。再提供一种打印方法,包括步骤:实施所述的切片方法。还提供一种打印机,使用所述的打印方法。本发明的有益效果是:在分层厚度的选择上采用自适应分层,即在Z轴方向上根据物体轮廓的表面形状改变分层厚度,以满足物体表面精度的要求,该方法相比于固定厚度的切片方法,能够获得更高的加工精度。

Description

基于Delta机械臂的光固化3D打印机切片方法、打印方法及其 打印机
技术领域
本发明涉及3D打印领域,特别是一种基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机。
背景技术
目前,在光固化3D打印机中,当光敏材料收到一定频率的激光曝光时,光敏材料会从液态转为固态,按照这一特性,光敏材料由下至上顺序的分层进行固化,最终能够打印出所需的3D造型。
但是,打印的3D造型其精度与打印机的最大切片厚度Zmax和最小切片厚度Zmin有关;当选定打印的切片厚度Z值偏大时,其打印效率提高,但是3D造型的精度降低;相反的,当选定的切片厚度Z值偏小时,其打印效率降低,但是3D造型的精度提高。再加上,现有的选定固定切片厚度的切片方式,对于变曲率曲面和复杂曲面物体的打印存在明显不足。
发明内容
为了解决上述现有的技术问题,本发明提供一种基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机,能够根据物体轮廓的表面形状改变分层厚度,以满足物体表面精度的要求。
本发明解决上述现有的技术问题,提供一种基于Delta机械臂的光固化3D打印机切片方法,包括如下步骤:步骤S1:计算三维模型的高度、提取三维模型的外轮廓,根据高度数据和外轮廓曲线形状得到切片层数及其对应的切片厚度;步骤S2:根据切片层数、切片厚度得到每层的切片形状。
本发明更进一步的改进如下。
步骤S1具体为:以三维模型空间坐标系的X轴为基准,XY平面内每隔45°进行剖切,得到三维模型的八条外轮廓曲线;设定最大切片厚度Zmax和最小切片厚度Zmin;起始平面之上第一层的切片厚度为Z1:Z1为最小切片厚度Zmin;第一层之上第二层的切片厚度为Z2:一外轮廓曲线在Zmin高度点的切线与Z轴的夹角为θ,根据θ、Zmax及Zmin插值计算该外轮廓曲线第二层的切片厚度分量zn;根据切片厚度计算公式得到该层的切片厚度Z2;第二层之上第三层的切片厚度为Z3:一外轮廓曲线在Z1+Z2的高度点切线与Z轴的夹角为θ,根据θ、Zmax及Zmin插值计算该外轮廓曲线第三层的切片厚度分量zn;根据切片厚度计算公式得到该层的切片厚度Z3;同理,得到每一层的切片厚度;插值计算公式为:
zn=Zmin+(Zmax-Zmin)×|cosθn|(n=1,2,……,8);切片厚度计算公式为:
Figure BDA0002211104710000021
步骤S2具体为:三维模型从起始平面开始,沿着空间坐标系的Z轴,顺序按照切片厚度Z1、Z2、Z3......Zn进行切片,得到每一层对应的切片形状。
本发明解决上述现有的技术问题,提供一种基于Delta机械臂的光固化3D打印机打印方法,包括如下步骤:实施所述的切片方法;通过切片厚度和光敏树脂的参数得到对应的曝光时间T,计算每一层的曝光时间Ti;通过控制电路将光源调整为起始平面的切片形状;通过delta机械臂和Z轴电机移动Z1;通过控制电路控制光源的曝光时间T1,完成第一层切片的打印;通过控制电路将光源调整为第二层的切片形状;通过delta机械臂和Z轴电机移动Z2;通过控制电路控制光源的曝光时间T2,完成第二层切片的打印;同理,打印得到实体的所述三维模型。
本发明解决上述现有的技术问题,提供一种打印机,使用所述的打印方法。
本发明更进一步的改进如下。
包括delta机械臂、Z轴电机、光源、固化平台、料槽、控制电路;Z轴电机设置于delta机械臂。
相较于现有技术,本发明的有益效果是:在分层厚度的选择上采用自适应分层,即在Z轴方向上根据物体轮廓的表面形状改变分层厚度,以满足物体表面精度的要求,该方法相比于固定厚度的切片方法,能够获得更高的加工精度,相对的,亦提高加工效率。
附图说明
图1是本发明基于Delta机械臂的光固化3D打印机方法一具体实施方式流程图。
图2是图1的程序图。
图3是一实施例三维模型的示意图。
图4是图3的八条外轮廓曲线图。
图5是图3的切片示意图。
图6是由外轮廓曲线确定θ的原理图。
具体实施方式
下面结合附图说明及具体实施方式对本发明进一步说明。
如图1至图6所述。
一种基于Delta机械臂的光固化3D打印机切片方法,包括如下步骤:
步骤S1:计算三维模型的高度、提取三维模型的外轮廓,根据高度数据和外轮廓曲线形状得到切片层数及其对应的切片厚度;
步骤S2:根据切片层数、切片厚度得到每层的切片形状。
在该切片方法中,能够使用CAD软件进行三维模型的建模,亦能够使用本领域已有的三维绘图软件进行三维模型的建模。在建模以后,能够通过所使用的三维绘图软件提取其三维模型的高度和外轮廓,以此为基础,得到切片层数及其对应的切片厚度。然后,再进一步基于切片层数及其对应的切片厚度得到每一层对应的切片形状。
本发明步骤S1具体为:以三维模型空间坐标系的X轴为基准,XY平面内每隔45°进行剖切,得到三维模型的八条外轮廓曲线;设定最大切片厚度Zmax和最小切片厚度Zmin;起始平面之上第一层的切片厚度为Z1:Z1为最小切片厚度Zmin;第一层之上第二层的切片厚度为Z2:一外轮廓曲线在Zmin高度点的切线与Z轴的夹角为θ,根据θ、Zmax及Zmin插值计算该外轮廓曲线第二层的切片厚度分量zn;根据切片厚度计算公式得到该层的切片厚度Z2;第二层之上第三层的切片厚度为Z3:一外轮廓曲线在Z1+Z2的高度点切线与Z轴的夹角为θ,根据θ、Zmax及Zmin插值计算该外轮廓曲线第三层的切片厚度分量zn;根据切片厚度计算公式得到该层的切片厚度Z3;同理,得到每一层的切片厚度;
插值计算公式为:zn=Zmin+(Zmax-Zmin)×|cosθn|(n=1,2,……,8);
切片厚度计算公式为:
Figure BDA0002211104710000031
本发明步骤S2具体为:三维模型从起始平面开始,沿着空间坐标系的Z轴,顺序按照切片厚度Z1、Z2、Z3......Zn进行切片,得到每一层对应的切片形状。
使用上述的切片方法,得到的切片厚度为基于物体表面的轮廓形状的,当物体表面的轮廓曲率较小时,其切片厚度相对偏大;当物体表面的轮廓曲率较大时,其切片厚度相对偏小,因此,相较现有的切片方法,本发明打印的造型精度更高。
本发明还提供一种基于Delta机械臂的光固化3D打印机打印方法,包括如下步骤:首先,实施上述的切片方法;然后通过切片厚度和光敏树脂的参数得到对应的曝光时间T,计算每一层的曝光时间Ti;通过控制电路将光源调整为起始平面的切片形状;通过delta机械臂和Z轴电机移动Z1;通过控制电路控制光源的曝光时间T1,完成第一层切片的打印;通过控制电路将光源调整为第二层的切片形状;通过delta机械臂和Z轴电机移动Z2;通过控制电路控制光源的曝光时间T2,完成第二层切片的打印;同理,打印每一层,最后得到实体的所述三维模型。
本发明还提供一种打印机,使用上述的打印方法。该打印机包括delta机械臂、Z轴电机、光源、固化平台、料槽、控制电路等部件;Z轴电机设置于delta机械臂。同时,该打印机还包括外轮廓提取模块、自动切片模块和加工文件生成模块;由外轮廓提取模块实施步骤1,由自动切片模块实施步骤2,由加工文件生成模块控制delta机械臂、Z轴电机、光源完成打印步骤。
本发明提供一打印具体实施例的方法步骤如下:
利用三维绘图软件进行三维模型的建模,导出所述三维模型的Igs格式文件或step格式文件。
将Igs格式文件或step格式文件导入AutoCAD软件中,然后将Z轴设置为默认的打印方向,调整该模型所需打印方向至与笛卡尔坐标系中Z轴平行,同时调整模型中心与原点重合。
通过AutoCAD的netload命令加载外轮廓提取模块、自动切片模块。加载模块可调用模块内部自制的特殊命令。
通过调用外轮廓提取模块的设置参数命令选中所述的三维模型,获取三维模型的模型高度height,设定的最小切片厚度Zmin和最大切片厚度Zmax,在本实施例中,模型高度为10.87mm,最小切片厚度Zmin设置为0.03mm,最大切片厚度Zmax设置为0.1mm。
通过调用外轮廓提取模块的计算切片厚度命令,以三维模型空间坐标系的X轴为基准,XY平面内每隔45°进行剖切,得到三维模型八条外轮廓曲面面域,再利用爆炸命令得到三维模型八条外轮廓曲线。
起始平面之上第一层的切片厚度为Z1:Z1为最小切片厚度Zmin;第一层之上第二层的切片厚度为Z2:一外轮廓曲线在Zmin高度点的切线与Z轴的夹角为θ,根据θ、Zmax及Zmin插值计算该外轮廓曲线第二层的切片厚度分量zn;根据切片厚度计算公式得到该层的切片厚度Z2;第二层之上第三层的切片厚度为Z3:一外轮廓曲线在Z1+Z2的高度点切线与Z轴的夹角为θ,根据θ、Zmax及Zmin插值计算该外轮廓曲线第三层的切片厚度分量zn;根据切片厚度计算公式得到该层的切片厚度Z3;同理,得到每一层的切片厚度;
插值计算公式为:zn=Zmin+(Zmax-Zmin)×|cosθn|(n=1,2,……,8);
切片厚度计算公式为:
Figure BDA0002211104710000051
通过调用自动切片模块的自动切片命令,创建与XY平面平行的剖切平面,调用内置剖切命令得到相应高度的切片形状,调用内置视角调整命令调整至俯视图视角,调用内置位图导出命令导出此高度的切片形状的位图文件。循环上述操作直到数组尾部,即可得到所述三维模型不同厚度的切片形状的位图文件,可发现在底部切片厚度小,阶梯效应不明显,在顶部切片厚度大,可提高3D的加工效率。
通过labview调用加工文件生成模块,根据切片厚度和光敏树脂的参数进行曝光时间计算,完成所有切片的曝光时间,按照从下到上的次序将曝光时间、切片厚度、切片的位图文件进行捆绑数据后排序。
通过控制电路将光源调整为与所打印层的切片形状一致;通过delta机械臂和Z轴电机移动相应的切片厚度;通过控制电路控制光源的曝光时间。此时完成一次切片打印动作,依照加工文件内数据依次自下而上打印即可得到所述的三维模型。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (5)

1.一种基于Delta机械臂的光固化3D打印机切片方法,包括如下步骤:
步骤S1:计算三维模型的高度、提取三维模型的外轮廓,根据高度数据和外轮廓曲线形状得到切片层数及其对应的切片厚度;
即:
以三维模型空间坐标系的X轴为基准,XY平面内每隔45°进行剖切,得到三维模型的八条外轮廓曲线;
设定最大切片厚度Zmax和最小切片厚度Zmin
起始平面之上第一层的切片厚度为Z1:Z1为最小切片厚度Zmin
第一层之上第二层的切片厚度为Z2:一外轮廓曲线在Zmin高度点的切线与Z轴的夹角为θ,根据θ、Zmax及Zmin插值计算该外轮廓曲线第二层的切片厚度分量zn;根据切片厚度计算公式得到该层的切片厚度Z2
第二层之上第三层的切片厚度为Z3:一外轮廓曲线在Z1+Z2的高度点切线与Z轴的夹角为θ,根据θ、Zmax及Zmin插值计算该外轮廓曲线第三层的切片厚度分量zn;根据切片厚度计算公式得到该层的切片厚度Z3
同理,得到每一层的切片厚度;
插值计算公式为:zn=Zmin+(Zmax-Zmin)×|cosθn|(n=1,2,……,8);
切片厚度计算公式为:
Figure FDA0002952168770000011
步骤S2:根据切片层数、切片厚度得到每层的切片形状。
2.根据权利要求1所述的切片方法,其特征在于,步骤S2具体为:三维模型从起始平面开始,沿着空间坐标系的Z轴,顺序按照切片厚度Z1、Z2、Z3......Zn进行切片,得到每一层对应的切片形状。
3.一种基于Delta机械臂的光固化3D打印机打印方法,其特征在于,该打印方法包括如下步骤:
实施权利要求1或2所述的切片方法;
通过切片厚度和光敏树脂的参数得到对应的曝光时间T,计算每一层的曝光时间Ti
通过控制电路将光源调整为起始平面的切片形状;通过delta机械臂和Z轴电机移动Z1;通过控制电路控制光源的曝光时间T1,完成第一层切片的打印;
通过控制电路将光源调整为第二层的切片形状;通过delta机械臂和Z轴电机移动Z2;通过控制电路控制光源的曝光时间T2,完成第二层切片的打印;
顺序进行每一层打印,得到实体的所述三维模型。
4.一种打印机,其特征在于,使用权利要求3所述的打印方法。
5.根据权利要求4所述的打印机,其特征在于,包括delta机械臂、Z轴电机、光源、固化平台、料槽、控制电路;Z轴电机设置于delta机械臂。
CN201910898702.9A 2019-09-23 2019-09-23 基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机 Expired - Fee Related CN110667109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910898702.9A CN110667109B (zh) 2019-09-23 2019-09-23 基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910898702.9A CN110667109B (zh) 2019-09-23 2019-09-23 基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机

Publications (2)

Publication Number Publication Date
CN110667109A CN110667109A (zh) 2020-01-10
CN110667109B true CN110667109B (zh) 2021-08-27

Family

ID=69077221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910898702.9A Expired - Fee Related CN110667109B (zh) 2019-09-23 2019-09-23 基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机

Country Status (1)

Country Link
CN (1) CN110667109B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111300816B (zh) * 2020-03-20 2022-04-22 济宁学院 基于光固化3d打印的平滑打印方法
CN111745959B (zh) * 2020-07-06 2022-06-28 优你造科技(北京)有限公司 一种3d打印方法及3d打印设备
CN113619122B (zh) * 2021-08-25 2023-06-27 珠海赛纳三维科技有限公司 三维物体打印方法、装置、设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708824B (zh) * 2015-03-12 2017-03-01 中国科学院重庆绿色智能技术研究院 一种保留模型特征的3d打印自适应切片方法
US9764544B1 (en) * 2016-08-02 2017-09-19 Funai Electric Co., Ltd. Printer and printing method for three dimensional objects
CN106695767A (zh) * 2017-03-03 2017-05-24 合肥工业大学 基于Delta机构的并联装置及采用其的3D打印机
CN107263862A (zh) * 2017-07-03 2017-10-20 南京航空航天大学 一种制件强度可控的面成型光固化三维打印方法

Also Published As

Publication number Publication date
CN110667109A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110667109B (zh) 基于Delta机械臂的光固化3D打印机切片方法、打印方法及其打印机
US10898954B2 (en) Heat treatment to anneal residual stresses during additive manufacturing
JP4346021B2 (ja) V−cadデータを用いたラピッドプロトタイピング方法と装置
CN111037917B (zh) 一种基于模型拆分与拼接打印的fdm打印方法、系统及介质
CN105538723B (zh) 利用3d打印的制鞋方法
CN107914397B (zh) 一种3d物体的定区打印方法及装置
CN104933220B (zh) 复杂曲面汽车注塑模具高精密制造方法及注塑模具
US11733678B2 (en) Method for determining building instructions for an additive manufacturing method, method for generating a database with correction measures for controlling the process of an additive manufacturing method
CN105643864A (zh) 制鞋方法
US11654623B2 (en) Additive manufacturing system with layers of reinforcing mesh
CN107877851A (zh) 立体打印装置与立体打印方法
WO2017025956A1 (en) 3d printing using preformed reuseable support structure
CN105751495A (zh) 立体打印装置及其打印补偿方法
CN114918370B (zh) 一种适用于增减材制造自适应切片的砂型成型方法
JP6975779B2 (ja) 付加製造によって物体を製造する装置、及び装置の使用方法
CN109079136B (zh) 一种3d打印方法
Singh An overview of three dimensional printing for casting applications
McMains Rapid prototyping of solid three-dimensional parts
CN114770696A (zh) 陶瓷器件3d动态成型优化设计方法
CN109849332A (zh) 基于预制基座的增材制造方法
CN112276110B (zh) 一种鞋底成型模具的金属打印方法
US20190210153A1 (en) Apparatus for producing an object by means of additive manufacturing and method of using the apparatus
CN114918415A (zh) 一种3d打印制作金属多孔层的方法
EP3484691B1 (en) Apparatus for producing an object by means of additive manufacturing and method of using the apparatus
Pandey On the Rapid Prototyping Technologies and Applications in Product Design and Manufacturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210827