CN110661512A - 脉冲发生装置 - Google Patents

脉冲发生装置 Download PDF

Info

Publication number
CN110661512A
CN110661512A CN201910852847.5A CN201910852847A CN110661512A CN 110661512 A CN110661512 A CN 110661512A CN 201910852847 A CN201910852847 A CN 201910852847A CN 110661512 A CN110661512 A CN 110661512A
Authority
CN
China
Prior art keywords
pulse
energy storage
storage capacitor
voltage
electronic switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910852847.5A
Other languages
English (en)
Inventor
乔胜亚
朱晨
李光茂
杨森
王剑韬
邓剑平
刘建成
陈莎莎
敖昌民
黄柏
朱璐
杨婉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Guangzhou Power Supply Bureau Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Power Supply Bureau Co Ltd filed Critical Guangzhou Power Supply Bureau Co Ltd
Priority to CN201910852847.5A priority Critical patent/CN110661512A/zh
Publication of CN110661512A publication Critical patent/CN110661512A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

本发明涉及一种脉冲发生装置。包括:放电电路,包括第一脉冲产生电路和第二脉冲产生电路,第一脉冲产生电路用于产生第一脉冲,第二脉冲产生电路用于产生与第一脉冲存在时延的第二脉冲;陡化电路,与放电电路电连接,用于对第一脉冲和第二脉冲进行脉冲上升沿陡化处理,从而输出陡化电压。该脉冲发生装置通过第一脉冲产生电路和第二脉冲产生电路产生双脉冲,降低了触发拒动的概率,通过陡化电路对第一脉冲和第二脉冲进行脉冲上升沿陡化处理,提高了脉冲的触发能力和触发的可靠性。

Description

脉冲发生装置
技术领域
本发明涉及电力设备试验领域,特别是涉及一种脉冲发生装置。
背景技术
高电压大容量的冲击电压发生器在电力设备试验领域具有极其广泛的应用。当发生器的负载容量较大时,冲击电压发生器必须具有极其紧凑构和极低的回路电感,以保证发生器具有足够的驱动负载的能力。但是,当冲击电压发生器的结构非常紧凑时,不可避免地导致冲击电压发生器的主电容、主开关尺寸减小,形成较大的回路杂散电容,从而对触发提出很高的要求,传统的触发脉冲发生器触发能力不足,紧凑型大容量冲击电压发生器触发的可靠性较差。
发明内容
基于此,有必要针对传统的触发脉冲发生器触发能力不足,紧凑型发容量冲击电压发生器触发的可靠性较差的问题,提供一种新的脉冲发生装置。
一种脉冲发生装置,包括:
放电电路,包括第一脉冲产生电路和第二脉冲产生电路,第一脉冲产生电路用于产生第一脉冲,第二脉冲产生电路用于产生与第一脉冲存在时延的第二脉冲。
陡化电路,与放电电路电连接,用于对第一脉冲和第二脉冲进行脉冲上升沿陡化处理,从而输出陡化电压。
在其中一个实施例中,放电电路包括充电系统HVDC,充电电阻R1、充电电阻R2,储能电容C1、储能电容C2,第一电子开关、第二电子开关;充电系统HVDC连接至充电电阻R1、R2一端的连接端,充电电阻R1的另一端连接至储能电容C1的一端与第一电子开关的第一端,充电电阻R2的另一端连接至储能电容C2的一端与第二电子开关的第一端,储能电容C1的另一端和储能电容C2的另一端均接地。
充电系统HVDC用于通过充电电阻R1对储能电容C1充电、通过充电电阻R2对储能电容C2充电,储能电容C1和储能电容C2均被充电完成后,所述第一电子开关用于导通后产生第一脉冲,第二电子开关用于导通后产生第二脉冲,第二电子开关导通晚于第一电子开关从而使得第二脉冲与第一脉冲之间存在时延。
在其中一个实施例中,陡化电路包括脉冲变压器T、储能电容C3、脉冲陡化器S3,脉冲变压器T为三绕组结构,包括匝数相同且绕向相反的原边绕组Np1和原边绕组Np2,还包括副边绕组Ns,原边绕组NP1的一端连接至第一电子开关的第二端,原边绕组NP2的一端连接至第二电子开关的第二端,原边绕组NP1的另一端和原边绕组NP2的另一端均接地;副边绕组NS的一端连接至储能电容C3的一端与脉冲陡化器S3的一端,副边绕组NS的另一端和储能电容C3的另一端均接地;脉冲陡化器S3的另一端为输出端;第一电子开关或第二电子开关导通后所述脉冲变压器T产生脉冲电压对储能电容C3充电,同时脉冲陡化器S3用于对脉冲电压进行上升沿陡化处理,从而输出陡化电压。
在其中一个实施例中,脉冲发生装置还包括测量电路,测量电路与陡化电路电连接,用于测量陡化电压的电压值。
在其中一个实施例中,测量电路包括输出电缆C4,分压电阻R3、分压电阻R4,输出电缆C4的首端与陡化电路电连接,输出电缆C4的末端连接至分压电阻R3的一端与负载接入端Uout,分压电阻R3与分压电阻R4串联,分压电阻R4的另一端接地;输出电缆C4用于传输陡化电压,分压电阻R3、R4用于实现对陡化电压的测量。
在其中一个实施例中,输出电缆C4的波阻抗小于100欧姆,分压电阻R3大于等于1千欧且小于等于10千欧,分压电阻R3与分压电阻R4的比值大于输出电缆C4的波阻抗的值。
在其中一个实施例中,输出电缆C4为直流耐压150千伏特的同轴电缆,分压电阻R3为4千欧,分压电阻R4为0.5欧姆。
在其中一个实施例中,储能电容C1和储能电容C2均为微法级脉冲电容器。
在其中一个实施例中,储能电容C1、储能电容C2、储能电容C3与脉冲变压器T之间的关系为:
C1=C2=k2*C3
其中,脉冲变压器T的变比k等于副边绕组NS的匝数与原边绕组Np1的匝数的比值。
在其中一个实施例中,充电系统HVDC为直流、高压电压,高压电压的幅值小于等于10千伏。
在其中一个实施例中,充电系统HVDC电压为4千伏,充电电阻R1、充电电阻R2均为500千欧,储能电容C1、储能电容C2均为2微法,第一电子开关、第二电子开关均为7.5千伏特、1千安培的电控型晶闸管,脉冲变压器T1的原边绕组Np1和原边绕组NP2均为3匝,脉冲变压器T1的副边绕组Ns为90匝,储能电容C3为2.5纳法、耐压100千伏特的电容。
在其中一个实施例中,第一脉冲与第二脉冲之间的时延为10微秒。
在其中一个实施例中,第一电子开关和第二电子开关均为晶闸管。
在其中一个实施例中,第一电子开关和第二电子开关的导通均采用数字延时触发器DG535触发。
在其中一个实施例中,脉冲陡化器为陡化开关。
在其中一个实施例中,陡化开关为高气压短间隙开关或尖-板电极陡化开关或板-尖电极陡化开关。
在其中一个实施例中,陡化开关为0.5兆帕斯卡的六氟化硫气体尖-板陡化开关,间隙距离为2毫米。
上述脉冲发生装置包括放电电路和陡化电路,放电电路包括用于产生第一脉冲的第一脉冲产生电路和用于产生第二脉冲的第二脉冲产生电路,第二脉冲与第一脉冲存在时延。陡化电路与放电电路电连接,用于对第一脉冲和第二脉冲进行脉冲上升沿陡化处理,从而输出陡化电压。该脉冲发生装置通过第一脉冲产生电路和第二脉冲产生电路产生双脉冲,降低了触发拒动的概率,通过陡化电路对第一脉冲和第二脉冲进行脉冲上升沿陡化处理,提高了脉冲的触发能力和触发的可靠性。
附图说明
图1为一实施例中脉冲发生装置的电路图;
图2为一实施例中脉冲发生装置输出脉冲电压的波形图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“竖直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的属于“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,一种脉冲发生装置,包括:
放电电路102,包括第一脉冲产生电路和第二脉冲产生电路,第一脉冲产生电路用于产生第一脉冲,第二脉冲产生电路用于产生与第一脉冲存在时延的第二脉冲。
陡化电路104,与放电电路102电连接,用于对第一脉冲和第二脉冲进行脉冲上升沿陡化处理,从而输出陡化电压。
如图1,在一个实施例中,放电电路包括充电系统HVDC,充电电阻R1、充电电阻R2,储能电容C1、储能电容C2,第一电子开关S1、第二电子开关S2;充电系统HVDC连接至充电电阻R1、R2一端的连接端,充电电阻R1的另一端连接至储能电容C1的一端与第一电子开关S1的第一端,充电电阻R2的另一端连接至储能电容C2的一端与第二电子开关S2的第一端,储能电容C1的另一端和储能电容C2的另一端均接地。
充电系统HVDC通过充电电阻R1对储能电容C1充电、通过充电电阻R2对储能电容C2充电,储能电容C1和储能电容C2均被充电完成后,首先触发第一电子开关S1导通,第一脉冲产生电路产生第一脉冲,然后触发第二电子开关S2导通,第二脉冲产生电路产生第二脉冲,第二电子开关S2的导通晚于第一电子开关S1,从而使得第二脉冲与第一脉冲之间存在时延。
在一个实施例中,充电系统HVDC为直流、高压电压,高压电压的幅值小于等于10千伏,例如4千伏、5千伏、7千伏等。如图2为一实施例中,充电系统HVDC为5千伏时,脉冲发生装置输出的脉冲波形。在一个实施例中,充电系统HVDC的正极电连接充电电阻R1和充电电阻R2的连接端。
在一个实施例中,为增大脉冲能量,储能电容C1和储能电容C2均为微法级脉冲电容器。通过储能电容C1和储能电容C2提高了放电电路的容量。在其中一个实施例中,储能电容C1、储能电容C2均为2微法。在其它实施例中,可以根据对放电电路的容量的需要选取合适的储能电容,以确保储能电容具有足够的能量来保证触发脉冲具有足够的脉冲宽度,而不会显著受到紧凑型冲击电压发生装置杂散参数的影响。通过提高脉冲放电回路容量和波形陡化的方法,产生快前沿、长脉宽的触发脉冲,提高了脉冲电压的触发能力和触发的可靠性。
在一个实施例中,第一脉冲与第二脉冲之间的时延为10微秒。在其他实施例中,可以根据实际需要设置第一脉冲与第二脉冲之间的时延,例如15微秒、20微秒等。
在一个实施例中,第一电子开关和第二电子开关均为晶闸管,例如常用的晶闸管,7.5千伏特、1千安培的电控型晶闸管。
在一个实施例中,第一电子开关和第二电子开关的导通均采用数字延时触发器DG535触发。在其他实施例中,第一电子开关和第二电子开关的导通采用常规的触发电路触发。
在一个实施例中充电电阻R1、充电电阻R2均为500千欧。在其他实施例中,可以根据实际需要选取不同阻值的充电电阻。
如图1所示,在一个实施例中,陡化电路104包括脉冲变压器T、储能电容C3和脉冲陡化器S3。其中,脉冲变压器T为三绕组结构,包括匝数相同且绕向相反的原边绕组Np1和原边绕组Np2,还包括副边绕组Ns,原边绕组NP1的一端连接至第一电子开关S1的第二端,原边绕组NP2的一端连接至第二电子开关S2的第二端,原边绕组NP1的另一端和原边绕组NP2的另一端均接地;副边绕组NS的一端连接至储能电容C3的一端与脉冲陡化器S3的一端,副边绕组NS的另一端和储能电容C3的另一端均接地;脉冲陡化器S3的另一端为输出端;第一电子开关S1或第二电子开关S2导通后所述脉冲变压器T产生脉冲电压对储能电容C3充电,同时脉冲陡化器S3用于对脉冲电压进行上升沿陡化处理,从而输出陡化电压。
如图1所示,当放电电路102中的第一电子开关S1导通后,脉冲变压器T的副边绕组NS首先产生一个脉冲高压对储能电容C3充电,同时脉冲陡化器S3在储能电容C3两端电压的作用下过压击穿,将上升陡化处理过的脉冲高压施加到负载端。经过时延后第二电子开关S2导通,脉冲变压器T的副边绕组NS再次产生一个脉冲高压对储能电容C3充电,同时脉冲陡化器S3在储能电容C3两端电压的作用下再次过压击穿,将上升陡化处理过的第二个脉冲高压施加到负载端。通过双路脉冲放电电路向脉冲变压器原边放电产生双脉冲,降低了触发拒动的概率。
在一个实施例中,储能电容C1、储能电容C2、储能电容C3与脉冲变压器T之间的关系为:C1=C2=k2*C3,最大限度的保证了脉冲发生装置的输出效率,其中,脉冲变压器T的变比k等于副边绕组NS的匝数与原边绕组Np1的匝数的比值。
在一个实施例中,脉冲变压器T1的原边绕组Np1和原边绕组NP2均为3匝,脉冲变压器T1的副边绕组Ns为90匝,此时,脉冲变压器T的变比k为30。
在一个实施例中,储能电容C3为2.5纳法、耐压100千伏特的电容。
在一个实施例中,脉冲陡化器S3为陡化开关。
在一个实施例中,为了减小陡化开关的击穿延时,增加输出脉冲的陡度,选取高气压短间隙开关,例如选取以具有高绝缘强度的六氟化硫气体作为绝缘气体的高气压短间隙开关。在一个实施例中,可以选取间隙距离小的陡化开关,从而缩短陡化开关的导通延时。
在一个实施例中,为了减小陡化开关的击穿延时,增加输出脉冲的陡度,选取尖-板电极陡化开关或板-尖电极陡化开关。尖-板电极陡化开关或板-尖电极陡化开关的电场分布为极不均匀电场,从而保证间隙中存在高电场强度的区域,进一步加快间隙击穿速度,缩短陡化开关的击穿时延。
在一个实施例中,为了进一步减小陡化开关的击穿时延,根据脉冲发生装置的输出极性来选用尖-板电极陡化开关或板-尖电极陡化开关。当脉冲发生装置为正极性输出时,选用尖-板电极陡化开关;反之,当脉冲发生装置为负极性输出时,选用板-尖电极陡化开关。
在一个实施例中,陡化开关为0.5兆帕斯卡的六氟化硫气体尖-板陡化开关,间隙距离为2毫米。
如图1所示,在一个实施例中,脉冲发生装置还包括测量电路106,测量电路106与陡化电路104电连接,用于测量陡化电压的电压值。
如图1所示,在一个实施例中,测量电路106包括输出电缆C4,分压电阻R3、分压电阻R4,输出电缆C4的首端与陡化电路电连接,输出电缆C4的末端连接至分压电阻R3的一端与负载接入端Uout,分压电阻R3与分压电阻R4串联,分压电阻R4的另一端接地;输出电缆C4用于传输陡化电压,分压电阻R3、R4用于实现对陡化电压的测量。
如图1所示,充电系统HVDC通过充电电阻R1和R2向储能电容C1和C2分别充电,充电完成后,以一定时延分别触发第一电子开关S1和第二电子开关S2的导通,从而在脉冲变压器原边产生具有一定时延的励磁,继而在脉冲变压器副边产生脉冲高压。脉冲高电压会对储能电容C3进行快速充电,并导致脉冲陡化器S3快速过压导通,从而对高压同轴电缆C4首端注入陡前沿脉冲,陡前沿脉冲沿高压同轴电缆传输至末端负载,同时可通过分压电阻R3和分压电阻R4进行脉冲电压测量。
在一个实施例中,输出电缆C4的波阻抗小于100欧姆的同轴高压电缆,分压电阻R3大于等于1千欧姆且小于等于10千欧姆,分压电阻R3与分压电阻R4的比值大于输出电缆C4的波阻抗的值。分压电阻R3和分压电阻R4做为电阻分压器使用,以分压电阻R3为主,分压电阻R4的阻值远小于分压电阻R3的阻值。通过测量分压电阻R4两端的电压,可以得出分压电阻R3、R4串联电路两端的电压值即是输出到负载接入端Uout的脉冲电压。
在其他实施例中,输出电缆C4的波阻抗小于100欧姆的同轴高压电缆,分压电阻R4大于等于1千欧姆且小于等于10千欧姆,分压电阻R4与分压电阻R3的比值大于输出电缆C4的波阻抗的值。分压电阻R3和分压电阻R4做为电阻分压器使用,以分压电阻R4主,分压电阻R3阻值远小于分压电阻R4的阻值。通过测量分压电阻R3端的电压,可以得出分压电阻R3、R4串联电路两端的电压值即是输出到负载接入端Uout的脉冲电压。
在一个实施例中,分压电阻R3远大于同轴高压电缆的波阻抗,陡化电压可以在同轴电缆末端形成全反射,从而使得脉冲幅值加倍,提高了输出脉冲电压的触发能力。
在一个实施例中,分压电阻R4远大于同轴高压电缆的波阻抗,陡化电压可以在同轴电缆末端形成全反射,从而使得脉冲幅值加倍,提高了输出脉冲电压的触发能力。
在一个实施例中,输出电缆C4为直流耐压150千伏特的同轴电缆,分压电阻R3为4千欧姆,分压电阻R4为0.5欧姆。
上述脉冲发生装置包括放电电路和陡化电路,放电电路包括用于产生第一脉冲的第一脉冲产生电路和用于产生第二脉冲的第二脉冲产生电路,第二脉冲与第一脉冲存在时延。陡化电路与放电电路电连接,用于对第一脉冲和第二脉冲进行脉冲上升沿陡化处理,从而输出陡化电压。该脉冲发生装置通过第一脉冲产生电路和第二脉冲产生电路产生双脉冲,降低了触发拒动的概率,通过陡化电路对第一脉冲和第二脉冲进行脉冲上升沿陡化处理,提高了脉冲的触发能力和触发的可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种脉冲发生装置,其特征在于,包括:
放电电路,包括第一脉冲产生电路和第二脉冲产生电路,所述第一脉冲产生电路用于产生第一脉冲,所述第二脉冲产生电路用于产生与所述第一脉冲存在时延的第二脉冲;
陡化电路,与所述放电电路电连接,用于对所述第一脉冲和第二脉冲进行脉冲上升沿陡化处理,从而输出陡化电压。
2.根据权利要求1所述的脉冲发生装置,其特征在于,
所述放电电路包括充电系统HVDC,充电电阻R1、充电电阻R2,储能电容C1、储能电容C2,第一电子开关、第二电子开关,所述充电系统HVDC连接至所述充电电阻R1、R2一端的连接端,所述充电电阻R1的另一端连接至所述储能电容C1的一端与所述第一电子开关的第一端,所述充电电阻R2的另一端连接至所述储能电容C2的一端与所述第二电子开关的第一端,所述储能电容C1的另一端和所述储能电容C2的另一端均接地;
所述充电系统HVDC用于通过所述充电电阻R1对所述储能电容C1充电、通过所述充电电阻R2对所述储能电容C2充电,所述储能电容C1和所述储能电容C2均被充电完成后,所述第一电子开关用于导通后产生所述第一脉冲,所述第二电子开关用于导通后产生所述第二脉冲,所述第二电子开关导通晚于所述第一电子开关从而使得所述第二脉冲与所述第一脉冲之间存在时延。
3.根据权利要求2所述的脉冲发生装置,其特征在于,
所述陡化电路包括脉冲变压器T、储能电容C3、脉冲陡化器S3,所述脉冲变压器T为三绕组结构,包括匝数相同且绕向相反的原边绕组Np1和原边绕组Np2,还包括副边绕组Ns,所述原边绕组NP1的一端连接至所述第一电子开关的第二端,所述原边绕组NP2的一端连接至所述第二电子开关的第二端,所述原边绕组NP1的另一端和所述原边绕组NP2的另一端均接地;所述副边绕组NS的一端连接至所述储能电容C3的一端与所述脉冲陡化器S3的一端,所述副边绕组NS的另一端和所述储能电容C3的另一端均接地;所述脉冲陡化器S3的另一端为输出端;所述第一电子开关或所述第二电子开关导通后所述脉冲变压器T产生脉冲电压对所述储能电容C3充电,同时所述脉冲陡化器S3用于对所述脉冲电压进行上升沿陡化处理,从而输出陡化电压。
4.根据权利要求1所述的脉冲发生装置,其特征在于,所述脉冲发生装置还包括测量电路,所述测量电路与所述陡化电路电连接,用于测量所述陡化电压的电压值。
5.根据权利要求4所述的脉冲发生装置,其特征在于,所述测量电路包括输出电缆C4,分压电阻R3、分压电阻R4,所述输出电缆C4的首端与所述陡化电路电连接,所述输出电缆C4的末端连接至所述分压电阻R3的一端与负载接入端Uout,所述分压电阻R3与所述分压电阻R4串联,所述分压电阻R4的另一端接地;所述输出电缆C4用于传输所述陡化电压,所述分压电阻R3、R4用于实现对所述陡化电压的测量。
6.根据权利要求5所述的脉冲发生装置,其特征在于,所述输出电缆C4的波阻抗小于100欧姆,所述分压电阻R3大于等于1千欧且小于等于10千欧,所述分压电阻R3与所述分压电阻R4的比值大于所述输出电缆C4的波阻抗的值。
7.根据权利要求2所述的脉冲发生装置,其特征在于,所述储能电容C1和所述储能电容C2均为微法级脉冲电容器,所述充电系统HVDC为直流、高压电压,所述高压电压的幅值小于等于10千伏;所述第一电子开关和所述第二电子开关均为晶闸管。
8.根据权利要求3所述的脉冲发生装置,其特征在于,所述储能电容C1、所述储能电容C2、所述储能电容C3与所述脉冲变压器T之间的关系为:
C1=C2=k2*C3
其中,所述脉冲变压器T的变比k等于所述副边绕组NS的匝数与所述原边绕组Np1的匝数的比值。
9.根据权利要求3所述的脉冲发生装置,其特征在于,所述充电系统HVDC电压为4千伏,所述充电电阻R1、所述充电电阻R2均为500千欧,所述储能电容C1、所述储能电容C2均为2微法,所述第一电子开关、所述第二电子开关均为7.5千伏特、1千安培的电控型晶闸管,所述脉冲变压器T1的原边绕组Np1和原边绕组NP2均为3匝,所述脉冲变压器T1的副边绕组Ns为90匝,所述储能电容C3为2.5纳法、耐压100千伏特的电容;所述脉冲陡化器为0.5兆帕斯卡的六氟化硫气体尖-板陡化开关,间隙距离为2毫米;所述第一脉冲与所述第二脉冲之间的时延为10微秒;所述第一电子开关和所述第二电子开关的导通均采用数字延时触发器DG535触发。
10.根据权利要求3所述的脉冲发生装置,其特征在于,所述脉冲陡化器为高气压短间隙开关或尖-板电极陡化开关或板-尖电极陡化开关。
CN201910852847.5A 2019-09-10 2019-09-10 脉冲发生装置 Pending CN110661512A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910852847.5A CN110661512A (zh) 2019-09-10 2019-09-10 脉冲发生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910852847.5A CN110661512A (zh) 2019-09-10 2019-09-10 脉冲发生装置

Publications (1)

Publication Number Publication Date
CN110661512A true CN110661512A (zh) 2020-01-07

Family

ID=69037123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910852847.5A Pending CN110661512A (zh) 2019-09-10 2019-09-10 脉冲发生装置

Country Status (1)

Country Link
CN (1) CN110661512A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900955A (zh) * 2020-07-09 2020-11-06 西安交通大学 一种多路高压脉冲同步触发系统及方法
CN113964937A (zh) * 2021-09-22 2022-01-21 中国船舶工业系统工程研究院 一种紧凑型独立供电远程控制触发器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900955A (zh) * 2020-07-09 2020-11-06 西安交通大学 一种多路高压脉冲同步触发系统及方法
CN113964937A (zh) * 2021-09-22 2022-01-21 中国船舶工业系统工程研究院 一种紧凑型独立供电远程控制触发器
CN113964937B (zh) * 2021-09-22 2023-12-05 中国船舶工业系统工程研究院 一种紧凑型独立供电远程控制触发器

Similar Documents

Publication Publication Date Title
CN203519681U (zh) 一种用于干式空心电抗器匝间绝缘检验的脉冲振荡试验装置
CN103888015B (zh) 用于时效处理的高密度高能电脉冲发生装置
CN110661512A (zh) 脉冲发生装置
US4868505A (en) High voltage impulse wave generator for testing equipment
Yan et al. Miniature solid-state switched spiral generator for the cost effective, programmable triggering of large scale pulsed power accelerators
CN116500430A (zh) 高压直流断路器分断支路小电流开断试验回路及方法
CN210518240U (zh) 脉冲发生装置
CN210465506U (zh) 一种高压脉冲信号发生器及其电路
KR20120044689A (ko) 뇌격 전류 발생기
CN206193140U (zh) 空心电抗器匝间短路试验电路
Lee et al. Evaluation of a RVU-43 switch as the closing switch for a modular 300 kJ pulse power supply for ETC application
RU2382488C1 (ru) Устройство для формирования субнаносекундных импульсов
CN114545221A (zh) 一种气体开关绝缘恢复特性测试实验装置
Jiang et al. Design of low inductance, long life capacitor for linear transformer drivers
Li et al. Nonlinear frequency characteristic of multiple series gaps with voltage-dividing network and its application in HVDC circuit breaker
CN111900955B (zh) 一种多路高压脉冲同步触发系统及方法
Wang et al. Design and Ccomparison of Three Schemes of High Voltage Nanosecond Trigger
US3735195A (en) Spark-discharge apparatus for electrohydraulic crushing
Mota et al. Generation of dc high voltage pulse for hipot testing using pfn based marx generator
Cook et al. Off-resonance transformer charging for 250-kV water Blumlein
US20200182922A1 (en) Impulse Voltage Tester
Liang et al. Study on partial discharge characteristics of corona discharge in transformer oil under oscillating switching impulse voltage
CN218727832U (zh) 基于相位同步的交流叠加冲击电压发生装置
RU2766434C1 (ru) Способ формирования импульса тока в индуктивной нагрузке
Sack et al. A bipolar Marx generator for a mobile electroporation device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200923

Address after: 510620 Tianhe District, Guangzhou, Tianhe South Road, No. two, No. 2, No.

Applicant after: Guangzhou Power Supply Bureau of Guangdong Power Grid Co.,Ltd.

Address before: 510620 Tianhe District, Guangzhou, Tianhe South Road, No. two, No. 2, No.

Applicant before: GUANGZHOU POWER SUPPLY Co.,Ltd.