CN110647887A - Extraction method of internal markers for coal slime flotation foam image segmentation - Google Patents
Extraction method of internal markers for coal slime flotation foam image segmentation Download PDFInfo
- Publication number
- CN110647887A CN110647887A CN201910667822.8A CN201910667822A CN110647887A CN 110647887 A CN110647887 A CN 110647887A CN 201910667822 A CN201910667822 A CN 201910667822A CN 110647887 A CN110647887 A CN 110647887A
- Authority
- CN
- China
- Prior art keywords
- image
- coal slime
- algorithm
- image segmentation
- internal markers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005188 flotation Methods 0.000 title claims abstract description 39
- 239000006260 foam Substances 0.000 title claims abstract description 26
- 239000003245 coal Substances 0.000 title claims abstract description 24
- 238000003709 image segmentation Methods 0.000 title claims abstract description 21
- 238000000605 extraction Methods 0.000 title claims abstract description 10
- 230000011218 segmentation Effects 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims description 38
- 238000005457 optimization Methods 0.000 claims description 10
- 230000000877 morphologic effect Effects 0.000 claims description 7
- 230000003628 erosive effect Effects 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 claims 1
- 239000003550 marker Substances 0.000 abstract description 9
- 230000000295 complement effect Effects 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/148—Segmentation of character regions
- G06V30/153—Segmentation of character regions using recognition of characters or words
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
一种用于煤泥浮选泡沫图像分割中内部标记符的提取方法是针对煤泥浮选泡沫图像噪声较大、对比度低、气泡难以分割等特点,将粒子群优化算法与一维直方图加权的模糊C均值聚类算法两种算法进行融合,将两种算法获取的内部标记符进行叠加,作为图像分割的内部标记符,用于提取常规标记点,并捕捉气泡较暗的亮点并去除伪亮点,该方法获得的内部标记符克服了经其中一种算法获取到的内部标识点的不足,相互补充,防止遗漏,使内部标识点比较准确、真实,使得分水岭图像分割更为准确,更适用于各种选煤厂的煤泥浮选泡沫图像的分水岭图像分割中内部标记符的提取。
A method for extracting internal markers in coal slime flotation foam image segmentation is based on the characteristics of large noise, low contrast, and difficult bubble segmentation in coal slime flotation foam images. The fuzzy C-means clustering algorithm based on the fuzzy C-means clustering algorithm is combined with the two algorithms, and the internal markers obtained by the two algorithms are superimposed as the internal markers of image segmentation, which are used to extract regular marker points, capture the bright spots with darker bubbles and remove false ones. The bright spot is that the internal markers obtained by this method overcome the shortcomings of the internal identification points obtained by one of the algorithms, complement each other, prevent omission, make the internal identification points more accurate and true, and make the watershed image segmentation more accurate and applicable. Extraction of internal markers in watershed image segmentation of slime flotation foam images in various coal preparation plants.
Description
技术领域technical field
本发明涉及一种煤泥浮选泡沫图像分割的内部标记,具体是一种煤泥浮选泡沫图像形态学分水岭分割中内部标记符的提取方法,属于数字图像处理及煤泥浮选领域。The invention relates to an internal marker for coal slime flotation foam image segmentation, in particular to a method for extracting internal markers in coal slime flotation foam image morphological watershed segmentation, belonging to the field of digital image processing and coal slime flotation.
背景技术Background technique
煤泥浮选泡沫图像是在实际的浮选生产过程中使用工业CCD相机及配套装置实时采集而获得的图像,不同于有色金属及矿物浮选泡沫,煤泥浮选泡沫图像存在其自身的特殊性,其颜色、亮度信息不明显,同时浮选现场的粉尘较多,条件恶劣,因此所获取的浮选泡沫图像的对比度较差,气泡间互相粘连、边缘模糊,这样很难将气泡其从背景中分离,使得气泡边缘难以提取,因此要在煤泥浮选泡沫图像分割中提取有效的图像内部标记符与外部分割线,对梯度图像进行标定,在此基础上对标定后的图像进行分割。The coal slime flotation foam image is an image acquired in real time using industrial CCD cameras and supporting devices in the actual flotation production process. Different from the non-ferrous metal and mineral flotation foam, the coal slime flotation foam image has its own special features. The color and brightness information is not obvious. At the same time, there is a lot of dust in the flotation site and the conditions are bad, so the contrast of the obtained flotation foam image is poor, the bubbles are sticking to each other and the edges are blurred, so it is difficult to separate the bubbles from the bubbles. Separation from the background makes it difficult to extract the bubble edge. Therefore, it is necessary to extract effective image internal markers and external segmentation lines in the coal slime flotation foam image segmentation, and calibrate the gradient image. On this basis, the calibrated image is segmented. .
由于分水岭图像分割的外部分割线是对通过内部标记符进行变换后的标记图像,提取其分水岭脊线后得到的,因此内部标记符是外部分割线的基础;其次内部标记符与外部分割线又是梯度图像进行形态学极小值标定的依据,由二者共同决定着最后分水岭分割的准确性,因此内部标记符提取是分水岭图像分割的关键所在,若内部标识符提取不足,则可能丢失掉应有的标记点,使得分割区域减少,导致分水岭分割的欠分割;相反若提取过多,会增加许多不必要的伪标记点,使标记点过多,从而导致分水岭分割中的过分割,只有提取到正确的内部标记符,才能对图像进行准确分割,从而获取浮选泡沫图像气泡尺寸特征,获得对于浮选工况把握,实现对产品灰分做出准确预测。Since the outer segmentation line of watershed image segmentation is obtained by extracting the watershed ridge line of the marked image transformed by the inner marker, the inner marker is the basis of the outer segmentation line; secondly, the inner marker and the outer segmentation line are also It is the basis for the morphological minimum calibration of the gradient image. The two together determine the accuracy of the final watershed segmentation. Therefore, the extraction of internal markers is the key to the segmentation of watershed images. If the internal identifier extraction is insufficient, it may be lost. There should be marked points, so that the segmentation area is reduced, resulting in under-segmentation of watershed segmentation; on the contrary, if there are too many extractions, many unnecessary pseudo-marked points will be added, resulting in too many marked points, resulting in over-segmentation in watershed segmentation, only Only by extracting the correct internal markers can the image be accurately segmented, so as to obtain the bubble size characteristics of the flotation foam image, obtain a grasp of the flotation working conditions, and achieve accurate prediction of the ash content of the product.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是:如何在对浮选泡沫图像进行分水岭图像分割时,更好地提取到浮选泡沫图像分割时使用的内部标记符,并提供一种用于煤泥浮选泡沫图像分割中内部标记符的提取方法。The technical problem to be solved by the present invention is: how to better extract the internal markers used in the segmentation of the flotation froth image when performing the watershed image segmentation on the flotation froth image, and provide a method for flotation froth for coal slime Extraction methods for internal markers in image segmentation.
为实现上述目的,本发明所采用的技术方案是:用于煤泥浮选泡沫图像分割中内部标记符的提取方法,对从选煤厂浮选现场获取的煤泥浮选泡沫图像,在煤泥浮选泡沫图像分割中提出了一种基于粒子群优化算法与一维直方图加权的模糊C均值聚类算法融合的内部标记符提取的优化算法。In order to achieve the above object, the technical solution adopted in the present invention is: an extraction method for internal markers in the segmentation of coal slime flotation foam images, for the coal slime flotation foam images obtained from the coal preparation plant flotation site, An optimization algorithm for internal marker extraction based on the fusion of particle swarm optimization algorithm and one-dimensional histogram-weighted fuzzy C-means clustering algorithm is proposed in the segmentation of mud flotation foam images.
内部标记符包括是由粒子群优化算法获取的标识点与一维直方图加权的模糊C均值聚类算法所获取的标识点,将两种标识点进行形态学处理后并叠加作为最终的图像分割的内部标记符。运用粒子群优化算法,将二维阈值作为粒子群算法中的粒子的位置,以二维最大熵的局部熵作为粒子群算法的适应度函数,根据粒子群粒子的速度和位置公式,对粒子的速度与位置不断进行调整,找到截至这一代每个粒子经过的最好位置与当前的全局最好位置,经过若干代的迭代运算,使粒子的位置不断更新,当达到设定的终止条件时,最终寻找出使二维局部熵获得最大的二维阈值,使其作为二维阈值向量,对图像进行双阈值二值化分割,提取二值图像最大值区域,通过形态学的腐蚀运算,将其结果作为标识点。The internal markers include the identification points obtained by the particle swarm optimization algorithm and the identification points obtained by the one-dimensional histogram-weighted fuzzy C-means clustering algorithm. The two identification points are morphologically processed and superimposed as the final image segmentation. internal marker of . Using the particle swarm optimization algorithm, the two-dimensional threshold is used as the position of the particle in the particle swarm algorithm, and the local entropy of the two-dimensional maximum entropy is used as the fitness function of the particle swarm algorithm. Speed and position are constantly adjusted to find the best position each particle has passed by up to this generation with the current global best position , after several generations of iterative operations, the position of the particle is continuously updated. When the set termination condition is reached, the two-dimensional threshold value that maximizes the two-dimensional local entropy is finally found, which is used as a two-dimensional threshold vector. Double-threshold binarization segmentation, extracts the maximum value area of the binary image, and uses the result as the identification point through the morphological erosion operation.
采用一维直方图加权模糊C均值聚类算法对浮选泡沫图像进行聚类,样本 ,为灰阶,这里,共256个样本,取初始的聚类中心为其中 为图像的灰度值,为图像灰度的最小值,为图像灰度的中值,为图像灰度的最大值,,取一个0-1的随机数,计算隶属度矩阵与聚类中心,同时根据聚类目标函数式计算目标函数,经过不断迭代更新,当满足,迭代终止,输出模糊划分矩阵和聚类中心,对煤泥浮选泡沫灰度图像通过一维直方图加权的模糊C均值聚类算法对图像进行聚类运算,对聚类后的图像采用局部极大值的方法对聚类后图像提取局部极大值区域,并经过形态学的腐蚀运算,提取标识点;将两种标识点进行叠加运算,作为最终的分水岭图像分割的内部标记符。One-dimensional histogram weighted fuzzy C-means clustering algorithm is used to cluster the flotation foam images. , for grayscale, here , a total of 256 samples, take the initial cluster center as in is the gray value of the image, is the minimum value of the image gray level, is the median value of the image gray level, is the maximum value of the image gray level, , Take a random number from 0-1 to calculate the membership matrix with cluster centers , and calculate the objective function according to the clustering objective function formula , after continuous iterative update, when the , iterative termination, output fuzzy partition matrix and cluster centers , the coal slime flotation foam grayscale image is clustered by the one-dimensional histogram weighted fuzzy C-means clustering algorithm, and the local maximum value method is used for the clustered image to extract the local value of the clustered image. The maximum value area is extracted, and the identification points are extracted through morphological erosion operation; the two identification points are superimposed and used as the internal markers of the final watershed image segmentation.
本发明在采用了上述方案后,其最大优点在于而粒子群算法对于阈值优化的过程中只需通过内部速度进行更新,没有繁杂的交叉与变异环节,使得在二维阈值选取的过程更加简单、高效,融合一维直方图加权模糊C均值聚类算法对浮选图像进行聚类,使气泡上一些较暗的亮点完全从气泡本身中凸显出来,而一些由于发射作用而出现的伪亮点经聚类后去除,通过粒子群算法与一维直方图加权模糊C均值聚类算法两种算法所获得的内部标记符互为补充,防止遗漏,使得分水岭图像分割更为准确、合理,从而使得最后整个分水岭分割的结果更加准确,能产生较好的图像分割效果,同时摒弃了基于扩展最大变换算法中通过控制最大值最小值深度参数H进行调节获得的内部标记点的通用算法,克服了由于H选定的盲目性所造成内部标记符失真,而导致图像分割中产生的过度分割或欠分割。After adopting the above scheme, the biggest advantage of the present invention is that the particle swarm algorithm only needs to update the internal speed in the process of threshold optimization, and there is no complicated crossover and mutation link, which makes the process of selecting the two-dimensional threshold simpler and more efficient. Efficiently, the flotation images are clustered with a one-dimensional histogram-weighted fuzzy C-means clustering algorithm, so that some darker bright spots on the bubbles are completely highlighted from the bubbles themselves, while some false bright spots appearing due to emission are clustered. Post-class removal, the internal markers obtained by the particle swarm algorithm and the one-dimensional histogram weighted fuzzy C-means clustering algorithm complement each other to prevent omission, making the watershed image segmentation more accurate and reasonable, so that the final whole The result of watershed segmentation is more accurate, and it can produce better image segmentation effect. At the same time, the general algorithm based on the internal marker points obtained by adjusting the maximum and minimum depth parameters H in the extended maximum transformation algorithm is abandoned, which overcomes the limitation of H selection. The internal markers are distorted due to certain blindness, which leads to over-segmentation or under-segmentation in image segmentation.
附图说明Description of drawings
图1为煤泥浮选泡沫图像二维直方图。Figure 1 is a two-dimensional histogram of the coal slime flotation foam image.
具体实施方式Detailed ways
下面对本发明的具体实施方式作出进一步的详细说明。The specific embodiments of the present invention will be further described in detail below.
如附图1所述,实施本发明上述所提供的一种用于煤泥浮选泡沫图像分割中内部标记符的提取方法,运用粒子群优化算法,以二维最大熵的局部熵作为适应度函数,获得图像二值化分割的二维阈值,从而提取图像经双阈值二值化后图像的最大值区域,获取标识点。As shown in FIG. 1, a method for extracting internal markers in coal slime flotation froth image segmentation provided by the present invention is implemented, particle swarm optimization algorithm is used, and the local entropy of two-dimensional maximum entropy is used as fitness function to obtain the two-dimensional threshold of image binarization segmentation, so as to extract the maximum value area of the image after the image is binarized by double thresholds, and obtain the identification point.
1、随机形成个粒子,选取 ;其位置分别为,粒子的位置,维数为,由于是对图像二值化阈值的优化,即寻找使二维局部熵获得最大的二维阈值;此时粒子的位置即为二维阈值,因此选取;区间为,其中为灰度图像的灰阶,;粒子的速度,相应地粒子速度矢量为,维数也为,即,区间为,这里取最大速度,即速度范围为。1. Randomly formed particles, choose ; its locations are , the position of the particle , the dimension is , because it is the optimization of the image binarization threshold, that is, to find the two-dimensional threshold that maximizes the two-dimensional local entropy ; At this time, the position of the particle is the two-dimensional threshold, so select ; the interval is ,in is the grayscale of the grayscale image, ; The speed of the particle, correspondingly the particle speed vector is , and the dimension is also , that is, the interval is .
2、选取一幅通过工业CCD 相机在煤泥浮选生产现场所获取的泡沫图像,其像素尺寸为256×256,对于每个粒子,其位置的二维取值分别代入对应二维阈值中的与,应用粒子群算法,对于每个粒子的适应度的值进行计算,即2. Select a foam image obtained by an industrial CCD camera at the coal slime flotation production site, and its pixel size is 256 × 256. For each particle, the two-dimensional value of its position is substituted into the corresponding two-dimensional threshold. And, apply the particle swarm algorithm to calculate the fitness value of each particle, that is
(1) (1)
其中表示抗体群中的第个粒子的适应度,为二维局部熵where represents the fitness of the first particle in the antibody population, and is the two-dimensional local entropy
其中,in ,
, ,
, ,
, ,
为联合频度: is the joint frequency:
附图1为二维直方图示意图,横坐标 为像素点处的灰度值,纵坐标为像素点右邻域点处的灰度值,向量为图像分割的二维阈值,通过这两个阈值,二维直方图矩阵被分割成四个区,分别设为A,B,C 和D四个区域。
表示同时满足当前点灰度为,其右邻域点的灰度为的所有满足条件的总的灰度对,,为图像的行数,图像的列数,由于浮选泡沫图像的像素尺寸为256×256,这里。 Indicates that the current point grayscale is satisfied at the same time , the grayscale of its right neighbor point is The total grayscale pairs of all satisfying conditions, , is the number of lines in the image, The number of columns of the image, since the pixel size of the flotation foam image is 256×256, here .
3、对每个微粒,根据其适应度值,确定每个粒子的最好位置和当前的全局最好位置;每个粒子的初始值为粒子的初始位置值,初始值为所有粒子的最大值。3. For each particle, determine the best position of each particle according to its fitness value and the current global best position ; each particle The initial value of is the initial position value of the particle, The initial value is all particles the maximum value of .
4、根据(2)、(3)式调整微粒速度和位置;4. Adjust the particle speed and position according to formulas (2) and (3);
(2) (2)
(3) (3)
其中, ,是该群体中粒子的总数, 是粒子的速度; 是每个粒子当前自己的最好位置;是群体中所有粒子所经历最好位置; 是0到1之间的随机数,称为惯性因子,运用线性递减权值策略,即in, , is the total number of particles in the population, is the velocity of the particle; is the current best position of each particle; is the best position experienced by all particles in the group; is a random number between 0 and 1, is called the inertia factor, and a linear decreasing weight strategy is used, that is,
(4) (4)
其中和是的最大最小值,取,; 和分别是当前迭代次数和最大迭代次数,其中,取,是第个粒子的当前位置,和是学习因子,选取。in and Yes The maximum and minimum value of , take , ; and are the current number of iterations and the maximum number of iterations, respectively, where ,Pick , is the first the current position of each particle, and is the learning factor, choose .
5、重新计算每个微粒的新的适应度,并对其进行更新。5. Recalculate the new fitness of each particle and update it.
6、对每个微粒,与其经过的最好位置的适应度作比较,若其适应度优于,则将其作为当前的最好位置;求取最好的,即为最新的,使其更新全局最好位置。6. For each particle, the best position it passes through The fitness of , if its fitness is better than , take it as the current best position ; seek the best , which is the latest , so that it updates the global best position .
7、令,检查是否达到结束条件,结束条件为达到 或群体的连续两代的的差小于等于;未达到结束条件,则转4;若满足结束条件,即为最优解, 其中为最大的迭代数,选取, 。7. Order , check whether the end condition is reached, the end condition is achieve or two consecutive generations of the group difference is less than or equal to ; If the end condition is not met, go to 4; if the end condition is met, is the optimal solution, where For the maximum number of iterations, choose , .
8、获取的为二维阈值向量,对图像进行双阈值二值化分割,提取二值图像最大值区域,通过形态学的腐蚀运算,将其结果作为标识点。8. Obtained is a two-dimensional threshold vector , perform double-threshold binarization segmentation on the image, extract the maximum value area of the binary image, and use the result as the identification point through the morphological erosion operation.
采用一维直方图加权模糊C均值聚类算法对浮选泡沫图像进行聚类,提取聚类图像的极大值区域,获取标识点。The one-dimensional histogram weighted fuzzy C-means clustering algorithm is used to cluster the flotation foam images, and the maximum value area of the clustered image is extracted to obtain the identification points.
9、确定一维直方图加权的模糊C均值聚类算法聚类的种类数,由于泡沫图像按灰度大体分为三类,即气泡顶点、气泡表面、背景的灰度,因此取聚类种类。9. Determine the number of types of clusters by the one-dimensional histogram-weighted fuzzy C-means clustering algorithm , because the foam image is roughly divided into three categories according to the grayscale, namely the grayscale of the bubble vertex, the bubble surface, and the background, so the clustering type is selected. .
10、确定聚类中心的初始值,聚类中心, 为聚类个数。取,初始的聚类中心为,其中 为图像的灰度值,为图像灰度的最小值,为图像灰度的中值,为图像灰度的最大值,,取一个0-1的随机数。10. Determine the initial value of the cluster center , the cluster center , is the number of clusters. Pick , the initial cluster center is ,in is the gray value of the image, is the minimum value of the image gray level, is the median value of the image gray level, is the maximum value of the image gray level, , Take a random number from 0-1.
11、根据式(5)计算隶属度矩阵;11. Calculate the membership matrix according to formula (5) ;
(5) (5)
为待聚类分析的全体样本,其中每个对象为,为自然数。对于浮选泡沫图像为8bits的灰度图像,则样本取 为灰阶,这里,共256个样本;聚类中心, 为聚类个数,取;取;指第j个样本隶属于第i个聚类的隶属度,并满足,为第i个聚类中心与第j个样本间的欧氏距离。is the whole sample to be clustered, and each object is , is a natural number. For the grayscale image of flotation foam image with 8bits, the sample is taken as for grayscale, here , a total of 256 samples; cluster centers , is the number of clusters, take ;Pick ; Refers to the membership degree that the jth sample belongs to the ith cluster, and satisfies the , is the i -th cluster center and the j -th sample Euclidean distance between.
12、根据聚类目标函数式(6)计算目标函数;12. Calculate the objective function according to the clustering objective function formula (6) ;
(6) (6)
其中为各个灰度级出现的频度;设图像的尺寸为,in is the frequency of occurrence of each gray level; let the size of the image be ,
(7) (7)
式中表示灰度为的像素在图像中出现的次数,为灰阶,;表示图像的尺寸,由于浮选泡沫图像的像素尺寸为256×256,这里,且满足。in the formula Indicates grayscale as the number of times the pixel appears in the image, is grayscale, ; represents the size of the image, since the pixel size of the flotation foam image is 256×256, here , and satisfy .
13、用(8)式更新聚类中心;13. Use the formula (8) to update the cluster center ;
(8) (8)
14、若,迭代停止,取;输出模糊划分矩阵和聚类中心;否则令,返回11。14. If , the iteration stops, take ; output fuzzy partition matrix and cluster centers ; otherwise let , which returns 11.
15、对煤泥浮选泡沫灰度图像通过一维直方图加权的模糊C均值聚类算法对图像进行聚类运算。15. Perform a clustering operation on the coal slime flotation foam grayscale image through a one-dimensional histogram weighted fuzzy C-means clustering algorithm.
16、采用局部极大值的方法对聚类后图像提取局部极大值区域,并经过形态学的腐蚀运算,提取标识点。16. The method of local maxima is used to extract the local maxima region from the clustered image, and the identification points are extracted through the morphological erosion operation.
17、将8与16提取的标识点进行叠加运算,作为最终的分水岭运算的内部标记符。17. Perform a superposition operation on the identification points extracted by 8 and 16, as the final internal marker of the watershed operation.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910667822.8A CN110647887A (en) | 2019-07-23 | 2019-07-23 | Extraction method of internal markers for coal slime flotation foam image segmentation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910667822.8A CN110647887A (en) | 2019-07-23 | 2019-07-23 | Extraction method of internal markers for coal slime flotation foam image segmentation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110647887A true CN110647887A (en) | 2020-01-03 |
Family
ID=69009427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910667822.8A Pending CN110647887A (en) | 2019-07-23 | 2019-07-23 | Extraction method of internal markers for coal slime flotation foam image segmentation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110647887A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112200813A (en) * | 2020-09-30 | 2021-01-08 | 中国矿业大学(北京) | Coal and gangue identification method and system considering illumination factor |
CN113763404A (en) * | 2021-09-24 | 2021-12-07 | 湖南工业大学 | Foam image segmentation method based on optimization mark and edge constraint watershed algorithm |
CN113837193A (en) * | 2021-09-23 | 2021-12-24 | 中南大学 | Zinc flotation froth image segmentation algorithm based on improved U-Net network |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101036904A (en) * | 2007-04-30 | 2007-09-19 | 中南大学 | Flotation froth image recognition device based on machine vision and the mine concentration grade forecast method |
US20150356350A1 (en) * | 2014-06-05 | 2015-12-10 | Mohamad Mustafa Awad | unsupervised non-parametric multi-component image segmentation method |
US10115197B1 (en) * | 2017-06-06 | 2018-10-30 | Imam Abdulrahman Bin Faisal University | Apparatus and method for lesions segmentation |
CN109146864A (en) * | 2018-08-10 | 2019-01-04 | 华侨大学 | The method that galactophore image is split based on the differential evolution algorithm of fuzzy entropy |
CN109269951A (en) * | 2018-09-06 | 2019-01-25 | 山西智卓电气有限公司 | Floating tail-coal ash content, concentration, coarse granule detection method of content based on image |
-
2019
- 2019-07-23 CN CN201910667822.8A patent/CN110647887A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101036904A (en) * | 2007-04-30 | 2007-09-19 | 中南大学 | Flotation froth image recognition device based on machine vision and the mine concentration grade forecast method |
US20150356350A1 (en) * | 2014-06-05 | 2015-12-10 | Mohamad Mustafa Awad | unsupervised non-parametric multi-component image segmentation method |
US10115197B1 (en) * | 2017-06-06 | 2018-10-30 | Imam Abdulrahman Bin Faisal University | Apparatus and method for lesions segmentation |
CN109146864A (en) * | 2018-08-10 | 2019-01-04 | 华侨大学 | The method that galactophore image is split based on the differential evolution algorithm of fuzzy entropy |
CN109269951A (en) * | 2018-09-06 | 2019-01-25 | 山西智卓电气有限公司 | Floating tail-coal ash content, concentration, coarse granule detection method of content based on image |
Non-Patent Citations (4)
Title |
---|
MU-LING TIAN 等: "Improved Extraction Algorithm of Internal Markers for Forth Image Wastershed Segmentation of Coal Flotation", 《INTERNATIONAL JOURNAL OF SIMULATION》 * |
TIAN MU-LING 等: "Pre-processing of Froth Image of Coal Flotation Based on Weighted Fuzzy C-Mean Clustering by One-dimensional Histogram", 《2012 INTERNATIONAL CONFERENCE ON COMPUTING, MEASUREMENT, CONTROL AND SENSOR NETWORK》 * |
周开军 等: "矿物浮选泡沫图像形态特征提取方法与应用", 《中国硕士论文全文数据库信息科技辑》 * |
林小竹 等: "煤泥浮选泡沫图像分割与特征提取", 《煤炭学报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112200813A (en) * | 2020-09-30 | 2021-01-08 | 中国矿业大学(北京) | Coal and gangue identification method and system considering illumination factor |
CN112200813B (en) * | 2020-09-30 | 2024-02-06 | 中国矿业大学(北京) | Coal gangue identification method and system considering illumination factors |
CN113837193A (en) * | 2021-09-23 | 2021-12-24 | 中南大学 | Zinc flotation froth image segmentation algorithm based on improved U-Net network |
CN113837193B (en) * | 2021-09-23 | 2023-09-01 | 中南大学 | A Zinc Flotation Foam Image Segmentation Method Based on Improved U-Net Network |
CN113763404A (en) * | 2021-09-24 | 2021-12-07 | 湖南工业大学 | Foam image segmentation method based on optimization mark and edge constraint watershed algorithm |
CN113763404B (en) * | 2021-09-24 | 2023-06-06 | 湖南工业大学 | Foam image segmentation method based on optimization mark and edge constraint watershed algorithm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110264448B (en) | A method of insulator fault detection based on machine vision | |
CN109242791B (en) | Batch repair method for damaged plant leaves | |
CN104658011B (en) | A kind of intelligent transportation moving object detection tracking | |
CN103049763B (en) | Context-constraint-based target identification method | |
CN108038883B (en) | Crack detection and identification method applied to highway pavement video image | |
CN102629322B (en) | Character feature extraction method based on stroke shape of boundary point and application thereof | |
WO2016172827A1 (en) | Stepwise-refinement pavement crack detection method | |
CN112598713A (en) | Offshore submarine fish detection and tracking statistical method based on deep learning | |
CN112488244B (en) | Dense distribution small target pest automatic counting method using thermodynamic diagram to carry out point marking mode | |
CN110647887A (en) | Extraction method of internal markers for coal slime flotation foam image segmentation | |
CN103810716B (en) | Move and the image partition method of Renyi entropy based on gray scale | |
CN113516853A (en) | Multi-lane traffic flow detection method for complex monitoring scene | |
CN111259796A (en) | A Lane Line Detection Method Based on Image Geometric Features | |
CN110263794B (en) | Training method of target recognition model based on data augmentation | |
CN106127735B (en) | A kind of facilities vegetable edge clear class blade face scab dividing method and device | |
CN114596500A (en) | Remote sensing image semantic segmentation method based on channel-space attention and DeeplabV3plus | |
CN111582126A (en) | Pedestrian Re-identification Method Based on Multi-scale Pedestrian Contour Segmentation and Fusion | |
CN108509950B (en) | Railway contact net support number plate detection and identification method based on probability feature weighted fusion | |
CN112819840B (en) | High-precision image instance segmentation method integrating deep learning and traditional processing | |
Zeng et al. | Steel sheet defect detection based on deep learning method | |
CN113537173A (en) | A Face Image Authenticity Recognition Method Based on Facial Patch Mapping | |
CN111898627A (en) | A PCA-based SVM Cloud Particle Optimal Classification and Recognition Method | |
CN105976385A (en) | Image segmentation method based on image data field | |
CN106296709A (en) | A kind of based on population and the cell image segmentation method of fuzzy means clustering | |
CN107103609A (en) | Niblack power equipment Infrared Image Segmentations based on particle group optimizing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200103 |
|
WD01 | Invention patent application deemed withdrawn after publication |