CN110633494B - A Multi-objective Optimization Design Method of Swiss Rectifier Based on NSGA-Ⅱ Algorithm - Google Patents
A Multi-objective Optimization Design Method of Swiss Rectifier Based on NSGA-Ⅱ Algorithm Download PDFInfo
- Publication number
- CN110633494B CN110633494B CN201910729666.3A CN201910729666A CN110633494B CN 110633494 B CN110633494 B CN 110633494B CN 201910729666 A CN201910729666 A CN 201910729666A CN 110633494 B CN110633494 B CN 110633494B
- Authority
- CN
- China
- Prior art keywords
- population
- diode
- individuals
- igbt
- individual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005457 optimization Methods 0.000 title claims abstract description 24
- 238000013461 design Methods 0.000 title claims abstract description 15
- 239000011159 matrix material Substances 0.000 claims abstract description 12
- 230000035772 mutation Effects 0.000 claims abstract description 10
- 210000000349 chromosome Anatomy 0.000 claims description 15
- 108090000623 proteins and genes Proteins 0.000 claims description 13
- 239000003990 capacitor Substances 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 4
- 108700028369 Alleles Proteins 0.000 claims description 3
- 238000012804 iterative process Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Rectifiers (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于NSGA-Ⅱ算法的Swiss整流器多目标优化设计方法,属于整流器参数优化设计技术领域。The invention relates to a Swiss rectifier multi-objective optimization design method based on NSGA-II algorithm, and belongs to the technical field of rectifier parameter optimization design.
背景技术Background technique
近年来,随着电力电子器件的广泛应用,越来越多的关于变换器的研究和优化技术得到了国内外研究人员的高度重视,各种高效、新颖的整流器拓扑结构和数字控制应运而生,使得电动汽车、新能源技术得到了快速的发展;整流器系统的显著性能特点就是高频率、高效率、高功率密度、高功率因数、高可靠性等,伴随着各种新型电磁材料、电子元器件、变换技术的问世和应用,使得整流器系统向着小体积、高效性、低成本的方向发展。In recent years, with the wide application of power electronic devices, more and more research and optimization techniques on converters have been paid great attention by researchers at home and abroad, and various high-efficiency and novel rectifier topologies and digital control have emerged as the times require. , which has made the rapid development of electric vehicles and new energy technologies; the remarkable performance characteristics of the rectifier system are high frequency, high efficiency, high power density, high power factor, high reliability, etc., along with various new electromagnetic materials, electronic components The advent and application of devices and conversion technologies have made the rectifier system develop in the direction of small size, high efficiency and low cost.
但是,由于Swiss整流器具有电感等非线性元件,使得整流器系统是一个强非线性系统,且需要优化的元器件参数和性能较多,各个性能之间相互冲突、相互制约,一个性能的提升往往以另一个性能的降低为代价;这使得Swiss整流器这个具有多目标性、不确定性、非线性和多参数性的复杂优化问题在传统的优化方法中难以实现,以经验判断各参数,无法保证其准确性;如何用严谨的数学方法选择合适的器件,处理整流器这种带有离散变量的多目标优化问题,使其系统综合性能达到最优,对系统可靠运行和能源的可持续发展具有重要意义;因此,针对Swiss整流器的多目标优化方法势在必行。However, because the Swiss rectifier has nonlinear components such as inductance, the rectifier system is a strong nonlinear system, and there are many component parameters and performances that need to be optimized, and the performances conflict and restrict each other. Another cost of performance reduction; this makes the Swiss rectifier, a complex optimization problem with multi-objective, uncertainty, nonlinearity and multi-parameters, difficult to achieve in traditional optimization methods. Judging each parameter by experience, it is impossible to guarantee its performance. Accuracy; how to use rigorous mathematical methods to select suitable devices to deal with multi-objective optimization problems with discrete variables such as rectifiers, so as to optimize the overall performance of the system, which is of great significance to the reliable operation of the system and the sustainable development of energy. ; Therefore, a multi-objective optimization method for Swiss rectifiers is imperative.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的问题,本发明提出了一种基于NSGA-Ⅱ算法的Swiss整流器多目标优化设计方法,该方法有利于对Swiss整流器参数进行优化设计,从而提高整流器的效率和功率密度。所采取的技术方案如下:Aiming at the problems existing in the prior art, the present invention proposes a multi-objective optimal design method for Swiss rectifiers based on NSGA-II algorithm, which is beneficial to the optimal design of Swiss rectifier parameters, thereby improving the efficiency and power density of the rectifier. The technical solutions adopted are as follows:
一种基于NSGA-Ⅱ算法的Swiss整流器多目标优化设计方法,所述优化设计方法包括:A multi-objective optimization design method of Swiss rectifier based on NSGA-II algorithm, the optimization design method includes:
步骤1、将Swiss整流器基本拓扑电路中的直流电感L、输出电容C、开关管IGBT和二极管Diode作为影响整流器性能指标的优化变量,并对所述直流电感L、输出电容C、开关管IGBT和二极管Diode进行功率和体积建模;
步骤2、定义目标函数:以Swiss整流器的效率和功率密度为目标函数,衡量Swiss整流器的性能指标;Step 2. Define the objective function: take the efficiency and power density of the Swiss rectifier as the objective function to measure the performance index of the Swiss rectifier;
步骤3、初始化种群:将种群大小设置为N,最大进化代数设置为gen,决策变量的数量设置为V;然后,对决策变量进行实数编码,以建立的元器件数据库为约束条件,输入各参数变量的上下限;随机生成N维决策矩阵,将所述决策矩阵的第V+1列和第V+2列作为目标函数数值,最后两列为非支配层数和拥挤度距离,一个参数向量则对应一个个体或称为染色体;Step 3. Initialize the population: set the population size to N, the maximum evolutionary algebra to gen, and the number of decision variables to V; then, encode the decision variables with real numbers, and input the parameters with the established component database as the constraint The upper and lower limits of the variable; randomly generate an N-dimensional decision matrix, take the V+1 and V+2 columns of the decision matrix as the objective function values, the last two columns are the number of non-dominated layers and the crowding degree distance, a parameter vector corresponds to an individual or called a chromosome;
步骤4、选择:设定两个参数ni和Si,ni为种群中所有个体支配个体i的数目,Si为个体i所支配的个体集合,采用快速非支配排序判断矩阵的解的好坏和排序操作;Step 4. Selection: Set two parameters n i and S i , where n i is the number of individuals dominated by all individuals in the population, and Si is the set of individuals dominated by individual i , using the fast non-dominated sorting to judge the solution of the matrix. Good and bad and sorting operations;
步骤5,二元锦标赛选择:设置锦标赛大小为2,匹配池大小为N/2;在初始种群中,随机选择两个个体,比较两个个体的非支配等级,等级低者放入匹配池中;若等级相同,则比较拥挤度距离,距离大者者保留;若非支配等级和拥挤度距离均相同,则随机选取一个个体保留,重复本步骤操作,至匹配池中个体为N/2;
步骤6,交叉:首先在当代种群中随机选择两个个体,作为交叉操作的父代个体,对匹配染色体上的基因进行交叉操作,产生一对新的染色体,重复交叉操作,形成新一代种群;其中,所述当代种群为父代种群;具体操作过程如下:设染色体的基因长度为L,在[0,L]的范围内,随机地选取一个整数值K作为交叉位置,匹配染色体在交叉位置处相互交换[K,L]部分的基因,从而形成新的一对染色体,即个体;
步骤7,变异:定义一个变异算子,对个体的基因进行小概率的替换,并将变异算子作用于种群,使种群中部分个体的基因改变,产生新的等位基因,将此时的种群记为子代种群;Step 7: Mutation: Define a mutation operator to replace individual genes with a small probability, and apply the mutation operator to the population to change the genes of some individuals in the population and generate new alleles. The population is recorded as the offspring population;
步骤8,将步骤6中的父代种群跟步骤7获得的子代种群进行合并,合并后的种群记为第一代种群(gen=1),种群大小为N;Step 8, merge the parent population in
步骤9,将步骤8获得的第一代种群作为父代种群,然后将此父代种群进行交叉变异获得子代种群,然后将本步骤中的父代种群和子代种群进行合并,形成种群,此时种群大小为2N;In step 9, the first generation population obtained in step 8 is used as the parent population, and then the parent population is crossed and mutated to obtain the child population, and then the parent population and the child population in this step are merged to form a population. When the population size is 2N;
步骤10、利用步骤4的操作过程对步骤9形成的种群进行处理,选择N个个体为新的父代种群,再经步骤6和步骤7,产生新的子代种群Pt+1;重复步骤9,至达到最大进化代数gen;Step 10, utilize the operation process of step 4 to process the population formed in step 9, select N individuals as the new parent population, and then go through
步骤11,输出Pareto最优解前沿和参数矩阵,根据所选择的目标性能指标,得到对应的各决策变量数值,即是优化问题的解,根据各个参数进行元器件的选择和设计。Step 11: Output the Pareto optimal solution front and parameter matrix, obtain the corresponding decision variable values according to the selected target performance index, that is, the solution of the optimization problem, and select and design components according to each parameter.
进一步地,步骤1所述功率和体积建模的过程包括:Further, the process of power and volume modeling described in
计算电感的功率,所述电感的功率PL为:Calculate the power of the inductor, the power PL of the inductor is:
其中,uL为电感的输入电压,Irms为流经电感的电流有效值,fsw为开关频率,VL为电感体积;Among them, u L is the input voltage of the inductor, I rms is the effective value of the current flowing through the inductor, f sw is the switching frequency, and VL is the inductor volume;
计算电感的线圈体积;所述线圈体积Vcl为:Calculate the coil volume of the inductance; the coil volume V cl is:
其中,ωw为绕组宽度,dw为绕组深度;Among them, ω w is the winding width, and d w is the winding depth;
计算导体体积Vcd为:Vcd=kpfVcl,其中,kpf为线圈的填充系数,N为线圈匝数,为导体截面积,Calculate the conductor volume V cd as: V cd =k pf V cl , where k pf is the filling factor of the coil, N is the number of turns of the coil, is the conductor cross-sectional area,
计算磁芯体积为:则电感体积VL为:其中,l表示磁芯长度;Calculate core volume for: Then the inductor volume VL is: Among them, l represents the length of the magnetic core;
计算开关管IGBT的通态损耗为:Calculate the on-state loss of the switch IGBT as:
其中,VGE为IGBT的门槛电压,IIGBT为流经IGBT的电流幅值,rCE为通态等效电阻,M为调制比,表示为电压电流相位角;Among them, V GE is the threshold voltage of the IGBT, I IGBT is the amplitude of the current flowing through the IGBT, r CE is the on-state equivalent resistance, M is the modulation ratio, Expressed as the voltage and current phase angle;
IGBT的开关损耗为:The switching losses of the IGBT are:
其中,Esw(on)和Esw(off)分别为IGBT开通一次和关断一次损失的能量,IN为整流器额定工作电流,uCEN为额定工作电压,upn为整流器输出电压;Among them, E sw(on) and E sw(off) are the energy lost by the turn-on and turn-off of the IGBT respectively, I N is the rated working current of the rectifier, u CEN is the rated working voltage, and u pn is the output voltage of the rectifier;
计算IGBT总损耗为:PIGBT=Pcond,IGBT+Psw,IGBT;Calculate the total loss of IGBT as: P IGBT =P cond, IGBT +P sw, IGBT ;
二极管的导通损耗为:The conduction loss of the diode is:
Pon,Diode=VFIFDP on, Diode = V F I F D
其中,VF为二极管的正向导通压降,IF为正向通态电流,D为占空比,不同二极管的占空比根据4种导通电路状态求取;Among them, V F is the forward conduction voltage drop of the diode, IF is the forward conduction current, D is the duty cycle, and the duty cycle of different diodes is calculated according to the four conduction circuit states;
二极管的断态损耗为:The off-state loss of the diode is:
Poff,Diode=VRIR(1-D)P off, Diode = V R I R (1-D)
其中,VR为其反向压降,IR为二极管反向漏电流;Among them, VR is the reverse voltage drop, IR is the diode reverse leakage current;
二极管的开关损耗为:The switching losses of the diode are:
其中,Vfp和Vrp分别为二极管的正向和反向峰值电压,Ifp和Irp分别为流经二极管的正向和反向峰值电流,tfp为其正向恢复时间,tb为其反向电流下降时间;where V fp and V rp are the forward and reverse peak voltages of the diode, respectively, I fp and I rp are the forward and reverse peak currents flowing through the diode, respectively, t fp is the forward recovery time, and t b is Its reverse current fall time;
则二极管总损耗为:PDiode=Pon,Diode+Poff,Diode+Psw,Diode。Then the total loss of the diode is: P Diode =P on, Diode +P off, Diode +P sw, Diode .
进一步地,步骤2所述定义目标函数的具体过程包括:Further, the specific process of defining the objective function described in step 2 includes:
定义目标函数,以Swiss整流器的效率和功率密度为目标函数,效率η为:Define the objective function, taking the efficiency and power density of the Swiss rectifier as the objective function, and the efficiency η is:
其中,P0为输出功率,功率密度ρ为:Among them, P 0 is the output power, and the power density ρ is:
其中,P0为输出功率,Ploss为总损耗,Pl为电感总损耗,PIGBT为IGBT总损耗,PDiode为Diode总损耗;V总为元器件总体积,VL为电感体积,VIGBT为IGBT体积,VDiode为二极管体积,VC为输出电容体积,C为电感;所述功率密度ρ即为目标函数Among them, P 0 is the output power, P loss is the total loss, P l is the total loss of the inductor, P IGBT is the total loss of the IGBT, P Diode is the total loss of the Diode; V total is the total volume of components, VL is the inductor volume, V IGBT is the IGBT volume, V Diode is the diode volume, V C is the output capacitor volume, C is the inductance; the power density ρ is the objective function
进一步地,步骤四所述判断解的好坏和排序的具体过程包括:Further, the specific process of judging the quality of the solution and sorting described in step 4 includes:
第1步、选出种群中ni为0的个体,即非支配的最优个体,并放入集合F1中;Step 1: Select the individual whose n i is 0 in the population, that is, the non-dominated optimal individual, and put it into the set F 1 ;
第2步、对集合F1中的每个个体i,分别找出i所对应的支配个体集合Si,对Si中的个体j,对种群中所有个体支配个体j的数目nj进行减一操作,即nj=nj-1,排除个体i支配j的影响,若nj为0,则将个体j放入集合F2中;Step 2 : For each individual i in the set F1, find out the dominant individual set S i corresponding to i respectively, and for the individual j in Si, reduce the number n j of all individuals dominating individual j in the population. One operation, namely n j =n j -1, excludes the influence of individual i dominating j, if n j is 0, put individual j into the set F 2 ;
则集合F1为第一层非支配集合,对于F1中所有个体的非支配层数记为Rank1,F2中个体记为Rank2;Then the set F 1 is the first-level non-dominated set, and the number of non-dominated layers of all individuals in F 1 is recorded as Rank1, and the individuals in F 2 are recorded as Rank2;
第3步、重复第1步和第2步的操作,对种群中所有个体进行非支配排序,非支配层数由低到高,Rank值越小的个体越好;Step 3: Repeat the operations of
在NSGA-Ⅱ算法的迭代过程中种群大小始终为N,故在选择操作中需对同一Rank层中的个体进行取舍,定义拥挤度距离C,即为相邻两个个体在每个子目标函数上的距离差之和,且有,Ck=(fk+1,1-fk-1,1)+(fk-1,2-fk+1,2),其中,fk+1,1、fk-1,1、fk-1,2和fk+1,2分别表示为(k+1,1)、(k-1,1)、(k-1,2)和(k+1,2)对应的目标函数;In the iterative process of the NSGA-II algorithm, the population size is always N, so in the selection operation, the individuals in the same Rank layer need to be selected, and the crowding degree distance C is defined, that is, the adjacent two individuals are on each sub-objective function. and have, C k =(f k+1,1 -f k-1,1 )+(f k-1,2 -f k+1,2 ), where f k+1 ,1 , f k-1,1 , f k-1,2 and f k+1,2 are represented as (k+1,1), (k-1,1), (k-1,2) and The objective function corresponding to (k+1,2);
拥挤度距离大的个体优于拥挤度距离小的个体,非支配层数和拥挤度距离作为决策向量的最后两个元素,并通过非支配层数和拥挤度距离判断解的好坏和排序操作。Individuals with a large crowding degree distance are better than individuals with a small crowding degree distance. The number of non-dominated layers and the distance of crowding degree are used as the last two elements of the decision vector, and the quality of the solution and the sorting operation are judged by the number of non-dominated layers and the distance of crowding degree. .
本发明有益效果:Beneficial effects of the present invention:
本发明提出的基于NSGA-Ⅱ算法的Swiss整流器多目标优化设计方法,对Swiss整流器这个具有多目标性、不确定性、非线性和多参数性的复杂问题进行多目标优化,解决了以经验选择各元件的器件选型问题,可以通过优化算法求得的Pareto前沿选择性能指标,其效率提高至95.28~96.86%,功率密度为4.48~6.05KW/dm3,使整流器的性能整体最优。The multi-objective optimization design method of the Swiss rectifier based on the NSGA-II algorithm proposed by the present invention performs multi-objective optimization on the Swiss rectifier, a complex problem with multi-objective, uncertainty, nonlinearity and multi-parameter properties, and solves the problem of selecting by experience. For the device selection of each component, the Pareto frontier selection performance index can be obtained through the optimization algorithm. The efficiency is increased to 95.28-96.86%, and the power density is 4.48-6.05KW/dm 3 , which makes the overall performance of the rectifier optimal.
附图说明Description of drawings
图1为Swiss整流器的电路拓扑图;Figure 1 is the circuit topology diagram of the Swiss rectifier;
图2为Swiss整流器的四种导通电路图;Figure 2 is a diagram of four conduction circuits of the Swiss rectifier;
图3为NSGA-Ⅱ算法流程图;Figure 3 is the flow chart of the NSGA-II algorithm;
图4为精英选择策略示意图;Figure 4 is a schematic diagram of elite selection strategy;
图5为直流电感UI磁芯结构图;Figure 5 is a structural diagram of a DC inductor UI core;
图6为输出电容结构图;Figure 6 is a structural diagram of an output capacitor;
图7为Pareto最优解前沿。Figure 7 shows the Pareto optimal solution front.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步说明,但本发明不受实施例的限制。The present invention will be further described below in conjunction with specific embodiments, but the present invention is not limited by the embodiments.
实施例1:Example 1:
步骤1,对所优化的元器件进行功率和体积建模;图5为直流电感L的UI磁芯结构图,电感的功率PL为:
其中uL为电感的输入电压,Irms为流经电感的电流有效值,fsw为开关频率,VL为电感体积。Where u L is the input voltage of the inductor, I rms is the rms value of the current flowing through the inductor, f sw is the switching frequency, and VL is the inductor volume.
电感的线圈体积Vcl为:The coil volume V cl of the inductor is:
导体体积Vcd为:Vcd=kpfVcl,其中,kpf为线圈的填充系数,The conductor volume V cd is: V cd =k pf V cl , where k pf is the filling factor of the coil,
N为线圈匝数,为导体截面积,磁芯体积为:N is the number of turns of the coil, is the cross-sectional area of the conductor and the volume of the magnetic core for:
则VL为: Then VL is:
开关管IGBT的通态损耗为:The on-state loss of the switch IGBT is:
其中,VGE为IGBT的门槛电压,IIGBT为流经IGBT的电流幅值,rCE为通态等效电阻,M为调制比。IGBT的开关损耗为:Among them, V GE is the threshold voltage of the IGBT, I IGBT is the current amplitude flowing through the IGBT, r CE is the on-state equivalent resistance, and M is the modulation ratio. The switching losses of the IGBT are:
Esw(on)和Esw(off)分别为IGBT开通一次和关断一次损失的能量。E sw(on) and E sw(off) are the energy lost for one turn on and one turn off of the IGBT, respectively.
则IGBT总损耗为:PIGBT=Pcond,IGBT+Psw,IGBT。Then the total loss of IGBT is: P IGBT =P cond, IGBT +P sw, IGBT .
二极管的导通损耗为:The conduction loss of the diode is:
Pon,Diode=VFIFDP on, Diode = V F I F D
VF为二极管的正向导通压降,IF为正向通态电流,D为占空比,不同二极管的占空比可由图2所示的4种导通电路状态求取。V F is the forward conduction voltage drop of the diode, IF is the forward conduction current, and D is the duty cycle. The duty cycle of different diodes can be obtained from the four conduction circuit states shown in Figure 2.
二极管的断态损耗为:The off-state loss of the diode is:
Poff,Diode=VRIR(1-D)P off, Diode = V R I R (1-D)
其中,VR为其反向压降,IR为二极管反向漏电流。Among them, VR is its reverse voltage drop, and IR is diode reverse leakage current.
二极管的开关损耗为:The switching losses of the diode are:
Vfp和Vrp分别为二极管的正向和反向峰值电压,Ifp和Irp分别为流经二极管的正向和反向峰值电流,tfp为其正向恢复时间,tb为其反向电流下降时间。V fp and V rp are the forward and reverse peak voltages of the diode, respectively, I fp and I rp are the forward and reverse peak currents flowing through the diode, respectively, t fp is the forward recovery time, and t b is the reverse current fall time.
则二极管总损耗为:PDiode=Pon,Diode+Poff,Diode+Psw,Diode。Then the total loss of the diode is: P Diode =P on, Diode +P off, Diode +P sw, Diode .
步骤2,定义目标函数,以Swiss整流器的效率和功率密度为目标函数,效率η为:Step 2, define the objective function, take the efficiency and power density of the Swiss rectifier as the objective function, and the efficiency η is:
其中,P0为输出功率,设为5KW,功率密度ρ为:Among them, P 0 is the output power, which is set to 5KW, and the power density ρ is:
步骤3,初始化种群,设置种群大小为200,最大进化代数为200,决策变量的数量为39,对决策变量进行实数编码,以建立的元器件数据库为约束条件,输入各参数变量的上下限,随机生成200×43的决策矩阵,矩阵第40列和第41列则为目标函数数值,最后两列为非支配层数和拥挤度距离,一个参数向量则对应一个个体或称为染色体。Step 3: Initialize the population, set the population size to 200, the maximum evolutionary algebra to 200, and the number of decision variables to 39, encode the decision variables with real numbers, and use the established component database as constraints, input the upper and lower limits of each parameter variable, A 200×43 decision matrix is randomly generated, the 40th and 41st columns of the matrix are the objective function values, the last two columns are the number of non-dominated layers and the crowding degree distance, and a parameter vector corresponds to an individual or called a chromosome.
步骤4,选择,采用快速非支配排序,需设定两个参数ni和Si,ni为种群中所有个体支配个体i的数目,Si为个体i所支配的个体集合;Step 4, select, adopt fast non-dominated sorting, need to set two parameters n i and S i , n i is the number of all individuals in the population dominated by individual i, and Si is the set of individuals dominated by individual i ;
首先选出种群中ni为0的个体,即非支配的最优个体,并放入集合F1中;First select the individual whose n i is 0 in the population, that is, the non-dominated optimal individual, and put it into the set F 1 ;
对于F1中的每个个体i,分别找出i所对应的支配个体集合Si,对Si中的个体j,对nj进行减一操作,即nj=nj-1,排除个体i支配j的影响,若nj为0,则将个体j放入集合F2中;For each individual i in F 1 , find out the dominant individual set Si corresponding to i respectively, and subtract one operation for the individual j in Si and n j , that is, n j =n j -1, and exclude the individual i dominates the influence of j, if n j is 0, put individual j into the set F 2 ;
则集合F1为第一层非支配集合,对于F1中所有个体的非支配层数记为Rank1,F2中个体记为Rank2;Then the set F 1 is the first-level non-dominated set, and the number of non-dominated layers of all individuals in F 1 is recorded as Rank1, and the individuals in F 2 are recorded as Rank2;
重复以上操作,对种群中所有个体进行非支配排序,非支配层数由低到高,Rank值越小的个体越好;Repeat the above operations to sort all individuals in the population non-dominated, the number of non-dominated layers is from low to high, the smaller the Rank value, the better the individual;
在NSGA-Ⅱ算法的迭代过程中种群大小始终为N,故在选择操作中需对同一Rank层中的个体进行取舍,定义拥挤度距离C,即为相邻两个个体在每个子目标函数上的距离差之和,即:Ck=(fk+1,1-fk-1,1)+(fk-1,2-fk+1,2);In the iterative process of the NSGA-II algorithm, the population size is always N, so in the selection operation, the individuals in the same Rank layer need to be selected, and the crowding degree distance C is defined, that is, the adjacent two individuals are on each sub-objective function. The sum of the distance differences, namely: C k =(f k+1,1 -f k-1,1 )+(f k-1,2 -f k+1,2 );
拥挤度距离大的个体优于拥挤度距离小的个体,非支配层数和拥挤度距离作为决策向量的最后两个元素,用于判断解的好坏和排序操作。Individuals with a large crowding degree distance are better than individuals with a small crowding degree distance. The number of non-dominated layers and the crowding degree distance are used as the last two elements of the decision vector for judging the quality of the solution and sorting operations.
步骤5,二元锦标赛选择,设置锦标赛大小为2,匹配池大小为100;在初始种群中,随机选择两个个体,比较其非支配等级,等级低者放入匹配池中;若等级相同,则比较拥挤度距离,距离大者者保留;若非支配等级和拥挤度距离均相同,则随机选取一个个体保留,重复以上操作,至匹配池中个体为100个为止。
步骤6,交叉,首先在当代种群中随机选择两个个体,作为交叉操作的父代个体,对匹配染色体上的基因进行交叉操作,产生一对新的染色体;具体操作过程如下:设染色体的基因长度为L,在[0,L]的范围内,随机地选取一个整数值K作为交叉位置,匹配染色体在交叉位置处相互交换[K,L]部分的基因,从而形成新的一对染色体,即个体。
步骤7,变异,定义一个变异算子,对个体的基因进行小概率的替换,并将变异算子作用于种群,使种群中某些个体的基因改变,产生新的等位基因。Step 7, mutation, define a mutation operator to replace individual genes with a small probability, and apply the mutation operator to the population to change the genes of some individuals in the population and generate new alleles.
步骤8,合并经步骤5-步骤7操作后的父子代种群,记为第一代种群(gen=1)。Step 8: Merge the parent-child populations after the operations from
步骤9,图4为精英选择策略示意图,经过步骤6和步骤7,将子代和父代种群合并,此时种群大小为400,经过步骤4,选择200个个体为新的父代种群,再经步骤6和步骤7,产生新的子代种群Pt+1;重复步骤9,至达到最大进化代数200。Step 9, Figure 4 is a schematic diagram of the elite selection strategy. After
步骤10,图7为Pareto最优解前沿,经200代后输出该前沿和参数矩阵,其效率η为95.28~96.86%,功率密度ρ为4.48~6.05KW/dm3,可选择在此范围内的性能指标,得到对应的各决策变量数值,即是优化问题的解,根据各个参数进行元器件的选择和设计。Step 10, Fig. 7 shows the Pareto optimal solution frontier. After 200 generations, the frontier and parameter matrix are output. The efficiency η is 95.28-96.86%, and the power density ρ is 4.48-6.05KW/dm 3 , which can be selected within this range. The performance index is obtained, and the corresponding value of each decision variable is obtained, that is, the solution of the optimization problem, and the selection and design of components are carried out according to each parameter.
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可以做各种改动和修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention should be defined by the claims.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910729666.3A CN110633494B (en) | 2019-08-08 | 2019-08-08 | A Multi-objective Optimization Design Method of Swiss Rectifier Based on NSGA-Ⅱ Algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910729666.3A CN110633494B (en) | 2019-08-08 | 2019-08-08 | A Multi-objective Optimization Design Method of Swiss Rectifier Based on NSGA-Ⅱ Algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110633494A CN110633494A (en) | 2019-12-31 |
CN110633494B true CN110633494B (en) | 2022-08-12 |
Family
ID=68969614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910729666.3A Active CN110633494B (en) | 2019-08-08 | 2019-08-08 | A Multi-objective Optimization Design Method of Swiss Rectifier Based on NSGA-Ⅱ Algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110633494B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111461911B (en) * | 2020-01-17 | 2022-08-16 | 华中科技大学 | Mixed NSGA-II-based method for constructing virtual unit of machined workpiece |
CN112084706B (en) * | 2020-09-02 | 2023-11-07 | 合肥工业大学 | NSGA-II-based multi-objective optimization method for capacitor module component configuration |
CN112968474B (en) * | 2021-03-30 | 2022-12-30 | 合肥工业大学 | Multi-target optimization method for photovoltaic off-grid inverter system |
CN114465477B (en) * | 2021-09-26 | 2024-12-24 | 天津大学 | A parameter synthesis design method for interleaved parallel boost converters |
CN114065512B (en) * | 2021-11-16 | 2024-08-20 | 吉林大学 | NSGA-II algorithm-based induction magnetometer coil parameter multi-objective optimization method |
CN113987891B (en) * | 2021-11-26 | 2024-07-09 | 国网江苏省电力有限公司电力科学研究院 | Multi-objective optimization method for IGBT module |
US12289393B2 (en) * | 2022-11-22 | 2025-04-29 | International Business Machines Corporation | Tournament type selection operations on encrypted data |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103793758A (en) * | 2014-01-23 | 2014-05-14 | 华北电力大学 | Multi-objective optimization scheduling method for electric vehicle charging station including photovoltaic power generation system |
CN104952067A (en) * | 2015-05-13 | 2015-09-30 | 西安电子科技大学 | Method for segmenting color images on basis of NSGA-II (non-dominated sorting genetic algorithm-II) evolution algorithms |
CN108493997A (en) * | 2018-04-13 | 2018-09-04 | 哈尔滨理工大学 | Rotary inertia optimal control method based on virtual synchronous generator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107423529A (en) * | 2017-08-30 | 2017-12-01 | 同济大学 | Metamaterial Precise spraying method |
-
2019
- 2019-08-08 CN CN201910729666.3A patent/CN110633494B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103793758A (en) * | 2014-01-23 | 2014-05-14 | 华北电力大学 | Multi-objective optimization scheduling method for electric vehicle charging station including photovoltaic power generation system |
CN104952067A (en) * | 2015-05-13 | 2015-09-30 | 西安电子科技大学 | Method for segmenting color images on basis of NSGA-II (non-dominated sorting genetic algorithm-II) evolution algorithms |
CN108493997A (en) * | 2018-04-13 | 2018-09-04 | 哈尔滨理工大学 | Rotary inertia optimal control method based on virtual synchronous generator |
Non-Patent Citations (4)
Title |
---|
On the performance of multiobjective evolutionary algorithms in automatic parameter extraction of power diodes;Daniele parada等;《2014 IEEE Transactions on power electronics》;20140930;第30卷(第9期);4986-4997 * |
VIENNA整流器电容设计;刘平等;《装备制造》;20090801(第8期);1 * |
基于NSGA-Ⅱ算法Vienna整流器多目标优化;常伟等;《中国电机工程学报》;20160930;第36卷(第S1期);179-185 * |
混合整流器多目标优化研究;常伟;《中国优秀博硕士学位论文全文数据库(硕士)(工程科技Ⅱ辑)》;20180115;C042-283 * |
Also Published As
Publication number | Publication date |
---|---|
CN110633494A (en) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110633494B (en) | A Multi-objective Optimization Design Method of Swiss Rectifier Based on NSGA-Ⅱ Algorithm | |
Freitas et al. | High‐voltage gain dc–dc boost converter with coupled inductors for photovoltaic systems | |
Kesarwani et al. | A comparative theoretical analysis of distributed ladder converters for sub-module PV energy optimization | |
CN103972908A (en) | Multi-target reactive power optimization method based on adaptive chaos particle swarm algorithm | |
CN111585449B (en) | Virtual vector modulation type model prediction algorithm of two-stage matrix converter | |
CN115021325B (en) | Multi-objective optimization method of photovoltaic inverter based on DDPG algorithm | |
CN105790282B (en) | The idle work optimization analysis system and method for a kind of power network containing UPFC | |
CN114444354A (en) | A parameter optimization method of wireless charging system based on improved multi-objective gray wolf algorithm | |
CN103036467A (en) | Multi-objective Pareto optimal control method of inverter based on immune algorithm | |
CN117057228A (en) | Inverter multi-objective optimization method based on deep reinforcement learning | |
CN110350605A (en) | A kind of planing method of multistage alternating current-direct current mixed connection power distribution network direct current upgrading | |
Yang et al. | An improved genetic algorithm for multiobjective optimization of helical coil electromagnetic launchers | |
Mejbri et al. | Bi-objective sizing optimization of power converter using genetic algorithms: application to photovoltaic systems | |
Delaforge et al. | Design automation of power electronic converters a grid elitist multiobjective genetic algorithm | |
Karimi Hajiabadi et al. | Ultra‐high gain quadratic boost DC–DC converter based on a three‐winding coupled inductor with reduced voltage stress for fuel cell‐based systems | |
CN106911257B (en) | MMC converter valve control frequency optimization method in flexible direct current transmission system | |
CN106899031B (en) | Redundancy optimization method for full-bridge MMC converter valve in flexible direct-current power transmission system | |
Wang et al. | A deep neural network based predictive control strategy for high frequency multilevel converters | |
CN110445155B (en) | Intelligent phase change switch, system and method and electronic equipment | |
Wang et al. | Artificial intelligence assisted parametric design by splitting inductance in dual active bridge converter | |
CN116845893B (en) | Parameter optimization method of LCL grid-connected inverter filter in weak power grid based on NSGA-II algorithm | |
CN112234642A (en) | An optimal configuration method of fault current limiter in flexible DC grid | |
Fritz et al. | Speeding up converter design by analytical modeling and genetic optimization a more electric aircraft example | |
CN117335667A (en) | Fractional-order control method of fractional-order phase-shifted full-bridge converter of power electronic transformer | |
CN113507128B (en) | A method for optimal configuration of near-field reactive power in UHVDC converter stations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |