CN110632764B - 一种基于toad环的混沌光产生装置 - Google Patents

一种基于toad环的混沌光产生装置 Download PDF

Info

Publication number
CN110632764B
CN110632764B CN201911048519.6A CN201911048519A CN110632764B CN 110632764 B CN110632764 B CN 110632764B CN 201911048519 A CN201911048519 A CN 201911048519A CN 110632764 B CN110632764 B CN 110632764B
Authority
CN
China
Prior art keywords
coupler
chaotic
wavelength division
optical fiber
division multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911048519.6A
Other languages
English (en)
Other versions
CN110632764A (zh
Inventor
张建国
李璞
王安帮
王云才
李才
桑鲁骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201911048519.6A priority Critical patent/CN110632764B/zh
Publication of CN110632764A publication Critical patent/CN110632764A/zh
Application granted granted Critical
Publication of CN110632764B publication Critical patent/CN110632764B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及混沌信号领域,具体为一种基于TOAD环的混沌光产生装置。解决了现有混沌系统具有时延特征,有被破解的风险的技术问题。本发明构建一种新型混沌光的产生装置,能够解决传统的混沌光产生方式所导致的问题,如时延特性等,有效消除其对混沌光系统的安全威胁。基于TOAD环作为熵源,具有开关速度快,所需探测光能量低,结构紧凑,以及特有的环形结构带来的固有的稳定性等优势。该混沌光作为一种相位混沌信号,为后期实现高速的采集量化过程提供可能和依据。该新型混沌光的产生装置可以产生宽频谱、高熵值的混沌光信号,其对保密通信系统、随机数发生器、光雷达、光纤传感等领域具有重要价值。

Description

一种基于TOAD环的混沌光产生装置
技术领域
本发明涉及混沌信号领域,具体为一种基于TOAD环的混沌光产生装置。
背景技术
混沌信号被广泛的应用于保密通信系统、随机数发生器、激光雷达等领域。这些领域主要利用了混沌信号的复杂度和不可预测特性。
传统的混沌激光的产生方式有多种,如光反馈混沌(Mork J , Tromborg B ,Mark J . Chaos in semiconductor lasers with optical feedback: theory andexperiment[J]. IEEE J Quantum Electron, 1992, 28(1):445-446 vol.2.)、光注入混沌(Simpson T B , Liu J M , Gavrielides A , et al. Period-doubling route tochaos in a semiconductor laser subject to optical injection[J]. AppliedPhysics Letters, 1994, 64(26):3539.)和光电反馈混沌(Tang S , Liu J M . Chaoticpulsing and quasi-periodic route to chaos in a semiconductor laser withdelayed opto-electronic feedback[J]. IEEE Journal of Quantum Electronics,2001, 37(3):329-336.)等。镜面光反馈混沌由于其装置简单和易操作被广泛用作混沌激光产生装置。
目前的研究发现,通过自相关函数,延时互信息量,排列熵等方法可以检测出混沌系统存在明显的时延特征。时延特征的存在会泄露混沌系统的外腔结构,降低系统的安全性。
而且,半导体激光器的混沌强度振荡通常受到激光器驰豫振荡频率的影响。通过频域分析,功率谱分布在驰豫振荡频率处有明显的尖峰,故限制了有效带宽;此外,由于通常电子采集设备类似于低通滤波器,故低频部分的能量受到抑制,限制了混沌光的使用效率。
考虑到传统混沌光信号产生方式所导致的问题,申请人提出一种基于TOAD环的混沌光产生装置。
发明内容
本发明为解决现有混沌系统具有时延特征,有被破解的风险的技术问题,提供一种基于TOAD环(太赫兹光非对称解复用器)的混沌光产生装置。
本发明是采用以下技术方案实现的:一种基于TOAD环的混沌光产生装置,包括分别注入连续探测光信号的第一偏振控制器和第二半导体光放大器;第一偏振控制器的输出端连接有第一3dB耦合器的一个输入端,第二半导体光放大器的输出端连接有光纤环形器的输入端,光纤环形器的反射端通过滤波器连接有第一3dB耦合器的另一个输入端;第一3dB耦合器的两个输出端之间顺次连接有第一波分复用器、可调光延迟线、第二偏振控制器、第一半导体光放大器和第二波分复用器,进而构成一个TOAD环;光纤环形器的输出端连接有第二3dB耦合器,第二3dB耦合器的一个输出端连接有第三3dB耦合器,第三3dB耦合器的两个输出端分别连接有长度不同的第一延迟光纤和第二延迟光纤;第一波分复用器的一个输入端与第一3dB耦合器的一个输出端相连接,第一波分复用器的另一个输入端与第一延迟光纤的输出端相连接;第二波分复用器的一个输入端与第一3dB耦合器的另一个输出端相连接,第二波分复用器的另一个输入端与第二延迟光纤的输出端相连接;第二3dB耦合器的另一个输出端输出新型混沌光。
如图1所示,第一连续探测光信号从A端输入经第一偏振控制器1、第一3dB耦合器2分为两路,CW (顺时针光)经第一波分复用器3、可调光延迟线4、第二偏振控制器5、第一半导体光放大器6、第二波分复用器7进入第一3dB耦合器2;CCW (逆时针光)经第二波分复用器7、第一半导体光放大器6、第二偏振控制器5、可调光延迟线4、第一波分复用器3进入第一3dB耦合器2,两束光信号在第一3dB耦合器2处发生干涉。干涉输出信号经光纤环形器9进入第二半导体光放大器10。与此同时,第二连续探测光信号从B端输入经第二半导体光放大器10、光纤环形器、第二3dB耦合器分为两路,一路经第三3dB耦合器分为两路,经过不同波分复用器作为控制光进入光纤环镜;剩余一路输出混沌光信号。
这里应指出,环内的可调光延迟线4用来改变第一半导体光放大器6在光纤环中的非对称偏移量,以实现第一半导体光放大器在环中间位置。在第一延迟光纤13和第二延迟光纤14不等长的情况下,使得经过第一波分复用器3和第二波分复用器7的信号光分别在不同时刻与和其同向传播的探测光在第一半导体光放大器6中发生交叉相位调制。
这里应指出,第一延迟光纤13和第二延迟光纤14的长度不一致。因此,两路反馈信号到达第一半导体光放大器6时间不相同,顺、逆时针探测信号经历不同的相位差,致使第一3dB耦合器2干涉相长,输出信号经滤波器8、光纤环形器9至第二半导体光放大器10,大量消耗其载流子,导致此时B端口输入的第二探测光信号,经第二半导体光放大器10输出低功率连续光,后经第二3dB耦合器11分为两路,其中一路作为反馈。
由于第一延迟光纤13和第二延迟光纤14之间的延时差,小于所用第二半导体光放大器的载流子恢复时间,使得半导体光放大器增益恢复不完全,SOA-MZI(基于半导体光放大器的马赫曾德尔干涉仪)干涉输出非正常信号。该过程依次循环,进而第二dB耦合器11处输出混沌光信号。
具体分析TOAD的传输方程可表示为:P out = [P cw +P ccw -2(P cw P ccw )1/2 cos(Φ cw -Φ ccw )]/4。这里P cw P ccw Φ cw Φ ccw 分别表示顺、逆时针探测信号经过第一半导体光放大器6引起的功率和相位变化。
当第一波分复用器3和第二波分复用器7无外部反馈光注入,只对顺、逆时针两路探测信号进行放大作用,对其相位差无影响,TOAD干涉相消,输出信号进入第二半导体光放大器10。此时,B端口反向输入的第二探测光信号在第二半导体光放大器10中发生交叉增益调制,经光纤环形器9和第二3dB耦合器11后反馈两路高功率信号。
当第一波分复用器3和第二波分复用器7只有一路外部高功率反馈光注入,当高功率反馈光注入第一半导体光放大器6时,与同时经过的探测光发生交叉相位调制效应,而与之对称的连续光没有发生变化,两路产生“π”的相位差,TOAD干涉相长,输出信号进入第二半导体光放大器10。此时,B端口反向输入的第二探测光信号在第二半导体光放大器10中发生交叉增益调制,经光纤环形器9和第二3dB耦合器11后反馈两路高功率信号。
当第一波分复用器3和第二波分复用器7都有外部高功率反馈光注入,与之同向传输的连续光在其经过第一半导体光放大器6时发生相同的交叉相位调制作用,两路无相位差,TOAD干涉相消,输出信号进入第二半导体光放大器10。此时,B端口反向输入的第二探测光信号在第二半导体光放大器10中发生交叉增益调制,经光纤环形器9和第二3dB耦合器11后反馈两路高功率信号。
由于第一延迟光纤13和第二延迟光纤14之间的延时差,小于所用半导体光放大器(SOA)的载流子恢复时间,使得半导体光放大器增益恢复不完全,TOAD干涉输出非正常信号。该过程依次循环,进而第二3dB耦合器11处输出混沌光信号。
本发明的有益效果:1、本发明构建一种新型混沌光的产生装置,能够解决传统的混沌光产生方式所导致的问题,如时延特性等,有效消除其对混沌光系统的安全威胁。
2、基于TOAD环作为熵源,具有开关速度快,所需探测光能量低,结构紧凑,以及特有的环形结构带来的固有的稳定性等优势。
3、该混沌光作为一种相位混沌信号,为后期实现高速的采集量化过程提供可能和依据。
4、而且,该新型混沌光的产生装置可以产生宽频谱、高熵值的混沌光信号,其对保密通信系统、随机数发生器、光雷达、光纤传感等领域具有重要价值。
附图说明
图1 本发明所述装置的结构示意图。
1、第一偏振控制器;2、第一3dB耦合器;3、第一波分复用器;4、可调光延迟线;5、第二偏振控制器;6、第一半导体光放大器;7、第二波分复用器;8、滤波器;9、光纤环形器;10、第二半导体光放大器;11、第二3dB耦合器;12、第三3dB耦合器;13、第一延迟光纤;14、第二延迟光纤。
具体实施方式
注入第一偏振控制器1和第二半导体光放大器10的探测光波长不同。
注入第一偏振控制器1和第二半导体光放大器10的探测光功率都不超过1mW。
第三3dB耦合器12的两个输出端所连接的两反馈回路中,第一延迟光纤13和第二延迟光纤14长度不同。
第三3dB耦合器12的两个输出端所连接的两反馈回路中光延时差小于半导体光放大器载流子恢复时间。
如图1所示,第一连续探测光信号从A端输入经第一偏振控制器1、第一3dB耦合器2分为两路,CW (顺时针光)经第一波分复用器3可调光延迟线4、第二偏振控制器5、第一半导体光放大器6、第二波分复用器7进入第一3dB耦合器2;CCW (逆时针光)经第二波分复用器7第一半导体光放大器6、第二偏振控制器5、可调光延迟线4、第一波分复用器3进入第一3dB耦合器2,两束光信号在第一3dB耦合器2处发生干涉。干涉输出信号经光纤环形器9进入第二半导体光放大器10。与此同时,第二连续探测光信号从B端输入经第二半导体光放大器10、光纤环形器、第二3dB耦合器分为两路,一路经第三3dB耦合器分为两路,经过不同波分复用器作为控制光进入光纤环镜;剩余一路输出混沌光信号。
以功率0.5mW、波长1550nm的连续光作为第一连续探测光信号,由A端输入经第一偏振控制器1、第二3dB耦合器2分为两路,CW光(顺时针光)经第一波分复用器、可调光延迟线4、第二偏振控制器5、第一半导体光放大器6、第二波分复用器7回至第一3dB耦合器2;CCW光(逆时针光)经第二波分复用器7、第一半导体光放大器6、第二偏振控制器5、可调光延迟线4、第一波分复用器3回至第一3dB耦合器2。由于第一3dB耦合器2、第一波分复用器3、可调光延迟线4、第二偏振控制器5、第一半导体光放大器6、第二波分复用器7构成一个TOAD。在无高功率反馈信号通过第一波分复用器3和第二波分复用器7注入TOAD,消耗SOA(第一半导体光放大器)其载流子的情况下,两束探测信号经历相同的增益与相位变化,故干涉相消,输出信号经滤波器8、光纤环形器9至第二半导体光放大器10,不消耗其载流子。B端口输入功率0.5mW、波长1554nm的连续光作为第二探测光信号,经第二半导体光放大器10输出高功率连续光,经光纤环形器9和第二3dB耦合器11分为两路,其中一路经第三3dB耦合器12分为两路,分别经第一延迟光纤13、第一波分复用器3和第二延迟光纤14、第二波分复用器7反馈至TOAD;另外一路直接从C端作为输出信号。
由于第一延迟光纤13第二延迟光纤14之间的延时差小于所用SOA第二半导体光放大器10的载流子恢复时间,使得SOA增益恢复不完全,TOAD干涉输出非正常信号。该过程依次循环,进而C端输出混沌光信号。

Claims (3)

1.一种基于TOAD环的混沌光产生装置,其特征在于,包括分别注入连续探测光信号的第一偏振控制器(1)和第二半导体光放大器(10);第一偏振控制器(1)的输出端连接有第一3dB耦合器(2)的一个输入端,第二半导体光放大器(10)的输出端连接有光纤环形器(9)的输入端,光纤环形器(9)的反射端通过滤波器(8)连接有第一3dB耦合器(2)的另一个输入端;第一3dB耦合器(2)的两个输出端之间顺次连接有第一波分复用器(3)、可调光延迟线(4)、第二偏振控制器(5)、第一半导体光放大器(6)和第二波分复用器(7),进而构成一个TOAD环;光纤环形器(9)的输出端连接有第二3dB耦合器(11),第二3dB耦合器(11)的一个输出端连接有第三3dB耦合器(12),第三3dB耦合器(12)的两个输出端分别连接有长度不同的第一延迟光纤(13)和第二延迟光纤(14);第一波分复用器(3)的一个输入端与第一3dB耦合器(2)的一个输出端相连接,第一波分复用器(3)的另一个输入端与第一延迟光纤(13)的输出端相连接;第二波分复用器(7)的一个输入端与第一3dB耦合器(2)的另一个输出端相连接,第二波分复用器(7)的另一个输入端与第二延迟光纤(14)的输出端相连接;第二3dB耦合器(11)的另一个输出端输出新型混沌光;注入第一偏振控制器(1)和第二半导体光放大器(10)的探测光波长不同。
2.如权利要求1所述的一种基于TOAD环的混沌光产生装置,其特征在于注入第一偏振控制器(1)和第二半导体光放大器(10)的探测光功率都不超过1mW。
3.如权利要求1所述的一种基于TOAD环的混沌光产生装置,其特征在于第三3dB耦合器(12)的两个输出端所连接的两反馈回路中光延时差小于第二半导体光放大器(10)载流子恢复时间。
CN201911048519.6A 2019-10-31 2019-10-31 一种基于toad环的混沌光产生装置 Active CN110632764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911048519.6A CN110632764B (zh) 2019-10-31 2019-10-31 一种基于toad环的混沌光产生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911048519.6A CN110632764B (zh) 2019-10-31 2019-10-31 一种基于toad环的混沌光产生装置

Publications (2)

Publication Number Publication Date
CN110632764A CN110632764A (zh) 2019-12-31
CN110632764B true CN110632764B (zh) 2021-05-25

Family

ID=68978399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911048519.6A Active CN110632764B (zh) 2019-10-31 2019-10-31 一种基于toad环的混沌光产生装置

Country Status (1)

Country Link
CN (1) CN110632764B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759077B2 (ja) * 2009-08-03 2011-08-31 日本電信電話株式会社 乱数を発生させる装置および方法
CN103929152A (zh) * 2014-04-25 2014-07-16 北京交通大学 一种基于toad结构的rz码占空比调节器
CN104113307A (zh) * 2014-07-07 2014-10-22 北京交通大学 一种全光时钟倍频装置及基于此装置的倍频方法
CN104393920A (zh) * 2014-11-13 2015-03-04 李舒琴 一种基于相移光纤光栅光纤环镜的全光采样器
CN105938286A (zh) * 2016-06-03 2016-09-14 杭州电子科技大学 一种基于受激布里渊效应的时间展宽模数转换器
CN108964873A (zh) * 2018-08-01 2018-12-07 武汉邮电科学研究院有限公司 混沌光网络的物理层防护方法、系统、组网方法及网络
CN109194464A (zh) * 2018-11-14 2019-01-11 太原理工大学 一种多路信息高速传输混沌保密通信的装置及方法
CN109297425A (zh) * 2018-08-23 2019-02-01 太原理工大学 一种物理随机数调制的布里渊光时域反射仪
US10205592B2 (en) * 2015-10-12 2019-02-12 Nec Corporation Physical layer key distribution for long distance repeated networks using random environmental instability
CN109586804A (zh) * 2017-09-28 2019-04-05 中国工程物理研究院电子工程研究所 一种提高太赫兹频段无线通信保密性能的系统架构
CN109743114A (zh) * 2019-01-11 2019-05-10 太原理工大学 一种双向多路混沌激光通信系统及通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778014A (en) * 1996-12-23 1998-07-07 Islam; Mohammed N. Sagnac raman amplifiers and cascade lasers
KR100351187B1 (ko) * 2000-11-07 2002-09-05 이호준 코드분할 다중화방식을 이용한 다중 광섬유 브래그 격자센서의 신호처리 장치
WO2006071971A2 (en) * 2004-12-23 2006-07-06 Massachusetts Institute Of Technology Reconfigurable polarization independent interferometers and methods of stabilization
US7248695B1 (en) * 2006-02-10 2007-07-24 Magiq Technologies, Inc. Systems and methods for transmitting quantum and classical signals over an optical network
CN100362366C (zh) * 2006-04-30 2008-01-16 太原理工大学 光纤激光器混沌激光测距装置及方法
CN101977065B (zh) * 2010-10-13 2013-05-01 太原理工大学 一种超宽带混沌信号发生器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759077B2 (ja) * 2009-08-03 2011-08-31 日本電信電話株式会社 乱数を発生させる装置および方法
CN103929152A (zh) * 2014-04-25 2014-07-16 北京交通大学 一种基于toad结构的rz码占空比调节器
CN104113307A (zh) * 2014-07-07 2014-10-22 北京交通大学 一种全光时钟倍频装置及基于此装置的倍频方法
CN104393920A (zh) * 2014-11-13 2015-03-04 李舒琴 一种基于相移光纤光栅光纤环镜的全光采样器
US10205592B2 (en) * 2015-10-12 2019-02-12 Nec Corporation Physical layer key distribution for long distance repeated networks using random environmental instability
CN105938286A (zh) * 2016-06-03 2016-09-14 杭州电子科技大学 一种基于受激布里渊效应的时间展宽模数转换器
CN109586804A (zh) * 2017-09-28 2019-04-05 中国工程物理研究院电子工程研究所 一种提高太赫兹频段无线通信保密性能的系统架构
CN108964873A (zh) * 2018-08-01 2018-12-07 武汉邮电科学研究院有限公司 混沌光网络的物理层防护方法、系统、组网方法及网络
CN109297425A (zh) * 2018-08-23 2019-02-01 太原理工大学 一种物理随机数调制的布里渊光时域反射仪
CN109194464A (zh) * 2018-11-14 2019-01-11 太原理工大学 一种多路信息高速传输混沌保密通信的装置及方法
CN109743114A (zh) * 2019-01-11 2019-05-10 太原理工大学 一种双向多路混沌激光通信系统及通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Repetition Rate Multiplication of Pseudorandom;Zhenchao Sun等;《2014 Asia Communications and Photonics Conference》;20190411;1-3 *
基于太赫兹光非对称解复用器结构的低开关能量、;江镭;《物理学报》;20150815;1-7 *

Also Published As

Publication number Publication date
CN110632764A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN111277338B (zh) 一种产生宽带混沌激光的装置
CN109244823B (zh) 一种高带宽与时延标签隐藏的混沌激光产生方法和系统
Nguyen et al. Photonic radio frequency memory using frequency shifting recirculating delay line structure
Kaur et al. Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier
CN108508676A (zh) 基于相位调制和光纤腔孤子的间隔可调光频梳及产生方法
Li et al. Correlation optical time domain reflectometry based on broadband random optoelectronic oscillator
Rodríguez-Morales et al. Sub-200-kHz single soliton generation in a long ring Er-fiber laser with strict polarization control by using twisted fiber
Rosado et al. High-density and broad band optical frequency combs generated by pseudo-random phase modulation of optically injected gain-switched semiconductor lasers
CN110632764B (zh) 一种基于toad环的混沌光产生装置
Hirano et al. Generation of flat optical frequency comb by fiber loop modulation
Wu et al. Selective amplification of frequency comb modes via optical injection locking of a semiconductor laser: influence of adjacent unlocked comb modes
Gao et al. An all-fiber mode-locked pulse laser by fiber Bragg grating-based acousto-optic frequency shifter
Tang et al. Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator
Li et al. Quadrature phase-shift keying modulation with random coding pulse for long-range ϕ-OTDR
Sun et al. All-optical repetition rate multiplication of pseudorandom bit sequences based on cascaded TOADs
Ge et al. Optical-injection-seeded optical frequency comb generation promoted by the sub-harmonic modulation
Deng et al. Structure optimization and a detailed characteristic analysis for distributed Brillouin laser sensors
CN219329481U (zh) 一种宽带复杂混沌激光产生装置
Kowalski et al. Noise waveforms generated by frequency shifted feedback lasers: application to multiple access communications
Wang et al. Wideband and flat-spectrum chaos generation from a semiconductor laser with strong dispersive light feedback
Kim et al. All-optical flip-flop based on optical beating and bistability in an injection-locked Fabry-Perot Laser Diode
He et al. Stable and switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on a fiber ring filter
Zhao et al. Self-Oscillating Broadband Optical Frequency Comb Generation Using an EML-Based Optoelectronic Oscillator and a Recirculating Frequency Shifter
Gou et al. Photonic generation of phase-coded linearly frequency modulation signals with increased TBWP
Zhang et al. Chaotic light generation and its application in communication, sensor, radar

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant