CN110631710A - 一种无挡片红外测温方法及装置 - Google Patents

一种无挡片红外测温方法及装置 Download PDF

Info

Publication number
CN110631710A
CN110631710A CN201910994493.8A CN201910994493A CN110631710A CN 110631710 A CN110631710 A CN 110631710A CN 201910994493 A CN201910994493 A CN 201910994493A CN 110631710 A CN110631710 A CN 110631710A
Authority
CN
China
Prior art keywords
temperature
detector
target
temperatures
linear regression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910994493.8A
Other languages
English (en)
Other versions
CN110631710B (zh
Inventor
陆桂富
范少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hai Tv Ying Ke Photoelectric (suzhou) Co Ltd
Original Assignee
Hai Tv Ying Ke Photoelectric (suzhou) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hai Tv Ying Ke Photoelectric (suzhou) Co Ltd filed Critical Hai Tv Ying Ke Photoelectric (suzhou) Co Ltd
Priority to CN201910994493.8A priority Critical patent/CN110631710B/zh
Publication of CN110631710A publication Critical patent/CN110631710A/zh
Application granted granted Critical
Publication of CN110631710B publication Critical patent/CN110631710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本发明揭示了一种无挡片红外测温方法及装置,在红外热成像仪机芯无挡片的情况下,通过采集机芯在不同环境温度下热机稳定后的数据,计算出虚拟环境温度及虚拟目标灰度,进一步根据目标温度变化时对应的灰度变化获得预估目标温度,最后根据探测器温度变化情况并结合预估目标温度,进行温度修正,获得精确测量的目标温度。本发明能够准确、稳定的测量目标温度。

Description

一种无挡片红外测温方法及装置
技术领域
本发明涉及红外图像处理技术领域,尤其是涉及一种无挡片红外测温方法及装置。
背景技术
随着电子技术的发展,红外成像和红外测温越来越广泛地应用到人们生产和生活的多个领域。红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥着重要作用。
无挡片热成像仪在图像观测方面具有不间断观测优势,从而越来越普及。但是无挡片热成像仪由于去除了挡片,而挡片是传统热像仪中非常重要的一个结构,它可以消除红外探测器的温度漂移,对测温有着直接的影响。
目前无挡片热像仪受到设备本身温度及光学结构的影响,往往测温精度不高,测温精度波动大,稳定性差。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种精度高、稳定性高的无挡片红外测温方法及装置。
为实现上述目的,本发明提出如下技术方案:一种无挡片红外测温方法,包括如下步骤:
步骤S100,采集机芯在不同环境温度下热机稳定后的探测器温度和目标灰度;
步骤S200,根据步骤S100采集的数据建立用于根据探测器温度计算虚拟环境温度Ts的多元线性回归模型Ⅰ和用于根据虚拟环境温度Ts计算不同探测器温度下虚拟目标灰度Gs的多元线性回归模型Ⅱ,进一步计算不同探测器温度下虚拟环境温度Ts,及虚拟目标灰度Gs;
步骤S300,设置至少三个黑体,且为每个黑体设置不同的目标温度,将充分冷却后的机芯开机后采集每个目标温度在不同探测器温度下的灰度数据;
步骤S400,根据步骤S300采集的数据建立用于根据探测器温度计算灰度差△G对应温度差△T的多元线性回归模型Ⅲ,进一步计算不同探测器温度下灰度差△G对应的温度差△T,及预估目标温度Te=Ts+△T;
步骤S500,根据机芯由冷机到热机状态下探测器温度的变化率对步骤S400获得的预估目标温度Te进行修正,获得需要修正的温度差△T′,进而获得目标温度T=Te-△T′。
优选地,在步骤S200中,所述多元线性回归模型Ⅰ为:
Figure BDA0002239324060000021
其中,T0~Tn为环境温度,V0~Vn为环境温度T0~Tn对应的探测器温度,β~N(0,σ2)。
优选地,在步骤S200中,所述多元线性回归模型Ⅱ为:
其中,T0~Tn为环境温度,G0~Gn为环境温度T0~Tn对应的目标灰度,V0~Vn为环境温度T0~Tn对应的探测器温度,β~N(0,σ2)。
优选地,在步骤S300中,设置三个黑体,且设置三个黑体的目标温度分别为TA、TB和TC,其中,TB-TA<10℃,TC-TB>80℃。
优选地,在步骤S200中,所述多元线性回归模型Ⅲ为:
Figure BDA0002239324060000031
其中,V0~Vn为探测器温度,△G0~△Gn为探测器温度V0~Vn对应的灰度差,△T0=TB-TA,△T1=TC-TB
优选地,在步骤S500中,根据如下步骤获得需要修正的温度差△T′:
步骤S501,设置一具有目标温度Td的黑体;
步骤S502,计算不同探测器温度下目标温度Td与预估目标温度Te的差值,及探测器温度变化率;
步骤S503,根据步骤S502获得的数据建立用于根据探测器温度变化率计算需要修正的温度差△T′的多元线性回归方程Ⅳ,进一步根据探测器温度变化率计算需要修正的温度差△T′。
优选地,所述多元线性回归方程Ⅳ为:
Figure BDA0002239324060000032
其中,△T0′~△Tn′为探测器温度V0~Vn对应的温度差,VV0~VVn为探测器温度V0~Vn对应的探测器温度变化率。
优选地,在步骤S100中,环境温度范围为-20℃~60℃。
本发明还揭示了一种无挡片红外测温装置,包括
高低温环境数据采集模块,用于采集机芯在不同环境温度下热机稳定后的探测器温度和目标灰度;
第一数据处理模块,用于根据高低温环境数据采集模块采集的数据建立用于根据探测器温度计算虚拟环境温度Ts的多元线性回归模型Ⅰ和用于根据虚拟环境温度Ts计算不同探测器温度下虚拟目标灰度Gs的多元线性回归模型Ⅱ,进一步计算不同探测器温度下虚拟环境温度Ts,及虚拟目标灰度Gs;
增益采集模块,用于设置至少三个黑体,且为每个黑体设置不同的目标温度,将充分冷却后的机芯开机后采集每个目标温度在不同探测器温度下的灰度数据;
第二数据处理模块,用于根据增益采集模块采集的数据建立用于根据探测器温度计算灰度差△G对应温度差△T的多元线性回归模型Ⅲ,进一步计算不同探测器温度下灰度差△G对应的温度差△T,及预估目标温度Te=Ts+△T;
温度修正模块,用于根据机芯由冷机到热机状态下探测器温度的变化率对步骤S400获得的预估目标温度Te进行修正,获得需要修正的温度差△T′,进而获得目标温度T=Te-△T′。
优选地,增益采集模块设置三个黑体,且设置三个黑体的目标温度分别为TA、TB和TC,其中,TB-TA<10℃,TC-TB>80℃。
本发明的有益效果是:
(1)本发明能够在无挡片情况下,通过采集机芯在不同环境温度下热机稳定后的数据,计算出虚拟环境温度及虚拟目标灰度,进一步根据目标温度变化时对应的灰度变化获得预估目标温度,最后根据探测器温度变化情况并结合预估目标温度,进行温度修正,获得精确测量的目标温度;
(2)本发明还能够实时调整需要修正的温度差,进而实现精确测温功能。
附图说明
图1是本发明的方法流程图示意图;
图2是本发明的装置结构框图示意图。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
本发明所揭示的一种无挡片红外测温方法,在红外机芯没有机械挡片的情况下,通过采集机芯在不同环境温度下热机稳定后的数据,计算虚拟环境温度及虚拟目标灰度,进一步根据目标温度变化时对应的灰度变化获得预估目标温度,最后根据探测器温度变化情况并结合预估目标温度,进行温度修正,以获得精确的目标温度。
如图1所示,本发明所揭示的一种无挡片红外测温方法,包括如下步骤:
步骤S100,采集机芯在不同环境温度下热机稳定后的探测器温度和目标灰度;
步骤S200,根据步骤S100采集的数据建立用于根据探测器温度计算虚拟环境温度Ts的多元线性回归模型Ⅰ和用于根据虚拟环境温度Ts计算虚拟目标灰度Gs的多元线性回归模型Ⅱ,进一步计算不同探测器温度下虚拟环境温度Ts,及虚拟目标灰度Gs;
具体地,具体实施时将红外热成像仪机芯置于高低温箱中进行数据采集,也即首先将高低温箱的环境温度设置为T0,如-20℃,当机芯热机稳定后采集环境温度T0时的探测器温度V0和随温目标灰度G0;其次,将高低温箱的环境温度设置为T1,如-15℃或-10℃,当机芯热机稳定后采集环境温度T1时的探测器温度V1和随温目标灰度G1,随温目标温度是指目标温度同环境温度相同;依次类推,逐步提高高低温箱的环境温度,将环境温度逐渐上升至Tn,同时采集不同环境下机芯热机稳定后的探测器温度和目标灰度,进而获得如下表所示数据。
表一
探测器温度(Vtemp) 随温目标温度(Gray) 环境温度T 目标温度Temp
V0 G0 T0 T0
V1 G1 T1 T1
V2 G2 T2 T2
Vn Gn Tn Tn
具体实施时,可根据实际需求设置环境温度的范围,本实施例中,高低温箱的环境温度的范围优选-20℃~60℃。
进一步地,根据表一首先建立用于根据探测器温度计算虚拟环境温度的多元线性回归模型(1.1),如下所示:
Figure BDA0002239324060000061
其中,Vn为自变量,表示环境温度Tn时的探测器温度,β是去除自变量Vn对温度Tn的影响后的随机误差,且β~N(0,σ2)。
将表一中的数据代入上述多元线性回归模型(1.1)中求解多元线性回归系数K0、K1、K2和K3。具体实施时,将上述多元线性回归模型(1.1)写成矩阵形式:
T=K×V+β
根据最小二乘法寻找多元线性回归系数K0、K1、K2和K3的适宜数值A0、A1、A2和A3,使的实际观测值和多元线性回归模型(1.1)的估计值之间的残差平方和最小,即:
Figure BDA0002239324060000071
根据最小二乘法理论,对上式中的A0、A1、A2和A3分别求偏导,并另偏导数为0,可获得如下4个方程,求解方程即可以得出最小二乘估计值:
Figure BDA0002239324060000072
A0、A1、A2和A3即为要求解的K0、K1、K2和K3的最小二乘估计值。机芯开机后,可已知当前探测器温度Vtemp时,可将当前探测器温度Vtemp代入上述多元线性回归模型(1.1)中即可计算出当前探测器温度Vtemp下虚拟环境温度Ts,同理,可通过多元线性回归模型(1.1)求解出不同探测器温度Vtemp下虚拟环境温度Ts。
更进一步地,由于机芯热机稳定后,目标温度与环境温度一致,也即虚拟目标温度与虚拟环境温度保持一致。为了计算虚拟目标温度对应的虚拟目标灰度,根据表一建立如下多元线性回归模型(1.2),如下所示:
Figure BDA0002239324060000073
将表一中的数据代入上述多元线性回归模型(1.2)中求解多元线性回归系数K0'、K1'、K2'和K3'的最小二乘估计值A0'、A1'、A2'和A3'。当已知当前探测器温度Vtemp及虚拟环境温度Ts时,将两者代入上述多元线性回归模型(1.2)中即可计算出当前探测器温度Vtemp下虚拟目标温度Ts对应的虚拟目标灰度Gs。
步骤S300,设置至少三个黑体,且为每个黑体设置不同的目标温度,将充分冷却后的机芯开机后采集每个目标温度在不同探测器温度下的灰度数据;
步骤S400,根据步骤S300采集的数据建立用于根据探测器温度计算灰度差△G对应温度差△T的多元线性回归模型Ⅲ,进一步计算不同探测器温度下灰度差△G对应的温度差△T,及预估目标温度Te=Ts+△T;
具体地,采集增益的目的是为了计算出温度差所对应的灰度差。由于探测器温度Vtemp及目标温度的高低均会对目标温度对应的灰度产生影响,因此通过借助黑体进行数据的采集,以确定目标温度变化时对应的灰度变化情况,也即获取不同探测器温度Vtemp下温度差△T与灰度差△G之间的关系。本实施例中,以设置三个黑体为例,并将三个黑体的目标温度分别设置为TA、TB和TC,其中,TB-TA<10℃,TC-TB>80℃。具体实施时,可根据实际需求设置黑体的数量及黑体的温度。
采集三个目标温度对应的灰度数据时,首先使机芯充分冷却一段时间,开机后尽快连续的采集三个目标温度在不同探测器温度下对应的灰度数据,初始时可适当提高采集密度,然而热机过程中可降低采集密度,并且需在同一个探测器温度下采集三个目标温度对应的灰度数据,最终获得如下表所示数据。
表二
Figure BDA0002239324060000081
Figure BDA0002239324060000091
进一步地,根据表二建立用于计算不同探测器温度下灰度差△G对应温度差△T的多元线性回归模型(2.1),如下所示:
Figure BDA0002239324060000092
将表二中的数据代入上述多元线性回归模型(2.1)中求解多元线性回归系数K0″、K1″、K2″、K3″、K4″和K5″的最小二乘估计值A0″、A1″、A2″、A3″、A4″和A5″。当已知当前探测器温度Vtemp及灰度差△G=G-Gs时,其中,G为采集到的目标灰度,Gs为当前探测器温度Vtemp下虚拟目标灰度,将两者代入上述多元线性回归模型(2.1)中即可计算出当前探测器温度Vtemp下温度差△T,同理,可通过多元线性回归模型(2.1)求解出不同探测器温度Vtemp下灰度差△G对应的温度差△T。
更进一步地,不同探测器温度Vtemp下预估目标温度Te=Ts+△T,其中,Ts为不同探测器温度Vtemp对应的虚拟环境温度,△T为不同探测器温度Vtemp对应的温度差。
步骤S500,根据机芯由冷机到热机状态下探测器温度的变化率对步骤S400获得的预估目标温度Te进行修正,使测得的目标温度T=Te-△T′,△T′为需要修正的温度差。
具体地,机芯升温过程中,探测器温度Vtemp逐渐升高,并且变化率逐渐减小。当探测器温度Vtemp变化时,预估目标温度Te也随之发生变化。在机芯未达到稳定状态之前,预估目标温度Te与实际环境温度存在偏差,并且偏差随着探测器温度Vtemp变化率的减小而逐渐减小,进而可根据探测器温度Vtemp的变化率对预估目标温度Te进行修正。
具体实施时,设置一黑体,并将黑体的目标温度为Td,通过步骤S100至步骤S400由当前探测器温度Vtemp及采集获得的目标灰度G,分别计算当前探测器温度Vtemp下的虚拟环境温度Ts和温度差△T,进而获得当前探测器温度Vtemp下的预估目标温度Te=Ts+△T。
进一步地,需要修正的温度差△T′=Td-Te,其中需要修正的温度差△T′与探测器温度Vtemp变化率有关。通过计算不同探测器温度Vtemp下需要修正的温度差,及不同探测器温度Vtemp下的探测器温度变化率形成如下数据表:
表三
需要校正的温度差△T′=Td-Te 探测器温度变化率VV
△T<sub>0</sub>′ VV<sub>0</sub>
△T<sub>1</sub>′ VV<sub>1</sub>
△T<sub>n</sub>′ VV<sub>n</sub>
进一步地,根据表三建立用于根据当前探测器温度变化率计算需要修正的温度差的多元线性回归方程(3.1),如下所示:
Figure BDA0002239324060000101
将表三中的数据代入上述多元线性回归模型(3.1)中求解多元线性回归系数K0″′、K1″′、K2″′和K3″′的最小二乘估计值A0″′、A1″′、A2″′和A3″′。当已知当前探测器温度变化率时可根据上述多元线性回归模型(3.1)求解出当前探测器温度Vtemp下需要校正的温度差△T′,进而获得测得的目标温度T=Te-△T′。
本发明所述的无挡片红外测温方法,可在红外机芯没有机械挡片的情况下,自动跟踪红外机芯的工作状态,实时调整需要修正的温度差,进而实现精确测温功能。
如图2所示,本发明还揭示了一种无挡片红外测温装置,包括高低温环境数据采集模块、第一数据处理模块、增益采集模块、第二数据处理模块和温度修正模块。
其中,高低温环境数据采集模块用于采集红外热成像仪机芯在不同环境温度下热机稳定后的探测器温度和目标灰度;
第一数据处理模块用于根据高低温环境数据采集模块采集的数据建立用于根据探测器温度计算虚拟环境温度Ts的多元线性回归模型Ⅰ和用于根据虚拟环境温度Ts计算不同探测器温度下虚拟目标灰度Gs的多元线性回归模型Ⅱ,进一步计算不同探测器温度下虚拟环境温度Ts,及虚拟目标灰度Gs;
增益采集模块用于设置至少三个黑体,且为每个黑体设置不同的目标温度,将充分冷却后的机芯开机后采集每个目标温度在不同探测器温度下的灰度数据;
第二数据处理模块用于根据增益采集模块采集的数据建立用于根据探测器温度计算灰度差△G对应温度差△T的多元线性回归模型Ⅲ,进一步计算不同探测器温度下灰度差△G对应的温度差△T,及预估目标温度Te=Ts+△T;
温度修正模块用于根据机芯由冷机到热机状态下探测器温度的变化率对预估目标温度Te进行修正,获得需要修正的温度差△T′,进而获得目标温度T=Te-△T′。
具体实施时,高低温环境数据采集模块、第一数据处理模块、增益采集模块、第二数据处理模块和温度修正模块的具体处理过程详见上述。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (10)

1.一种无挡片红外测温方法,其特征在于,包括如下步骤:
步骤S100,采集红外热成像仪机芯在不同环境温度下热机稳定后的探测器温度和目标灰度;
步骤S200,根据步骤S100采集的数据建立用于根据探测器温度计算虚拟环境温度Ts的多元线性回归模型Ⅰ和用于根据虚拟环境温度Ts计算虚拟目标灰度Gs的多元线性回归模型Ⅱ,进一步计算不同探测器温度下虚拟环境温度Ts,及虚拟目标灰度Gs;
步骤S300,设置至少三个黑体,且为每个黑体设置不同的目标温度,将充分冷却后的机芯开机后采集每个目标温度在不同探测器温度下的灰度数据;
步骤S400,根据步骤S300采集的数据建立用于根据探测器温度计算灰度差△G对应温度差△T的多元线性回归模型Ⅲ,进一步计算不同探测器温度下灰度差△G对应的温度差△T,及预估目标温度Te=Ts+△T;
步骤S500,根据机芯由冷机到热机状态下探测器温度的变化率对步骤S400获得的预估目标温度Te进行修正,获得需要修正的温度差△T′,进而获得目标温度T=Te-△T′。
2.根据权利要求1所述的方法,其特征在于,在步骤S200中,所述多元线性回归模型Ⅰ为:
Figure FDA0002239324050000011
其中,T0~Tn为环境温度,V0~Vn为环境温度T0~Tn对应的探测器温度,β~N(0,σ2)。
3.根据权利要求1所述的方法,其特征在于,在步骤S200中,所述多元线性回归模型Ⅱ为:
Figure FDA0002239324050000021
其中,T0~Tn为环境温度,G0~Gn为环境温度T0~Tn对应的目标灰度,V0~Vn为环境温度T0~Tn对应的探测器温度,β~N(0,σ2)。
4.根据权利要求1所述的方法,其特征在于,在步骤S300中,设置三个黑体,且设置三个黑体的目标温度分别为TA、TB和TC,其中,TB-TA<10℃,TC-TB>80℃。
5.根据权利要求4所述的方法,其特征在于,在步骤S200中,所述多元线性回归模型Ⅲ为:
Figure FDA0002239324050000022
其中,V0~Vn为探测器温度,△G0~△Gn为探测器温度V0~Vn对应的灰度差,△T0=TB-TA,△T1=TC-TB
6.根据权利要求1所述的方法,其特征在于,在步骤S500中,根据如下步骤获得需要修正的温度差△T′:
步骤S501,设置一具有目标温度Td的黑体;
步骤S502,计算不同探测器温度下目标温度Td与预估目标温度Te的差值,及探测器温度变化率;
步骤S503,根据步骤S502获得的数据建立用于根据探测器温度变化率计算需要修正的温度差△T′的多元线性回归方程Ⅳ,进一步计算不同探测器温度下需要修正的温度差△T′。
7.根据权利要求6所述的方法,其特征在于,所述多元线性回归方程Ⅳ为:
Figure FDA0002239324050000031
其中,△T0′~△Tn′为探测器温度V0~Vn对应的温度差,VV0~VVn为探测器温度V0~Vn对应的探测器温度变化率。
8.根据权利要求1所述的方法,其特征在于,在步骤S100中,环境温度范围为-20℃~60℃。
9.一种无挡片红外测温装置,其特征在于,包括
高低温环境数据采集模块,用于采集红外热成像仪机芯在不同环境温度下热机稳定后的探测器温度和目标灰度;
第一数据处理模块,用于根据高低温环境数据采集模块采集的数据建立用于根据探测器温度计算虚拟环境温度Ts的多元线性回归模型Ⅰ和用于根据虚拟环境温度Ts计算不同探测器温度下虚拟目标灰度Gs的多元线性回归模型Ⅱ,进一步计算不同探测器温度下虚拟环境温度Ts,及虚拟目标灰度Gs;
增益采集模块,用于设置至少三个黑体,且为每个黑体设置不同的目标温度,将充分冷却后的机芯开机后采集每个目标温度在不同探测器温度下的灰度数据;
第二数据处理模块,用于根据增益采集模块采集的数据建立用于根据探测器温度计算灰度差△G对应温度差△T的多元线性回归模型Ⅲ,进一步计算不同探测器温度下灰度差△G对应的温度差△T,及预估目标温度Te=Ts+△T;
温度修正模块,用于根据机芯由冷机到热机状态下探测器温度的变化率对预估目标温度Te进行修正,获得需要修正的温度差△T′,进而获得目标温度T=Te-△T′。
10.根据权利要求9所述的装置,其特征在于,增益采集模块设置三个黑体,且设置三个黑体的目标温度分别为TA、TB和TC,其中,TB-TA<10℃,TC-TB>80℃。
CN201910994493.8A 2019-10-18 2019-10-18 一种无挡片红外测温方法及装置 Active CN110631710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910994493.8A CN110631710B (zh) 2019-10-18 2019-10-18 一种无挡片红外测温方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910994493.8A CN110631710B (zh) 2019-10-18 2019-10-18 一种无挡片红外测温方法及装置

Publications (2)

Publication Number Publication Date
CN110631710A true CN110631710A (zh) 2019-12-31
CN110631710B CN110631710B (zh) 2020-12-04

Family

ID=68976726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910994493.8A Active CN110631710B (zh) 2019-10-18 2019-10-18 一种无挡片红外测温方法及装置

Country Status (1)

Country Link
CN (1) CN110631710B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111401349A (zh) * 2020-06-08 2020-07-10 广州图普网络科技有限公司 一种人脸测温方法、装置、电子设备及存储介质
CN113096041A (zh) * 2021-04-08 2021-07-09 杭州海康消防科技有限公司 图像校正方法及装置
CN113138025A (zh) * 2021-03-18 2021-07-20 深圳市科陆精密仪器有限公司 一种红外测温设备的自动校准方法及装置
CN113566973A (zh) * 2021-07-23 2021-10-29 无锡英菲感知技术有限公司 一种温度修正方法及组件,一种红外测温探测器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768347A (zh) * 2016-11-17 2017-05-31 中国航空工业集团公司洛阳电光设备研究所 一种无补偿装置的非制冷红外测温仪的测温方法
CN107036715A (zh) * 2017-03-30 2017-08-11 智来光电科技(苏州)有限公司 一种红外图像无挡片非均匀性校正装置及其校正方法
CN109798982A (zh) * 2019-03-07 2019-05-24 杭州新瀚光电科技有限公司 一种无挡片热像仪及其测温矫正算法
US20190195694A1 (en) * 2017-12-26 2019-06-27 National Chung-Shan Institute Of Science And Technology Temperature measurement correction method, electronic system and method of generating correction regression coefficient table

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768347A (zh) * 2016-11-17 2017-05-31 中国航空工业集团公司洛阳电光设备研究所 一种无补偿装置的非制冷红外测温仪的测温方法
CN107036715A (zh) * 2017-03-30 2017-08-11 智来光电科技(苏州)有限公司 一种红外图像无挡片非均匀性校正装置及其校正方法
US20190195694A1 (en) * 2017-12-26 2019-06-27 National Chung-Shan Institute Of Science And Technology Temperature measurement correction method, electronic system and method of generating correction regression coefficient table
CN109798982A (zh) * 2019-03-07 2019-05-24 杭州新瀚光电科技有限公司 一种无挡片热像仪及其测温矫正算法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111401349A (zh) * 2020-06-08 2020-07-10 广州图普网络科技有限公司 一种人脸测温方法、装置、电子设备及存储介质
CN113138025A (zh) * 2021-03-18 2021-07-20 深圳市科陆精密仪器有限公司 一种红外测温设备的自动校准方法及装置
CN113096041A (zh) * 2021-04-08 2021-07-09 杭州海康消防科技有限公司 图像校正方法及装置
CN113566973A (zh) * 2021-07-23 2021-10-29 无锡英菲感知技术有限公司 一种温度修正方法及组件,一种红外测温探测器

Also Published As

Publication number Publication date
CN110631710B (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN110631710B (zh) 一种无挡片红外测温方法及装置
CN111024238B (zh) 非制冷测温热像仪辐射标定与温度测量方法
CN111351583A (zh) 红外测温的温度修正方法及红外热成像仪
CN103528694A (zh) 一种用红外热像仪测量目标物体的温度的方法
US20080215178A1 (en) Method for estimating thermal displacement in machine tool
CN106873525B (zh) 一种基于数控机床实时数据的主轴组件热变形预测方法
CN111666659B (zh) 一种机床整机热误差建模方法
CN109540297B (zh) 基于fpa温度的红外热像仪标定方法
CN113821984A (zh) 一种基于时域卷积模型的加热炉钢坯温度计算方法
CN112798110A (zh) 一种基于标定拟合的红外热成像设备温度检测方法
CN111780879B (zh) 一种红外测温系统及测温方法
JP5737210B2 (ja) 放射温度計による温度測定方法および温度測定システム
CN113182361B (zh) 一种下机轧辊温度测量方法及装置
CN116187113B (zh) 基于高倍红外热成像的集成电路芯片热仿真结温校正方法
CN116007761A (zh) 一种基于环境温度的红外测温智能补偿方法
CN109506813B (zh) 一种测温晶体传感器标定过程中的退火方法
CN110568153A (zh) 一种基于自适应阶数调节非线性模型的温湿度非线性补偿方法
CN113340446B (zh) 一种真空水平连铸熔炼炉实时测温方法及系统
CN114370826B (zh) 基于热胀系数反求的测量基准偏差修正方法
CN115014536A (zh) 一种红外测温方法、装置、电子设备及存储介质
CN114062135A (zh) 高温三轴试验机岩石应变数据修正方法
CN106500856A (zh) 一种将红外热像仪刻度函数应用于实际测量环境的自适应修正方法
CN108020352B (zh) 非接触式红外测温仪的温度标定方法
CN114136461B (zh) 一种红外测温方法、系统、设备及计算机可读存储介质
CN113494972B (zh) 用于高炉炉温监测的装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant