CN110627030A - A platinum phosphide nanocatalyst, its preparation method and its application in electrocatalytic oxygen reduction - Google Patents
A platinum phosphide nanocatalyst, its preparation method and its application in electrocatalytic oxygen reduction Download PDFInfo
- Publication number
- CN110627030A CN110627030A CN201910888541.5A CN201910888541A CN110627030A CN 110627030 A CN110627030 A CN 110627030A CN 201910888541 A CN201910888541 A CN 201910888541A CN 110627030 A CN110627030 A CN 110627030A
- Authority
- CN
- China
- Prior art keywords
- platinum
- catalyst
- preparation
- phosphide
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 460
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 214
- 239000011943 nanocatalyst Substances 0.000 title claims abstract description 89
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 18
- 239000001301 oxygen Substances 0.000 title claims abstract description 18
- 230000009467 reduction Effects 0.000 title claims abstract description 7
- 239000003054 catalyst Substances 0.000 claims abstract description 109
- 239000006185 dispersion Substances 0.000 claims abstract description 41
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- 238000003756 stirring Methods 0.000 claims abstract description 34
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 20
- 239000011574 phosphorus Substances 0.000 claims abstract description 16
- 239000002904 solvent Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 19
- 238000005406 washing Methods 0.000 claims description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 16
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical group CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 12
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 claims description 12
- 239000002159 nanocrystal Substances 0.000 claims description 10
- 229910052763 palladium Inorganic materials 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000002808 molecular sieve Substances 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 7
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims description 6
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 claims description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 6
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 4
- 239000005642 Oleic acid Substances 0.000 claims description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- LMHKOBXLQXJSOU-UHFFFAOYSA-N [Co].[Ni].[Pt] Chemical compound [Co].[Ni].[Pt] LMHKOBXLQXJSOU-UHFFFAOYSA-N 0.000 claims description 3
- CLBRCZAHAHECKY-UHFFFAOYSA-N [Co].[Pt] Chemical group [Co].[Pt] CLBRCZAHAHECKY-UHFFFAOYSA-N 0.000 claims description 3
- CMHKGULXIWIGBU-UHFFFAOYSA-N [Fe].[Pt] Chemical compound [Fe].[Pt] CMHKGULXIWIGBU-UHFFFAOYSA-N 0.000 claims description 3
- GIMWDLLVKMZDMJ-UHFFFAOYSA-N [Mn].[Fe].[Pt] Chemical compound [Mn].[Fe].[Pt] GIMWDLLVKMZDMJ-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- WBLJAACUUGHPMU-UHFFFAOYSA-N copper platinum Chemical compound [Cu].[Pt] WBLJAACUUGHPMU-UHFFFAOYSA-N 0.000 claims description 3
- 150000002790 naphthalenes Chemical class 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 claims description 3
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 3
- 229910003446 platinum oxide Inorganic materials 0.000 claims description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 3
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 claims description 3
- JUWSSMXCCAMYGX-UHFFFAOYSA-N gold platinum Chemical compound [Pt].[Au] JUWSSMXCCAMYGX-UHFFFAOYSA-N 0.000 claims description 2
- 229910000629 Rh alloy Inorganic materials 0.000 claims 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 15
- 238000006722 reduction reaction Methods 0.000 abstract description 15
- 125000004437 phosphorous atom Chemical group 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 4
- 238000000354 decomposition reaction Methods 0.000 abstract description 2
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 239000002243 precursor Substances 0.000 description 30
- 239000000243 solution Substances 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 16
- 238000001132 ultrasonic dispersion Methods 0.000 description 13
- 239000002105 nanoparticle Substances 0.000 description 11
- 238000003917 TEM image Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000011160 research Methods 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 150000003624 transition metals Chemical class 0.000 description 6
- 229910001252 Pd alloy Inorganic materials 0.000 description 4
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 229910001260 Pt alloy Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910001096 P alloy Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000004502 linear sweep voltammetry Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910002844 PtNi Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- PFZHNAXLNCTMNS-UHFFFAOYSA-N [P].[Ni].[Pt] Chemical compound [P].[Ni].[Pt] PFZHNAXLNCTMNS-UHFFFAOYSA-N 0.000 description 1
- MGTPLVPKJIZKQE-UHFFFAOYSA-N [Pt]#P Chemical compound [Pt]#P MGTPLVPKJIZKQE-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- -1 gold and silver) Chemical class 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- VAKIVKMUBMZANL-UHFFFAOYSA-N iron phosphide Chemical compound P.[Fe].[Fe].[Fe] VAKIVKMUBMZANL-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- FBMUYWXYWIZLNE-UHFFFAOYSA-N nickel phosphide Chemical compound [Ni]=P#[Ni] FBMUYWXYWIZLNE-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
- B01J27/1856—Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/08—Other phosphides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Catalysts (AREA)
Abstract
本发明提供一种磷化铂纳米催化剂及其制备方法和在电催化氧还原中的应用,包括如下步骤:1)将铂催化剂分散于溶剂中,搅拌均匀,得到铂催化剂分散液;2)向铂催化剂分散液中加入磷源,混合均匀后在一定温度下反应,待反应完成后离心、洗涤得到磷化铂纳米催化剂。本发明方法通过磷源分解产生的磷原子在一定温度下扩散进入铂催化剂中,合成具有特定电子结构的磷化铂纳米催化剂。该制备方法具有流程简单,成本低廉,重复性好,无环境污染、便于大批量制备的优点,且制备所得磷化铂纳米催化剂在电催化氧还原反应中显示出了远高于商业铂/碳催化剂的催化活性和稳定性,具有良好的应用前景。
The invention provides a platinum phosphide nano-catalyst and its preparation method and application in electrocatalytic oxygen reduction, comprising the following steps: 1) dispersing the platinum catalyst in a solvent and stirring evenly to obtain a platinum catalyst dispersion; A phosphorus source is added to the platinum catalyst dispersion liquid, mixed evenly, reacted at a certain temperature, centrifuged and washed to obtain a platinum phosphide nanometer catalyst after the reaction is completed. In the method of the invention, phosphorus atoms produced by the decomposition of phosphorus sources are diffused into platinum catalysts at a certain temperature to synthesize platinum phosphide nano catalysts with specific electronic structures. The preparation method has the advantages of simple process, low cost, good repeatability, no environmental pollution, and convenient mass production, and the prepared platinum phosphide nano-catalyst shows much higher performance in the electrocatalytic oxygen reduction reaction than commercial platinum/carbon The catalytic activity and stability of the catalyst have good application prospects.
Description
技术领域technical field
本发明属于纳米科学领域,特别涉及一种磷化铂纳米催化剂及其制备方法和在电催化氧还原中的应用。The invention belongs to the field of nanometer science, and in particular relates to a platinum phosphide nanometer catalyst, its preparation method and its application in electrocatalytic oxygen reduction.
背景技术Background technique
铂催化剂在能源、化学及石油化工领域中表现出了优异的催化性能,尤其是在燃料电池,汽车尾气净化,加氢、脱氢等工业催化反应中具有举足轻重的作用。但由于铂资源稀缺,且集中在少数几个国家和地区,使得其价格昂贵,使用成本极高,这严重阻碍了其在现代工业中的大规模应用。因此,提升铂催化剂的催化性能,降低铂用量,已成为目前能源科学的一大研究热点,对于促进经济发展和节约资源具有非常重大的意义。Platinum catalysts have shown excellent catalytic performance in the fields of energy, chemistry and petrochemical industry, especially in fuel cells, automobile exhaust purification, hydrogenation, dehydrogenation and other industrial catalytic reactions. However, platinum resources are scarce and concentrated in a few countries and regions, making it expensive and extremely expensive to use, which seriously hinders its large-scale application in modern industry. Therefore, improving the catalytic performance of platinum catalysts and reducing the amount of platinum has become a major research hotspot in energy science, which is of great significance for promoting economic development and saving resources.
引入第二相过渡金属(如钯、金、钴、镍、铜、铁、铅等)对铂进行合金化是一种有效地提升铂催化剂性能的策略。其主要是通过改变铂的电子结构(5d空轨道)提升铂的表面活性位点数量或改变铂与反应物、反应物中间体及产物的结合能,达到改善铂催化活性、降低铂用量的目的。但催化剂中第二相过渡金属组分容易在低pH值、高氧浓度、高湿度、不同电位等条件下发生腐蚀溶解及Ostwald熟化过程(Nano Energy 2019,60,111-118),致使催化剂在使用过程中活性受损,寿命缩短,阻碍其商业化规模应用的进程。另外,铂的合金化技术也受限于其复杂的制备方法及昂贵过渡金属(如金和银)的使用,使得在工业上并不具备切实可行的开发条件。Alloying platinum by introducing second-phase transition metals (such as palladium, gold, cobalt, nickel, copper, iron, lead, etc.) is an effective strategy to enhance the performance of platinum catalysts. It mainly improves the catalytic activity of platinum and reduces the amount of platinum by changing the electronic structure of platinum (5d empty orbital) to increase the number of active sites on the surface of platinum or changing the binding energy between platinum and reactants, reactant intermediates and products. . However, the second-phase transition metal component in the catalyst is prone to corrosion, dissolution and Ostwald aging process under conditions such as low pH, high oxygen concentration, high humidity, and different potentials (Nano Energy 2019, 60, 111-118), resulting in The activity is impaired and the lifespan is shortened, hindering the process of its commercial scale application. In addition, the alloying technology of platinum is also limited by its complex preparation method and the use of expensive transition metals (such as gold and silver), making it unfeasible to develop in industry.
近期的研究结果表明,与添加第二相金属元素对铂催化剂进行改性相比,将非金属原子(如H、B、N、C或P等)加入到金属催化剂中会对其电子结构产生更大的影响(Nat.Comm.2014,5,5787、J.Mater.Chem.A 2019,7,4714.),进而对催化性能有更好的提升。但由于铂原子之间结合能强,键能大(为306.7kJ/mol)(CRC press,2007),将非金属原子掺杂进入铂晶格中形成PtX(X=H,B,N,C或P等)仍然是一个巨大的挑战。Recent research results have shown that the addition of non-metallic atoms (such as H, B, N, C, or P) to metal catalysts can change the electronic structure of platinum catalysts compared to the modification of platinum catalysts by adding second-phase metal elements. Greater impact (Nat.Comm.2014, 5, 5787, J.Mater.Chem.A 2019, 7, 4714.), and thus better catalytic performance. However, due to the strong binding energy between platinum atoms and the large bond energy (306.7kJ/mol) (CRC press, 2007), non-metal atoms are doped into the platinum lattice to form PtX (X=H, B, N, C or P, etc.) remains a great challenge.
近来年,过渡金属磷化物(如磷化镍、磷化钴、磷化铁、磷化铑、磷化钌等)具有原料成本低(避免了第二相过渡金属的使用)、制备方式多样、催化活性和稳定性高等优点,被广泛应用于电催化、储能、光催化及化学催化等研究中。据报道,多孔表面氧化的磷化钴纳米催化剂具有良好的电催化氧还原性能(J.Power Sources,2017,363,87-94),磷化铑纳米催化剂在电催化析氢和析氧反应中均显示出了高的催化活性和稳定性(J.Am.Chem.Soc.,2017,139,5494-5502)。钯催化剂中加入磷源可对其表面进行快速改性,以提高其在一氧化碳催化反应中的选择性(专利CN107413359A),但该制备所得的催化剂为核壳结构的钯-磷化钯,且其中磷化钯为非晶态,这种结构在催化反应中不能稳定维持。另外,虽然已有大量关于金属磷化物的研究,但由于磷化铂纳米晶合成困难、生产条件苛刻、制备复杂及可控因素较少等限制,目前关于磷化铂纳米催化剂的研究报道很少。如N·克莱姆利科瓦等人通过在铂催化剂核上生成PtP2表面层,并将其应用于燃料电池中(专利CN102365775B)。但该制备所得催化剂只能在载体材料上合成,不具有通用性,并需真空、高温煅烧等条件,工艺成本高,不利于工业化大规模生产。因此,开发一种低成本、高效的获得具有优异催化活性和稳定性的磷化铂纳米催化剂的途径,在具有重大意义的同时也是一项巨大的挑战。In recent years, transition metal phosphides (such as nickel phosphide, cobalt phosphide, iron phosphide, rhodium phosphide, ruthenium phosphide, etc.) have low raw material costs (avoiding the use of second-phase transition metals), various preparation methods, Due to the advantages of high catalytic activity and stability, it is widely used in the research of electrocatalysis, energy storage, photocatalysis and chemical catalysis. It has been reported that cobalt phosphide nanocatalysts oxidized on porous surfaces have good electrocatalytic oxygen reduction performance (J. It shows high catalytic activity and stability (J.Am.Chem.Soc., 2017, 139, 5494-5502). Adding a phosphorus source to the palladium catalyst can quickly modify its surface to improve its selectivity in the catalytic reaction of carbon monoxide (patent CN107413359A), but the prepared catalyst is palladium-palladium phosphide with a core-shell structure, and wherein Palladium phosphide is amorphous, and this structure cannot be stably maintained in catalytic reactions. In addition, although there have been a lot of research on metal phosphides, due to the limitations of difficult synthesis of platinum phosphide nanocrystals, harsh production conditions, complex preparation and few controllable factors, there are few research reports on platinum phosphide nanocatalysts. . For example, N. Klemmlikova et al. generate a PtP surface layer on the platinum catalyst core and apply it to a fuel cell (patent CN102365775B). However, the prepared catalyst can only be synthesized on a carrier material, which is not versatile, and requires conditions such as vacuum and high-temperature calcination, and the process cost is high, which is not conducive to large-scale industrial production. Therefore, developing a low-cost and efficient route to obtain platinum phosphide nanocatalysts with excellent catalytic activity and stability is of great significance but also a great challenge.
发明内容Contents of the invention
针对现有技术中存在的问题,本发明提供一种磷化铂纳米催化剂及其制备方法和在电催化氧还原中的应用,制备的磷化铂纳米催化剂应用于电催化氧还原反应中,显示出了优异的催化活性和稳定性。Aiming at the problems existing in the prior art, the present invention provides a platinum phosphide nanocatalyst and its preparation method and its application in electrocatalytic oxygen reduction. The prepared platinum phosphide nanocatalyst is applied in electrocatalytic oxygen reduction reaction, showing excellent catalytic activity and stability.
本发明是通过以下技术方案来实现:The present invention is achieved through the following technical solutions:
一种磷化铂纳米催化剂的制备方法,包括如下步骤:A preparation method of platinum phosphide nano catalyst, comprising the steps of:
步骤1,将铂催化剂分散于溶剂中,得到铂催化剂分散液;Step 1, dispersing the platinum catalyst in a solvent to obtain a platinum catalyst dispersion;
步骤2,向步骤1的铂催化剂分散液中加入磷源,搅拌均匀,200-360℃下反应1-20h,待反应结束后离心、洗涤得到磷化铂纳米催化剂。Step 2, adding a phosphorus source to the platinum catalyst dispersion in step 1, stirring evenly, reacting at 200-360° C. for 1-20 hours, centrifuging and washing after the reaction to obtain a platinum phosphide nano-catalyst.
优选的,步骤1中,所述铂催化剂为铂纳米晶、铂基合金或负载型的铂基催化剂。Preferably, in step 1, the platinum catalyst is platinum nanocrystal, platinum-based alloy or supported platinum-based catalyst.
进一步的,铂纳米晶的粒径为2-8nm。Further, the particle size of platinum nanocrystals is 2-8nm.
进一步的,所述铂基合金为铂钴、铂镍、铂铁、铂铜、铂金、铂钯、铂钴镍、铂铑钯或铂铁锰的合金。Further, the platinum-based alloy is an alloy of platinum-cobalt, platinum-nickel, platinum-iron, platinum-copper, platinum-gold, platinum-palladium, platinum-cobalt-nickel, platinum-rhodium-palladium or platinum-iron-manganese.
进一步的,所述负载型的铂基催化剂为商业铂/碳、铂/氧化铝、铂/二氧化硅、铂/二氧化钛或载铂分子筛。Further, the supported platinum-based catalyst is commercial platinum/carbon, platinum/alumina, platinum/silicon dioxide, platinum/titania or platinum-supported molecular sieves.
优选的,步骤1中,所述溶剂为油胺、油酸、1-十八烯、丙三醇、甲酰胺、喹啉、1-氯化萘、环丁砜、二苯醚或二苯砜。Preferably, in step 1, the solvent is oleylamine, oleic acid, 1-octadecene, glycerol, formamide, quinoline, 1-chlorinated naphthalene, sulfolane, diphenyl ether or diphenyl sulfone.
优选的,步骤2中,所述磷源为白磷、红磷、磷化氢、磷酸盐、亚磷酸盐、次磷酸盐、三正辛基膦、三正辛基氧膦或三苯基膦。Preferably, in step 2, the phosphorus source is white phosphorus, red phosphorus, phosphine, phosphate, phosphite, hypophosphite, tri-n-octylphosphine, tri-n-octylphosphine oxide or triphenylphosphine.
优选的,步骤1中,铂催化剂分散液中铂的浓度为0.01-10mg/mL;步骤2中所用磷源中磷的物质的量浓度低于铂催化剂中铂的物质的量浓度。Preferably, in step 1, the concentration of platinum in the platinum catalyst dispersion is 0.01-10 mg/mL; the concentration of phosphorus in the phosphorus source used in step 2 is lower than the concentration of platinum in the platinum catalyst.
所述制备方法制备得到的磷化铂纳米催化剂。The platinum phosphide nanometer catalyst prepared by the preparation method.
所述的磷化铂纳米催化剂在电催化氧还原中的应用。The application of the platinum phosphide nano catalyst in electrocatalytic oxygen reduction.
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
本发明中通过磷源分解产生的磷原子扩散进入铂催化剂晶格中,制备获得纯相的磷化铂(分子式为Pt2P)纳米晶催化剂,其特定的电子结构使得催化剂对氧还原反应中间体的结合能减弱,表现出优异的电催化氧还原反应活性。同时因其表面富含堆垛层错缺陷,具有大量的悬挂键及丰富的铂反应活性位点,使电催化性能进一步提升。更为重要的是,该磷化铂纳米催化剂具有良好的晶体结构(面心立方结构),且为纯相,这使得该催化剂具有优于其他非晶结构或多相催化剂的结构稳定性,在电催化反应表现出了非常优异的催化稳定性,避免了催化过程中催化剂活性的大幅下降,在电催化领域具有非常大的应用潜能。In the present invention, the phosphorus atoms produced by the decomposition of the phosphorus source diffuse into the platinum catalyst lattice, and the pure-phase platinum phosphide (molecular formula is Pt 2 P) nanocrystalline catalyst is prepared, and its specific electronic structure makes the catalyst intermediate to the oxygen reduction reaction. The binding energy of the body is weakened, showing excellent electrocatalytic oxygen reduction reaction activity. At the same time, because the surface is rich in stacking fault defects, it has a large number of dangling bonds and abundant platinum reactive active sites, which further improves the electrocatalytic performance. More importantly, the platinum phosphide nanocatalyst has a good crystal structure (face-centered cubic structure) and is a pure phase, which makes the catalyst have better structural stability than other amorphous structures or heterogeneous catalysts. The electrocatalytic reaction exhibits excellent catalytic stability, which avoids a significant drop in catalyst activity during the catalytic process, and has great application potential in the field of electrocatalysis.
另外,本发明避免了常规铂基合金催化剂中过渡金属的使用,大大降低了催化剂的制造成本,进一步满足工业化大批量生产的要求。相对于现有铂基催化剂来说,本发明提供的制备方法简单、原料廉价、生产成本低、无环境污染。In addition, the invention avoids the use of transition metals in conventional platinum-based alloy catalysts, greatly reduces the manufacturing cost of the catalyst, and further meets the requirements of industrial mass production. Compared with the existing platinum-based catalyst, the preparation method provided by the invention is simple, the raw material is cheap, the production cost is low, and there is no environmental pollution.
进一步的,该催化剂的组分可通过反应时间调控,催化剂的尺寸可通过调控原始铂催化剂的尺寸来进行精确控制。Further, the components of the catalyst can be regulated by the reaction time, and the size of the catalyst can be precisely controlled by regulating the size of the original platinum catalyst.
本发明制备的磷化铂纳米催化剂被应用于电催化氧还原反应中,因其具有特定的电子结构、表面富含缺陷、反应中结构稳定、分散性良好等特性,表现出了优异的催化活性和稳定性,能够适应更高工业应用的需求。The platinum phosphide nano-catalyst prepared by the present invention is applied in the electrocatalytic oxygen reduction reaction, because of its specific electronic structure, rich defects on the surface, stable structure in the reaction, good dispersion and other characteristics, it shows excellent catalytic activity And stability, can adapt to the needs of higher industrial applications.
附图说明Description of drawings
图1为本发明实施例一制备的磷化铂纳米催化剂的透射电子显微镜照片,图中插图为单个纳米颗粒的放大照片。FIG. 1 is a transmission electron micrograph of the platinum phosphide nanocatalyst prepared in Example 1 of the present invention, and the inset in the figure is an enlarged photo of a single nanoparticle.
图2为本发明实施例二制备的磷化铂纳米催化剂的透射电子显微镜照片,图中插图为单个纳米颗粒的放大照片。Fig. 2 is a transmission electron micrograph of the platinum phosphide nanocatalyst prepared in Example 2 of the present invention, and the inset in the figure is an enlarged photo of a single nanoparticle.
图3为本发明实施例三制备的磷化铂纳米催化剂的透射电子显微镜照片,图中插图为单个纳米颗粒的放大照片。Fig. 3 is a transmission electron micrograph of the platinum phosphide nanocatalyst prepared in Example 3 of the present invention, and the inset in the figure is an enlarged photo of a single nanoparticle.
图4为本发明实施例四制备的磷化铂纳米催化剂的透射电子显微镜照片,图中插图为单个纳米颗粒的放大照片。Fig. 4 is a transmission electron micrograph of the platinum phosphide nanocatalyst prepared in Example 4 of the present invention, and the inset in the figure is an enlarged photo of a single nanoparticle.
图5为本发明实施例五制备的磷化铂纳米催化剂的透射电子显微镜照片,图中插图为单个纳米颗粒的放大照片。Fig. 5 is a transmission electron micrograph of the platinum phosphide nanocatalyst prepared in Example 5 of the present invention, and the inset in the figure is an enlarged photo of a single nanoparticle.
图6为本发明实施例五制备的磷化铂纳米催化剂的高分辨透射电镜照片,图中插图为其对应的傅里叶变换图像。Fig. 6 is a high-resolution transmission electron micrograph of the platinum phosphide nanocatalyst prepared in Example 5 of the present invention, and the inset in the figure is its corresponding Fourier transform image.
图7为本发明实施例五制备的磷化铂纳米催化剂的X射线衍射谱。Fig. 7 is the X-ray diffraction spectrum of the platinum phosphide nanocatalyst prepared in Example 5 of the present invention.
图8为本发明实施例六制备的磷化铂纳米催化剂的透射电子显微镜照片。Fig. 8 is a transmission electron micrograph of the platinum phosphide nanocatalyst prepared in Example 6 of the present invention.
图9为本发明实施例六制备的磷化铂纳米催化剂与其原料铂纳米颗粒的X射线衍射谱对比图。Fig. 9 is a comparison chart of the X-ray diffraction spectra of the platinum phosphide nanocatalyst prepared in Example 6 of the present invention and its raw material platinum nanoparticles.
图10为本发明实施例六制备的磷化铂纳米催化剂负载于商业碳黑的透射电子显微镜照片。Fig. 10 is a transmission electron micrograph of the platinum phosphide nanocatalyst loaded on commercial carbon black prepared in Example 6 of the present invention.
图11为本发明实施例六制备的磷化铂纳米催化剂与商业铂/碳催化剂的电催化氧还原反应活性对比图。Fig. 11 is a comparison chart of the electrocatalytic oxygen reduction reaction activity between the platinum phosphide nanocatalyst prepared in Example 6 of the present invention and the commercial platinum/carbon catalyst.
图12为本发明实施例六制备的磷化铂纳米催化剂与商业铂/碳催化剂的电催化氧还原反应稳定性对比图。Fig. 12 is a comparison chart of electrocatalytic oxygen reduction reaction stability between the platinum phosphide nanocatalyst prepared in Example 6 of the present invention and the commercial platinum/carbon catalyst.
具体实施方式Detailed ways
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。The present invention will be further described in detail below in conjunction with specific embodiments, which are explanations of the present invention rather than limitations.
磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst comprises the following steps:
步骤1,将铂催化剂分散于溶剂中,得到铂催化剂分散液;Step 1, dispersing the platinum catalyst in a solvent to obtain a platinum catalyst dispersion;
步骤2,向步骤1的铂催化剂分散液中加入磷源,搅拌均匀,加热反应,待反应结束后离心、洗涤得到磷化铂纳米催化剂。Step 2, adding a phosphorus source to the platinum catalyst dispersion in step 1, stirring evenly, heating and reacting, centrifuging and washing after the reaction to obtain a platinum phosphide nano-catalyst.
步骤1中,铂催化剂为铂纳米晶、铂基合金或负载型的铂基催化剂。铂基合金为铂钴、铂镍、铂铁、铂铜、铂金、铂钯等铂基二元合金及铂钴镍、铂铑钯、铂铁锰等铂基三元合金,及铂基多元合金等。负载型的铂基催化剂为商业铂/碳、铂/氧化铝、铂/二氧化硅、铂/二氧化钛或载铂分子筛。In step 1, the platinum catalyst is platinum nanocrystal, platinum-based alloy or supported platinum-based catalyst. Platinum-based alloys are platinum-based binary alloys such as platinum-cobalt, platinum-nickel, platinum-iron, platinum-copper, platinum, and platinum-palladium, platinum-based ternary alloys such as platinum-cobalt-nickel, platinum-rhodium-palladium, and platinum-iron-manganese, and platinum-based multiple alloys Wait. Supported platinum-based catalysts are commercial platinum/carbon, platinum/alumina, platinum/silica, platinum/titania or platinum-supported molecular sieves.
步骤1中,溶剂为油胺、油酸、1-十八烯、丙三醇、甲酰胺、喹啉、1-氯化萘、环丁砜、二苯醚或二苯砜。In step 1, the solvent is oleylamine, oleic acid, 1-octadecene, glycerol, formamide, quinoline, 1-chlorinated naphthalene, sulfolane, diphenyl ether or diphenyl sulfone.
步骤2中,所用磷源为磷元素的单质及各种价态的化合物(白磷、红磷、磷化氢、磷酸盐,亚磷酸盐、次磷酸盐等磷的无机物,以及三正辛基膦、三正辛基氧膦、三苯基膦等有机磷试剂)。In step 2, the phosphorus source used is the simple substance of phosphorus element and the compound of various valence states (white phosphorus, red phosphorus, phosphine, phosphate, the inorganic matter of phosphorus such as phosphite, hypophosphite, and trin-octyl Phosphine, tri-n-octylphosphine oxide, triphenylphosphine and other organophosphorus reagents).
步骤1中,铂催化剂分散液中铂的浓度为0.01-10mg/mL;步骤2中所用磷源中磷的物质的量浓度低于铂催化剂中铂的物质的量浓度。In step 1, the concentration of platinum in the platinum catalyst dispersion is 0.01-10 mg/mL; the concentration of phosphorus in the phosphorus source used in step 2 is lower than the concentration of platinum in the platinum catalyst.
步骤2中,反应温度为200-360℃,反应时间为1-20h。In step 2, the reaction temperature is 200-360°C, and the reaction time is 1-20h.
实施例一Embodiment one
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将3.76mg的铂纳米立方体(平均颗粒尺寸为8nm)超声分散于10mL油胺中,得到稳定的铂催化剂分散液,其中铂的浓度为0.376mg/mL;1) Ultrasonic dispersion of 3.76 mg of platinum nanocubes (average particle size of 8 nm) in 10 mL of oleylamine to obtain a stable platinum catalyst dispersion, wherein the concentration of platinum is 0.376 mg/mL;
2)向步骤1)中的铂催化剂分散液中加入1.6mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 1.6 mL of tri-n-octylphosphine to the platinum catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于300℃加热、搅拌,反应1h后离心、洗涤得到磷化铂纳米催化剂。催化剂中磷原子含量为4%,形貌仍保持为纳米立方体,尺寸未发生明显变化。3) Heating and stirring the reaction precursor solution at 300° C., centrifuging and washing after reacting for 1 hour to obtain a platinum phosphide nano-catalyst. The content of phosphorus atoms in the catalyst is 4%, the morphology remains as nano-cubes, and the size does not change significantly.
实施例二Embodiment two
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将3.76mg的铂纳米立方体(平均颗粒尺寸为8nm)超声分散于10mL油胺中,得到稳定的铂催化剂分散液,其中铂的浓度为0.376mg/mL;1) Ultrasonic dispersion of 3.76 mg of platinum nanocubes (average particle size of 8 nm) in 10 mL of oleylamine to obtain a stable platinum catalyst dispersion, wherein the concentration of platinum is 0.376 mg/mL;
2)向步骤1)中的铂催化剂分散液中加入1.6mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 1.6 mL of tri-n-octylphosphine to the platinum catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于300℃加热、搅拌,反应1.5h后离心、洗涤得到磷化铂纳米催化剂。催化剂中磷原子含量为10%,形貌逐渐变为削角立方体。3) heating and stirring the reaction precursor solution at 300° C., centrifuging and washing after reacting for 1.5 hours to obtain a platinum phosphide nano-catalyst. The content of phosphorus atoms in the catalyst is 10%, and the shape gradually changes to a cube with cut corners.
实施例三Embodiment Three
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将3.76mg的铂纳米立方体(平均颗粒尺寸为8nm)超声分散于10mL油胺中,得到稳定的铂催化剂分散液,其中铂的浓度为0.376mg/mL;1) Ultrasonic dispersion of 3.76 mg of platinum nanocubes (average particle size of 8 nm) in 10 mL of oleylamine to obtain a stable platinum catalyst dispersion, wherein the concentration of platinum is 0.376 mg/mL;
2)向步骤1)中的铂催化剂分散液中加入1.6mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 1.6 mL of tri-n-octylphosphine to the platinum catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于300℃加热、搅拌,反应2h后离心、洗涤得到磷化铂纳米催化剂。催化剂中磷原子含量为16%,催化剂颗粒逐渐变圆,边角逐渐消失。3) heating and stirring the reaction precursor solution at 300° C., centrifuging and washing after reacting for 2 hours to obtain a platinum phosphide nano-catalyst. The content of phosphorus atoms in the catalyst is 16%, the catalyst particles become round gradually, and the corners gradually disappear.
实施例四Embodiment four
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将3.76mg的铂纳米立方体(平均颗粒尺寸为8nm)超声分散于10mL油胺中,得到稳定的铂催化剂分散液,其中铂的浓度为0.376mg/mL;1) Ultrasonic dispersion of 3.76 mg of platinum nanocubes (average particle size of 8 nm) in 10 mL of oleylamine to obtain a stable platinum catalyst dispersion, wherein the concentration of platinum is 0.376 mg/mL;
2)向步骤1)中的铂催化剂分散液中加入1.6mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 1.6 mL of tri-n-octylphosphine to the platinum catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于300℃加热、搅拌,反应2.5h后离心、洗涤得到磷化铂纳米催化剂。催化剂中磷原子含量为21%,催化剂形貌变为近球形,尺寸未发生明显变化。3) heating and stirring the reaction precursor solution at 300° C., centrifuging and washing after reacting for 2.5 hours to obtain a platinum phosphide nano-catalyst. The content of phosphorus atoms in the catalyst is 21%, the morphology of the catalyst becomes nearly spherical, and the size does not change significantly.
实施例五Embodiment five
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将3.76mg的铂纳米立方体(平均颗粒尺寸为8nm)超声分散于10mL油胺中,得到稳定的铂催化剂分散液,其中铂的浓度为0.376mg/mL;1) Ultrasonic dispersion of 3.76 mg of platinum nanocubes (average particle size of 8 nm) in 10 mL of oleylamine to obtain a stable platinum catalyst dispersion, wherein the concentration of platinum is 0.376 mg/mL;
2)向步骤1)中的铂催化剂分散液中加入1.6mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 1.6 mL of tri-n-octylphosphine to the platinum catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于300℃加热、搅拌,反应3h后离心、洗涤得到磷化铂纳米催化剂。催化剂中磷原子含量为33.3%,颗粒形貌进一步变为球形,颗粒尺寸增大至9.5nm。3) Heating and stirring the reaction precursor solution at 300° C., centrifuging and washing after reacting for 3 hours to obtain a platinum phosphide nano-catalyst. The phosphorus atom content in the catalyst is 33.3%, the particle morphology further becomes spherical, and the particle size increases to 9.5nm.
实施例六Embodiment six
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将3.76mg的铂纳米颗粒(平均颗粒尺寸为5nm)超声分散于10mL油胺中,得到稳定的铂催化剂分散液,其中铂的浓度为0.376mg/mL;1) ultrasonically disperse 3.76 mg of platinum nanoparticles (average particle size is 5 nm) in 10 mL of oleylamine to obtain a stable platinum catalyst dispersion, wherein the concentration of platinum is 0.376 mg/mL;
2)向步骤1)中的铂催化剂分散液中加入1.6mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 1.6 mL of tri-n-octylphosphine to the platinum catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于300℃加热、搅拌,反应3h后离心、洗涤得到磷化铂纳米催化剂。催化剂中磷原子含量为33.3%,颗粒形貌为准球体,颗粒尺寸为6.2nm。3) Heating and stirring the reaction precursor solution at 300° C., centrifuging and washing after reacting for 3 hours to obtain a platinum phosphide nano-catalyst. The phosphorus atom content in the catalyst is 33.3%, the particle shape is quasi-spherical, and the particle size is 6.2nm.
实施例七Embodiment seven
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将3.76mg的铂纳米颗粒(平均颗粒尺寸为2nm)超声分散于10mL油胺中,得到稳定的铂催化剂分散液,其中铂的浓度为0.376mg/mL;1) Ultrasonic dispersion of 3.76 mg of platinum nanoparticles (average particle size of 2 nm) in 10 mL of oleylamine to obtain a stable platinum catalyst dispersion, wherein the concentration of platinum is 0.376 mg/mL;
2)向步骤1)中的铂催化剂分散液中加入1.6mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 1.6 mL of tri-n-octylphosphine to the platinum catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于300℃加热、搅拌,反应1.5h后离心、洗涤得到磷化铂纳米催化剂。催化剂中磷原子含量为33.3%,颗粒形貌为准球体,颗粒尺寸为2.5nm。3) heating and stirring the reaction precursor solution at 300° C., centrifuging and washing after reacting for 1.5 hours to obtain a platinum phosphide nano-catalyst. The phosphorus atom content in the catalyst is 33.3%, the particle shape is quasi-spherical, and the particle size is 2.5nm.
实施例八Embodiment eight
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将3.71mg的铂镍合金(组成为PtNi3)纳米催化剂超声分散于10mL油胺中,得到稳定的铂镍合金纳米催化剂分散液。其中铂原子的浓度为0.195mg/mL;1) Ultrasonic dispersion of 3.71 mg of platinum-nickel alloy (composed of PtNi 3 ) nanocatalyst in 10 mL of oleylamine was obtained to obtain a stable platinum-nickel alloy nanocatalyst dispersion. The concentration of platinum atoms is 0.195mg/mL;
2)向步骤1)中的铂镍合金催化剂分散液中加入3mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 3 mL of tri-n-octylphosphine to the platinum-nickel alloy catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于200℃加热、搅拌,反应20h后离心、洗涤得到铂镍磷合金纳米催化剂。3) heating and stirring the reaction precursor solution at 200° C., centrifuging and washing after reacting for 20 hours to obtain a platinum-nickel-phosphorus alloy nanocatalyst.
实施例九Embodiment nine
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将5mg的铂金合金(组成为Pt50Au50)纳米催化剂超声分散于10mL油酸中,得到稳定的铂金合金纳米催化剂分散液。其中铂原子的浓度为0.249mg/mL;1) Ultrasonic dispersion of 5 mg of platinum alloy (composed as Pt 50 Au 50 ) nanocatalyst in 10 mL of oleic acid to obtain a stable platinum alloy nanocatalyst dispersion. The concentration of platinum atoms is 0.249mg/mL;
2)向步骤1)中的铂金合金催化剂分散液中加入5.4mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 5.4 mL of tri-n-octylphosphine to the platinum alloy catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于290℃加热、搅拌,反应8.5h后离心、洗涤得到铂金磷合金纳米催化剂。3) Heating and stirring the reaction precursor solution at 290° C., centrifuging and washing after reacting for 8.5 hours to obtain a platinum-phosphorus alloy nanocatalyst.
实施例十Embodiment ten
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将17mg的铂铑钯合金(组成为Pt47Rh33Pd20)纳米催化剂超声分散于10mL的1-十八烯中,得到稳定的铂铑钯合金纳米催化剂分散液。其中铂原子的浓度为1.06mg/mL;1) Ultrasonic dispersion of 17 mg of platinum-rhodium-palladium alloy (composed as Pt 47 Rh 33 Pd 20 ) nanocatalyst in 10 mL of 1-octadecene to obtain a stable platinum-rhodium-palladium alloy nanocatalyst dispersion. The concentration of platinum atoms is 1.06mg/mL;
2)向步骤1)中的铂铑钯合金催化剂分散液中加入5mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 5 mL of tri-n-octylphosphine to the platinum-rhodium-palladium alloy catalyst dispersion in step 1), and stir to obtain a reaction precursor;
3)将反应前驱液于280℃加热、搅拌,反应3.5h后离心、洗涤得到铂铑钯合金纳米催化剂。3) heating and stirring the reaction precursor solution at 280° C., centrifuging and washing after reacting for 3.5 hours to obtain a platinum-rhodium-palladium alloy nano-catalyst.
实施例十一Embodiment Eleven
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将50mg的商业铂/碳催化剂(载量为10%)超声分散于10mL的1-十八烯中,得到稳定的铂/碳催化剂分散液。其中铂原子的浓度为0.5mg/mL;1) Ultrasonic dispersion of 50 mg of commercial platinum/carbon catalyst (10% loading) in 10 mL of 1-octadecene to obtain a stable platinum/carbon catalyst dispersion. The concentration of platinum atoms is 0.5mg/mL;
2)向步骤1)中的铂/碳催化剂分散液中加入2mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 2 mL of tri-n-octylphosphine to the platinum/carbon catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于250℃加热、搅拌,反应6h后离心、洗涤得到磷化铂/碳纳米催化剂。3) heating and stirring the reaction precursor solution at 250° C., centrifuging and washing after reacting for 6 hours to obtain a platinum phosphide/carbon nano catalyst.
实施例十二Embodiment 12
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将100mg的商业铂/二氧化硅催化剂(载量为5%)超声分散于10mL的1-十八烯中,得到稳定的铂/二氧化硅催化剂分散液。其中铂原子的浓度为0.5mg/mL;1) Ultrasonic dispersion of 100 mg of commercial platinum/silica catalyst (5% loading) in 10 mL of 1-octadecene to obtain a stable platinum/silica catalyst dispersion. The concentration of platinum atoms is 0.5mg/mL;
2)向步骤1)中的铂/二氧化硅催化剂分散液中加入2mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 2 mL of tri-n-octylphosphine to the platinum/silicon dioxide catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于260℃加热、搅拌,反应5h后离心、洗涤得到磷化铂/二氧化硅纳米催化剂。3) Heating and stirring the reaction precursor solution at 260° C., centrifuging and washing after reacting for 5 hours to obtain a platinum phosphide/silicon dioxide nano-catalyst.
实施例十三Embodiment Thirteen
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将10mg的载铂分子筛催化剂(载量为1%)超声分散于10mL的油胺中,得到稳定的载铂分子筛催化剂分散液。其中铂原子的浓度为0.01mg/mL;1) Ultrasonic dispersion of 10 mg of platinum-supported molecular sieve catalyst (1% loading) in 10 mL of oleylamine to obtain a stable platinum-supported molecular sieve catalyst dispersion. The concentration of platinum atoms is 0.01mg/mL;
2)向步骤1)中的载铂分子筛催化剂分散液中加入5mL的三正辛基膦,搅拌均匀得到反应前驱液;2) Add 5 mL of tri-n-octylphosphine to the platinum-loaded molecular sieve catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于320℃加热、搅拌,反应10h后离心、洗涤得到磷化载铂分子筛纳米催化剂。3) Heating and stirring the reaction precursor solution at 320° C., centrifuging and washing after reacting for 10 hours to obtain a platinum-supported phosphide molecular sieve nano-catalyst.
实施例十四Embodiment Fourteen
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将10mg的铂纳米颗粒(平均颗粒尺寸为5nm)与20mg的二苯砜均匀混合;1) uniformly mix 10 mg of platinum nanoparticles (average particle size is 5 nm) with 20 mg of diphenyl sulfone;
2)向步骤1)中加入6mg白磷单质(溶于二硫化碳中)搅拌均匀得到反应前驱体;2) Add 6 mg of white phosphorus elemental substance (dissolved in carbon disulfide) to step 1) and stir evenly to obtain a reaction precursor;
3)将反应前驱体于360℃加热、搅拌,反应4h后离心、洗涤得到磷化铂纳米催化剂。3) heating and stirring the reaction precursor at 360° C., centrifuging and washing after reacting for 4 hours to obtain a platinum phosphide nano-catalyst.
实施例十五Embodiment 15
本发明所述磷化铂纳米催化剂的制备方法,包括以下步骤:The preparation method of platinum phosphide nano-catalyst of the present invention comprises the following steps:
1)将100mg的铂纳米颗粒(平均颗粒尺寸为5nm)超声分散于10mL的丙三醇中,得到稳定的铂催化剂分散液。其中铂原子的浓度为10mg/mL;1) Ultrasonic dispersion of 100 mg of platinum nanoparticles (with an average particle size of 5 nm) in 10 mL of glycerol to obtain a stable platinum catalyst dispersion. The concentration of platinum atoms is 10 mg/mL;
2)向步骤1)中的铂催化剂分散液中加入72mg次磷酸钠,搅拌均匀得到反应前驱液;2) Add 72 mg of sodium hypophosphite to the platinum catalyst dispersion in step 1), and stir evenly to obtain a reaction precursor;
3)将反应前驱液于260℃加热、搅拌,反应8.5h后离心、洗涤得到磷化铂纳米催化剂。3) heating and stirring the reaction precursor solution at 260° C., centrifuging and washing after reacting for 8.5 hours to obtain a platinum phosphide nano-catalyst.
应用例Application example
取0.6mg的实施例六制备的磷化铂纳米催化剂均匀负载于商业碳材料(KetjenBlack EC-300J,铂载量为20%)表面。将负载好的催化剂分散于5mL醋酸中于70℃保温12h清洁催化剂表面,离心后用乙醇溶液洗涤两次,置于60℃的烘箱中干燥12h,后将其超声分散于2mL的水、异丙醇和5%的nafion溶液的混合溶液(体积比为4:1:0.02)中。取10μL(含3μg铂)上述分散液滴于表面干净的玻碳电极(面积为0.196cm2),晾干后于AutolabPGSTAT302N电化学工作站进行电催化氧还原反应性能测试。测试温度为25℃,采用三电极体系,参比电极和对电极分别为Ag/AgCl和Pt箔电极。循环伏安曲线在N2饱和的0.1M HClO4溶液中获得,扫速为50mV/s。线性扫描伏安测试在O2气氛中进行,扫速为10mV/s,电极转速为1600rpm。催化剂稳定性测试在O2饱和的0.1M HClO4溶液中进行,扫描循环范围为0.6-1.1V(相对于标准氢电极电位),扫速为100mV/s,稳定性测试后记录循环伏安和线性扫描伏安曲线。0.6 mg of the platinum phosphide nanocatalyst prepared in Example 6 was evenly loaded on the surface of a commercial carbon material (KetjenBlack EC-300J, platinum loading 20%). The loaded catalyst was dispersed in 5 mL of acetic acid and kept at 70 °C for 12 h to clean the surface of the catalyst, washed twice with ethanol solution after centrifugation, dried in an oven at 60 °C for 12 h, and then ultrasonically dispersed in 2 mL of water, isopropyl Alcohol and 5% nafion solution mixed solution (volume ratio is 4:1:0.02). Take 10 μL (containing 3 μg of platinum) of the above dispersion liquid and drop it on a glassy carbon electrode (with an area of 0.196 cm 2 ) with a clean surface. After drying, the electrocatalytic oxygen reduction reaction performance test was performed on an AutolabPGSTAT302N electrochemical workstation. The test temperature was 25°C, and a three-electrode system was adopted, and the reference electrode and the counter electrode were Ag/AgCl and Pt foil electrodes, respectively. Cyclic voltammetry curves were obtained in N2 -saturated 0.1M HClO4 solution with a sweep rate of 50 mV/s. The linear sweep voltammetry test was carried out in an O 2 atmosphere with a scan rate of 10 mV/s and an electrode rotation speed of 1600 rpm. The catalyst stability test was carried out in O2 saturated 0.1M HClO4 solution, the scan cycle range was 0.6-1.1V (relative to the standard hydrogen electrode potential), and the scan rate was 100mV/s. After the stability test, the cyclic voltammetry and Linear sweep voltammetry curve.
图1-5分别为实施例一至五制备的磷化铂纳米催化剂的透射电子显微镜照片,表明随着反应时间延长,磷原子均匀扩散进入铂催化剂晶格中,纳米晶尺寸增大。催化剂的形貌由原始铂纳米催化剂的立方体逐步演变为近球形,进一步证明随着磷原子的扩散,铂纳米晶演变为磷化铂纳米晶。同时,随着反应进行,磷化铂中磷原子含量逐渐增加也表明磷化铂催化剂的组分可以通过调控反应时间来精确控制。Figures 1-5 are transmission electron micrographs of the platinum phosphide nanocatalysts prepared in Examples 1 to 5, respectively, showing that as the reaction time prolongs, phosphorus atoms diffuse evenly into the platinum catalyst lattice, and the size of the nanocrystals increases. The morphology of the catalyst gradually evolved from the cube of the original platinum nanocatalyst to a near-spherical shape, which further proves that with the diffusion of phosphorus atoms, platinum nanocrystals evolve into platinum phosphide nanocrystals. At the same time, as the reaction progresses, the content of phosphorus atoms in platinum phosphide gradually increases, which also indicates that the composition of platinum phosphide catalyst can be precisely controlled by adjusting the reaction time.
图6是实施例五制备的磷化铂纳米催化剂的高分辨透射电镜照片及其相应的傅里叶变换图像,图中表明磷化铂纳米催化剂富含大量的堆垛层错缺陷。Fig. 6 is a high-resolution transmission electron micrograph of the platinum phosphide nanocatalyst prepared in Example 5 and its corresponding Fourier transform image, which shows that the platinum phosphide nanocatalyst is rich in a large number of stacking fault defects.
图7是实施例五制备的磷化铂纳米催化剂的X射线衍射谱,通过对衍射谱进行分析可确定纯相磷化铂(分子式为Pt2P)纳米晶的生成。Fig. 7 is the X-ray diffraction spectrum of the platinum phosphide nanocatalyst prepared in Example 5, and the generation of pure-phase platinum phosphide (molecular formula: Pt 2 P) nanocrystals can be confirmed by analyzing the diffraction spectrum.
图8和9分别为实施例六制备的磷化铂纳米催化剂的透射电子显微镜照片和X射线衍射谱,催化剂颗粒尺寸为6.2nm,证明小尺寸纯相磷化铂(分子式为Pt2P)纳米催化剂的生成,表明磷化铂催化剂的尺寸可通过控制步骤一中的铂催化剂的尺寸进行调控。Fig. 8 and 9 are respectively the transmission electron micrograph and the X-ray diffraction spectrum of the platinum phosphide nano-catalyst prepared in embodiment six, and the catalyst particle size is 6.2nm, proves that small size pure phase platinum phosphide (molecular formula is Pt 2 P) nanometer The formation of the catalyst indicates that the size of the platinum phosphide catalyst can be regulated by controlling the size of the platinum catalyst in step one.
图10为实施例六制备的小尺寸磷化铂纳米催化剂负载于商业碳黑的透射电子显微镜照片。可以看出磷化铂纳米颗粒易于均匀负载,便于进行后续应用例中的催化性能研究。Fig. 10 is a transmission electron micrograph of the small-sized platinum phosphide nanocatalyst loaded on commercial carbon black prepared in Example 6. It can be seen that the platinum phosphide nanoparticles are easy to load evenly, which is convenient for the research on the catalytic performance in the subsequent application examples.
图11为图9中磷化铂纳米催化剂与磷化前的铂催化剂的电催化氧还原反应性能对比图。由图中数据可知,磷化铂纳米催化剂的面积活性为铂催化剂的10.2倍,质量活性为铂催化剂的10.3倍,表明磷化铂纳米催化剂具有优异的催化活性。FIG. 11 is a comparison chart of electrocatalytic oxygen reduction reaction performance between the platinum phosphide nanocatalyst in FIG. 9 and the platinum catalyst before phosphating. It can be seen from the data in the figure that the area activity of the platinum phosphide nanocatalyst is 10.2 times that of the platinum catalyst, and the mass activity is 10.3 times that of the platinum catalyst, indicating that the platinum phosphide nanocatalyst has excellent catalytic activity.
图12为本发明实施例六制备的磷化铂纳米催化剂与商业铂/碳催化剂的电催化氧还原反应稳定性对比图。由图中数据计算可知,经过10,000次和30,000次循环测试后,磷化铂纳米催化剂的质量活性分别下降6.8%和9.1%。作为对比,进行相同次数的循环后,商业铂/碳催化剂的质量活性下降量为22%和55%。磷化铂纳米催化剂远低于商业铂/碳催化剂的活性损失表明其具有优异的催化稳定性。Fig. 12 is a comparison chart of electrocatalytic oxygen reduction reaction stability between the platinum phosphide nanocatalyst prepared in Example 6 of the present invention and the commercial platinum/carbon catalyst. It can be seen from the calculation of the data in the figure that after 10,000 and 30,000 cycle tests, the mass activity of the platinum phosphide nanocatalyst decreased by 6.8% and 9.1%, respectively. As a comparison, commercial platinum/carbon catalysts exhibited mass activity decreases of 22% and 55% after the same number of cycles. The activity loss of platinum phosphide nanocatalysts is much lower than that of commercial platinum/carbon catalysts, indicating its excellent catalytic stability.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910888541.5A CN110627030A (en) | 2019-09-19 | 2019-09-19 | A platinum phosphide nanocatalyst, its preparation method and its application in electrocatalytic oxygen reduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910888541.5A CN110627030A (en) | 2019-09-19 | 2019-09-19 | A platinum phosphide nanocatalyst, its preparation method and its application in electrocatalytic oxygen reduction |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110627030A true CN110627030A (en) | 2019-12-31 |
Family
ID=68971855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910888541.5A Pending CN110627030A (en) | 2019-09-19 | 2019-09-19 | A platinum phosphide nanocatalyst, its preparation method and its application in electrocatalytic oxygen reduction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110627030A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114011472A (en) * | 2021-11-22 | 2022-02-08 | 中国科学院大连化学物理研究所 | Preparation of supported platinum nanocluster catalyst and application of supported platinum nanocluster catalyst in alkane anaerobic dehydrogenation |
CN114166696A (en) * | 2020-09-11 | 2022-03-11 | 中国科学院大连化学物理研究所 | Molecular sieve catalyst diffusion property evaluation method |
CN114628692A (en) * | 2020-12-10 | 2022-06-14 | 深圳先进技术研究院 | Phosphorus-activated platinum-based catalyst and preparation method and application thereof |
CN115837273A (en) * | 2022-11-22 | 2023-03-24 | 厦门大学 | Modified metal nano catalyst and preparation method and application thereof |
CN115863677A (en) * | 2022-12-16 | 2023-03-28 | 华南理工大学 | Preparation method of a carbon nanotube-supported platinum-copper-phosphorus nanoparticle catalyst and its performance and application in methanol oxidation and oxygen reduction |
CN116759594A (en) * | 2023-07-24 | 2023-09-15 | 武汉纺织大学 | Carbon-supported rhodium phosphide/platinum heterojunction nano composite catalyst and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009266623A (en) * | 2008-04-25 | 2009-11-12 | Hitachi Maxell Ltd | MANUFACTURING METHOD OF PtP-BASED CATALYST, CATALYST MANUFACTURED BY THE SAME, FUEL CELL USING IT, AND MEMBRANE-ELECTRODE ASSEMBLY |
CN102365775A (en) * | 2009-03-12 | 2012-02-29 | 戴姆勒股份公司 | Platinum phosphide as a cathode catalyst for pemfcs and phosphorous treatment of catalysts for fuel cell |
CN105152149A (en) * | 2015-07-09 | 2015-12-16 | 中国科学技术大学 | Nickel cobalt phosphorus crystal and its preparation method and application |
CN108855161A (en) * | 2018-07-19 | 2018-11-23 | 淮北师范大学 | A kind of preparation method of transition metal phosphide |
-
2019
- 2019-09-19 CN CN201910888541.5A patent/CN110627030A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009266623A (en) * | 2008-04-25 | 2009-11-12 | Hitachi Maxell Ltd | MANUFACTURING METHOD OF PtP-BASED CATALYST, CATALYST MANUFACTURED BY THE SAME, FUEL CELL USING IT, AND MEMBRANE-ELECTRODE ASSEMBLY |
CN102365775A (en) * | 2009-03-12 | 2012-02-29 | 戴姆勒股份公司 | Platinum phosphide as a cathode catalyst for pemfcs and phosphorous treatment of catalysts for fuel cell |
CN105152149A (en) * | 2015-07-09 | 2015-12-16 | 中国科学技术大学 | Nickel cobalt phosphorus crystal and its preparation method and application |
CN108855161A (en) * | 2018-07-19 | 2018-11-23 | 淮北师范大学 | A kind of preparation method of transition metal phosphide |
Non-Patent Citations (1)
Title |
---|
RUIYUN GUO ET AL: "Phosphorization Treatment Improves the Catalytic Activity and Durability of Platinum Catalysts toward Oxygen Reduction Reaction", 《CHEMISTRY OF MATERIALS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114166696A (en) * | 2020-09-11 | 2022-03-11 | 中国科学院大连化学物理研究所 | Molecular sieve catalyst diffusion property evaluation method |
CN114166696B (en) * | 2020-09-11 | 2023-08-18 | 中国科学院大连化学物理研究所 | A method for evaluating the diffusion properties of molecular sieve catalysts |
CN114628692A (en) * | 2020-12-10 | 2022-06-14 | 深圳先进技术研究院 | Phosphorus-activated platinum-based catalyst and preparation method and application thereof |
CN114011472A (en) * | 2021-11-22 | 2022-02-08 | 中国科学院大连化学物理研究所 | Preparation of supported platinum nanocluster catalyst and application of supported platinum nanocluster catalyst in alkane anaerobic dehydrogenation |
CN115837273A (en) * | 2022-11-22 | 2023-03-24 | 厦门大学 | Modified metal nano catalyst and preparation method and application thereof |
CN115863677A (en) * | 2022-12-16 | 2023-03-28 | 华南理工大学 | Preparation method of a carbon nanotube-supported platinum-copper-phosphorus nanoparticle catalyst and its performance and application in methanol oxidation and oxygen reduction |
CN116759594A (en) * | 2023-07-24 | 2023-09-15 | 武汉纺织大学 | Carbon-supported rhodium phosphide/platinum heterojunction nano composite catalyst and preparation method and application thereof |
CN116759594B (en) * | 2023-07-24 | 2024-02-27 | 武汉纺织大学 | Carbon-supported rhodium phosphide/platinum heterojunction nano composite catalyst and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110627030A (en) | A platinum phosphide nanocatalyst, its preparation method and its application in electrocatalytic oxygen reduction | |
CN105431230B (en) | Method for forming noble metal nanoparticles on a support | |
CN102671710B (en) | Noble metal nanocatalyst loaded on dendritic macromolecule functionalized graphene and preparation method thereof | |
CN112968185B (en) | Preparation method of plant polyphenol-modified supramolecular network framework structure manganese-based nanocomposite electrocatalyst | |
Yang et al. | TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction | |
CN101976737B (en) | Preparation of load-type Pt-Fe intermetallic compound nanoparticle catalyst | |
CN114807981B (en) | Preparation method and application of Zn-N-C electrocatalyst for synthesizing H2O2 | |
CN109306499A (en) | A kind of porous hollow RuP@PNC catalyst and its preparation method and application | |
CN112993285A (en) | Catalyst for preferentially oxidizing CO in hydrogen-rich gas and preparation method and application thereof | |
CN116154189A (en) | Intermediate Kong Bo @platinum nickel core-shell framework nanowire and preparation method thereof | |
CN113097513A (en) | Fe-based bimetallic zinc-air battery cathode catalyst based on layered MOF derivation and preparation method thereof | |
JP7154668B1 (en) | Method for producing porous nanotubes | |
CN104525189A (en) | Polyhedral Pd-Pt alloy nano catalyst and preparation method and application of nano catalyst | |
CN103394346A (en) | Preparation method for small-size high-dispersion fuel battery catalyst | |
CN110600752B (en) | A method for preparing carbon-supported Pt alloy catalyst by H2 gas-phase thermal reduction | |
CN112725828A (en) | IrRu-based multicomponent alloy metal precipitation catalyst and preparation method thereof | |
CN108736022B (en) | Preparation method of heterojunction PdAg nanowire, material obtained by preparation method and application of heterojunction PdAg nanowire | |
CN112151820B (en) | Carbon-supported platinum-copper alloy porous nanowire catalyst for fuel cell and preparation method thereof | |
CN104493195B (en) | Amorphous-state copper-platinum alloy nanotube and preparation method thereof | |
CN101580225A (en) | Method for preparing low platinum modified carbon-loaded ruthenium nano particles and application thereof | |
CN105870469A (en) | Pt-Au/GR-RuO2 core-shell-structured methanol fuel cell catalyst and application thereof | |
CN109560299A (en) | A kind of nanowire mesh structure PtCu alloy catalyst and the preparation method and application thereof | |
CN113611885A (en) | Preparation method of bimetallic PtCu aerogel catalyst for high-activity fuel cell | |
CN101947466A (en) | Preparation of highly dispersed and supported nano-PtFe3N ternary intermetallic compound electrocatalyst | |
CN118581498A (en) | A NiCoFeMoWCu high entropy alloy nanocatalyst for H2 electrochemical oxidation and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191231 |
|
WD01 | Invention patent application deemed withdrawn after publication |