CN110611332B - Energy storage device of offshore wind power system and control method thereof - Google Patents
Energy storage device of offshore wind power system and control method thereof Download PDFInfo
- Publication number
- CN110611332B CN110611332B CN201911088357.9A CN201911088357A CN110611332B CN 110611332 B CN110611332 B CN 110611332B CN 201911088357 A CN201911088357 A CN 201911088357A CN 110611332 B CN110611332 B CN 110611332B
- Authority
- CN
- China
- Prior art keywords
- power
- value
- energy storage
- hybrid energy
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 125
- 238000000034 method Methods 0.000 title claims description 25
- 230000005540 biological transmission Effects 0.000 claims abstract description 34
- 238000010248 power generation Methods 0.000 claims abstract description 25
- 230000009466 transformation Effects 0.000 claims abstract description 13
- 230000001131 transforming effect Effects 0.000 claims abstract 2
- 238000004364 calculation method Methods 0.000 claims description 58
- 239000003990 capacitor Substances 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims 2
- 230000004044 response Effects 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/36—Arrangements for transfer of electric power between AC networks via a high-tension DC link
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域technical field
本发明涉及风力发电技术领域,具体涉及一种海上风电系统储能装置及其控制方法。The invention relates to the technical field of wind power generation, in particular to an energy storage device for an offshore wind power system and a control method thereof.
背景技术Background technique
面对能源紧缺和环境污染的双重危机,大力开发可再生能源,优化能源结构成为推动全球经济—能源—环境可持续发展的重要方向。风能作为一种无污染和可再生的清洁能源有着巨大的发展潜力,已经受到越来越多国家的重视和青睐。近年来,随着各国政府的鼓励及政策的优惠,风电成为增长最快的可再生能源。风力发电规模的不断扩大将对能源结构和环境问题的改善带来深远的影响。Facing the dual crises of energy shortage and environmental pollution, vigorously developing renewable energy and optimizing energy structure has become an important direction to promote the sustainable development of global economy-energy-environment. As a non-polluting and renewable clean energy, wind energy has great development potential and has been valued and favored by more and more countries. In recent years, with the encouragement and preferential policies of the governments of various countries, wind power has become the fastest growing renewable energy. The continuous expansion of wind power generation will have a profound impact on the improvement of energy structure and environmental issues.
随着海上风电机组安装、制造技术不断地进步与成熟,其单机容量不断得到提升,海上风电场规模随之扩大,并逐渐向远离陆地、风能资源更加密集的近海甚至深海发展。由于海上风电场独特的地理位置,海上风电的远距离输送及并网问题已成为制约海上风电发展的关键因素之一。With the continuous improvement and maturity of offshore wind turbine installation and manufacturing technology, its stand-alone capacity has been continuously improved, and the scale of offshore wind farms has expanded accordingly, and has gradually developed towards offshore or even deep seas far away from land and with more intensive wind energy resources. Due to the unique geographical location of offshore wind farms, the long-distance transmission and grid connection of offshore wind power have become one of the key factors restricting the development of offshore wind power.
目前利用高压直流输电(简称:“HVDC”)技术已经解决远距离传输及并网问题,HVDC技术非常适用于电能远距离输送,具有成本低,功耗小,技术相对成熟等优点,但随着风电渗透率的增加,电网的稳定性问题也随之加大。At present, the use of high-voltage direct current transmission (abbreviation: "HVDC") technology has solved the problem of long-distance transmission and grid connection. HVDC technology is very suitable for long-distance transmission of electric energy, and has the advantages of low cost, low power consumption, and relatively mature technology. As the penetration rate of wind power increases, the stability of the power grid also increases.
发明内容Contents of the invention
本发明提供了一种同步电机的励磁控制装置及使用方法,以解决现有技术中随着风电渗透率的增加,电网的稳定性差的技术问题。The invention provides an excitation control device and a use method of a synchronous motor to solve the technical problem in the prior art that the stability of the power grid is poor with the increase of the wind power penetration rate.
本发明提供了一种海上风电系统储能装置,包括:海上风场模块、变电模块、陆上发电传输模块、混合储能模块;The invention provides an energy storage device for an offshore wind power system, including: an offshore wind field module, a power transformation module, an onshore power generation transmission module, and a hybrid energy storage module;
所述海上风场模块分别与所述变得模块、混合储能模块连接,用于向所述变得模块、混合储能模块输出功率;The offshore wind farm module is respectively connected to the conversion module and the hybrid energy storage module for outputting power to the conversion module and the hybrid energy storage module;
所述变电模块与所述陆上发电传输模块、混合储能模块连接,用于将海上风场模块输出的功率进行变换,再输出给所述陆上发电传输模块以及混合储能模块;The power conversion module is connected to the onshore power generation transmission module and the hybrid energy storage module, and is used to convert the power output by the offshore wind farm module, and then output it to the onshore power generation transmission module and the hybrid energy storage module;
所述混合储能模块用于吸收或供给所述海上风场模块的功率;The hybrid energy storage module is used to absorb or supply the power of the offshore wind farm module;
所述陆上发电传输模块用于将海上风场模块输出的功率并网至陆路电网。The onshore power generation transmission module is used for grid-connecting the power output by the offshore wind farm module to the land power grid.
进一步地,所述海上风场模块包括:数组风力机组;所述风力机组包括:风力机、齿轮箱、双馈风机、风电整流器、风电逆变器、第一变压器;Further, the offshore wind farm module includes: an array of wind turbines; the wind turbines include: wind turbines, gearboxes, double-fed wind turbines, wind power rectifiers, wind power inverters, and first transformers;
所述变电模块包括:第一交流母线、第二变压器、第二交流母线、高压直流输电单元;The power transformation module includes: a first AC bus, a second transformer, a second AC bus, and a high-voltage direct current transmission unit;
所述陆上发电传输模块包括:陆上发电传输单元、第三交流母线;The onshore power generation transmission module includes: an onshore power generation transmission unit and a third AC bus;
混合储能模块包括:锁相环、数据处理单元、混合储能单元、直流母线;The hybrid energy storage module includes: a phase-locked loop, a data processing unit, a hybrid energy storage unit, and a DC bus;
所述风力机的输出端与所述齿轮箱的输入轴连接;所述齿轮箱的输出轴与双馈风机的输入端连接;双馈风机的输出端分别与所述风电整流器的交流输入端、第一变压器输入端连接;所述风电整流器的直流输出端与所述风电逆变器直流输入端连接,所述风电整流器的直流输出端与所述直流母线连接;所述风电逆变器的交流输出端与所述第一变压器的输入端连接;所述第一变压器的输出端与所述第一交流母线连接;所述第二变压器的输入端与所述第一交流母线连接,输出端与所述第二交流母线连接;所述第二交流母线的输出端与所述高压直流输电单元的输入端连接;所述高压直流输电单元的输出端与所述锁相环输入端连接;所述锁相环的输出端分别与所述第三交流母线、数据处理单元的输入端连接;所述第三交流母线的输出端分别与所述陆上发电传输单元、数据处理单元的输入端连接;所述直流母线的输出端与所述数据处理单元的输入端连接;所述数据处理单元的输出端与所述混合储能单元的输入端连接,所述数据处理单元基于从所述锁相环获取的功率角以及频率值、从所述第三交流母线获取的电流值及电压值、从所述直流母线获取的电流值及电压值,输出直接作用于所述混合储能单元上的电压值及功率值,对所述混合储能单元充电;所述混合储能单元的充放电端与所述直流母线连接,所述混合储能单元基于自身电压值以及功率值,对所述直流母线充放电。The output end of the wind turbine is connected to the input shaft of the gear box; the output shaft of the gear box is connected to the input end of the double-fed fan; the output end of the double-fed fan is respectively connected to the AC input end of the wind power rectifier, The input end of the first transformer is connected; the DC output end of the wind power rectifier is connected to the DC input end of the wind power inverter, and the DC output end of the wind power rectifier is connected to the DC bus; the AC of the wind power inverter The output terminal is connected to the input terminal of the first transformer; the output terminal of the first transformer is connected to the first AC bus; the input terminal of the second transformer is connected to the first AC bus, and the output terminal is connected to the first AC bus. The second AC bus is connected; the output end of the second AC bus is connected to the input end of the high-voltage direct current transmission unit; the output end of the high-voltage direct current transmission unit is connected to the input end of the phase-locked loop; the The output end of the phase-locked loop is respectively connected to the input end of the third AC bus and the data processing unit; the output end of the third AC bus is respectively connected to the input end of the land power generation transmission unit and the data processing unit; The output end of the DC bus is connected to the input end of the data processing unit; the output end of the data processing unit is connected to the input end of the hybrid energy storage unit, and the data processing unit is based on the phase-locked loop The obtained power angle and frequency value, the current value and voltage value obtained from the third AC bus, the current value and voltage value obtained from the DC bus, and output the voltage value directly acting on the hybrid energy storage unit and power value, charge the hybrid energy storage unit; the charging and discharging terminal of the hybrid energy storage unit is connected to the DC bus, and the hybrid energy storage unit charges the DC bus based on its own voltage value and power value discharge.
进一步地,所述混合储能单元包括:直接母线接入端、第二十四电阻、第三十电阻、第二十五电抗、第三十一电抗、第二十六二极管、第二十七二极管、第三十二二极管、第三十三二极管、第二十八电容、第三十四电容以及混合储能电池;Further, the hybrid energy storage unit includes: a direct bus access terminal, a twenty-fourth resistor, a thirty-ninth resistor, a twenty-fifth reactance, a thirty-first reactance, a twenty-sixth diode, a second Seventeenth diode, thirty-second diode, thirty-third diode, twenty-eighth capacitor, thirty-fourth capacitor and hybrid energy storage battery;
所述直流母线接入端的正极分别与所述第二十四电阻的一端、第三十四电容的一端、第三十二二极管的正极、混合储能电池的第一引脚连接,所述直流母线接入端的负极分别与所述第三十四电容的另一端、第三十三二极管的负极、第二十七二极管的正极、第二十八电容的一端、混合储能电池的第一引脚连接;所述第二十四电阻的另一端与所述第二十五电抗的一端连接;所述第二十五电抗的另一端分别与所述第二十六二极管的正极、第二十七二极管的负极连接;所述第二十六二极管的负极分别与所述第二十八电容的另一端以及混合储能电池的第二引脚连接;所述第三十三二极管的正极分别与所述第三十二二极管的正极、第三十一电抗的一端连接;所述第三十一电抗的另一端与所述第三十电阻的一端连接;所述第三十电阻的另一端与所述合储能电池的第二引脚连接;所述混合储能电池的输入端与所述数据处理单元连接。The anode of the DC bus access terminal is respectively connected to one end of the twenty-fourth resistor, one end of the thirty-fourth capacitor, the anode of the thirty-second diode, and the first pin of the hybrid energy storage battery, so The negative pole of the DC bus access terminal is respectively connected to the other end of the thirty-fourth capacitor, the negative pole of the thirty-third diode, the positive pole of the twenty-seventh diode, one end of the twenty-eighth capacitor, the mixed storage connected to the first pin of the battery; the other end of the twenty-fourth resistor is connected to one end of the twenty-fifth reactance; the other end of the twenty-fifth reactance is connected to the twenty-sixth two The positive pole of the pole tube and the negative pole of the twenty-seventh diode are connected; the negative pole of the twenty-sixth diode is respectively connected with the other end of the twenty-eighth capacitor and the second pin of the hybrid energy storage battery ; The anode of the thirty-third diode is respectively connected to the anode of the thirty-second diode and one end of the thirty-first reactance; the other end of the thirty-first reactance is connected to the third One end of the tenth resistor is connected; the other end of the thirtieth resistor is connected to the second pin of the combined energy storage battery; the input end of the hybrid energy storage battery is connected to the data processing unit.
进一步地,所述数据处理单元包括:虚拟惯量控制单元、功率频率计算单元、电压计算单元、功率计算单元、第一加法器、第二加法器;Further, the data processing unit includes: a virtual inertia control unit, a power frequency calculation unit, a voltage calculation unit, a power calculation unit, a first adder, and a second adder;
所述功率频率计算单元的输入端分别与所述第三交流母线的输出端、锁相环的输出端,输出端分别与所述虚拟惯量控制单元的输入端以及第一加法器的输入端连接,所述功率频率计算单元基于从所述锁相环获取的电网电压角度θ、从所述第三交流母线获取的电网电压值Uabc及电网电流值Iabc,经过3/2变换计算向所述第一加法器输出并网功率值Pg,并基于并网功率值Pg向所述虚拟惯量控制单元输出频率参考值fref;所述虚拟惯量控制单元的输入端与所述锁相环的输出端连接,输出端与所述第二加法器的输入端连接,所述虚拟惯量控制单元基于从所述锁相环获取的频率值fmeans、频率参考值fref,经过PID控制算法计算向所述第二加法器输出功率值Pess;所述功率计算单元的输入端与所述直流母线的输出端连接,所述电压计算单元基于从所述直流母线获取的电压值U0及电流值I0,经过功率计算向所述第一加法器输出功率值P0;所述第一加法器的输出端与所述电压计算单元的输入端连接,所述第一加法器将并网功率值Pg以及功率值P0进行加法计算向所述电压计算单元输出功率值Ph;所述电压计算单元的输出端与所述混合储能单元的输入端连接,所述电压计算单元基于所述功率值Ph,经过DC/DC变换器电压电流双闭环控制算法向所述混合储能单元输出电压输入参考值U*;所述第二加法器的输出端与所述混合储能单元的输入端连接,所述第二加法器将所述功率值Pess以及功率偏差值△Psoc相加后向所述混合储能单元输出功率输入参考值P*,其中所述功率偏差值△Psoc是功率值Ph经过高通滤波控制算法后与所述混合储能单元的实时功率值Pc进行加法计算得到的功率偏差值。The input end of the power frequency calculation unit is respectively connected to the output end of the third AC bus and the output end of the phase-locked loop, and the output end is respectively connected to the input end of the virtual inertia control unit and the input end of the first adder , the power frequency calculation unit is based on the grid voltage angle θ obtained from the phase-locked loop, the grid voltage value U abc and the grid current value I abc obtained from the third AC bus, and calculates to the all through 3/2 transformation The first adder outputs a grid-connected power value P g , and outputs a frequency reference value f ref to the virtual inertia control unit based on the grid-connected power value P g ; the input terminal of the virtual inertia control unit is connected to the phase-locked loop connected to the output end of the second adder, the output end is connected to the input end of the second adder, the virtual inertia control unit is based on the frequency value f means and the frequency reference value f ref obtained from the phase-locked loop, and is calculated by the PID control algorithm Outputting a power value P ess to the second adder; the input terminal of the power calculation unit is connected to the output terminal of the DC bus, and the voltage calculation unit is based on the voltage value U 0 and the current obtained from the DC bus value I 0 , output the power value P 0 to the first adder after power calculation; the output terminal of the first adder is connected to the input terminal of the voltage calculation unit, and the first adder will grid-connected power The value P g and the power value P 0 are added and calculated to output the power value Ph to the voltage calculation unit; the output terminal of the voltage calculation unit is connected to the input terminal of the hybrid energy storage unit, and the voltage calculation unit is based on the The power value P h is output to the hybrid energy storage unit through a DC/DC converter voltage and current double closed-loop control algorithm to input a reference value U * ; the output terminal of the second adder is connected to the hybrid energy storage unit The input end is connected, and the second adder adds the power value P ess and the power deviation value △ P soc to the hybrid energy storage unit and then outputs the power input reference value P * , wherein the power deviation value △ P soc is a power deviation value calculated by adding the power value Ph h to the real-time power value P c of the hybrid energy storage unit after passing through a high-pass filter control algorithm.
本发明还提供了一种海上风电系统储能装置的控制方法:包括如下步骤:The present invention also provides a control method for an energy storage device of an offshore wind power system: comprising the following steps:
步骤1:从直流母线上获取电压值U0和电流值I0;从锁相环上获取电网电压角度θ和频率值fmeans;从第三交流母线上获取电网电压值Uabc和电网电流值Iabc;从混合储能单元获取实时功率值Pc;Step 1: Get the voltage value U 0 and current value I 0 from the DC bus; get the grid voltage angle θ and frequency value f means from the phase-locked loop; get the grid voltage value U abc and the grid current value from the third AC bus I abc ; Obtain the real-time power value P c from the hybrid energy storage unit;
步骤2:功率频率计算单元根据所述电网电压角度θ、电网电压值Uabc及电网电流值Iabc,通过3/2变换计算获得并网功率值Pg,并根据所述并网功率值Pg获取频率参考值fref;Step 2: The power frequency calculation unit obtains the grid-connected power value P g through 3/2 conversion calculation according to the grid voltage angle θ, the grid voltage value U abc and the grid current value I abc , and calculates the grid-connected power value P g according to the grid-connected power value P g obtains the frequency reference value f ref ;
虚拟惯量控制单元根据所述频率值fmeans、频率参考值fref,通过PID控制算法计算获得功率值Pess;The virtual inertia control unit calculates and obtains the power value P ess through the PID control algorithm according to the frequency value f means and the frequency reference value f ref ;
功率计算单元根据所述电压值U0及电流值I0,通过功率获得功率值P0;The power calculation unit obtains a power value P 0 through power according to the voltage value U 0 and the current value I 0 ;
步骤3:将所述功率值P0和并网功率值Pg进行加法运算,获得功率值Ph;所述功率值Ph依次经过高通滤波控制算法及加法运算后与所述功率值Pc进行加法计算,获得的功率偏差值△Psoc;Step 3: Add the power value P 0 and the grid-connected power value P g to obtain the power value P h ; the power value P h is combined with the power value P c after the high-pass filter control algorithm and the addition operation in turn Perform addition calculation to obtain the power deviation value △ P soc ;
步骤4:电压计算单元根据所述功率值Ph,依次经过高通滤波控制算法、加法运算及获得电压输入参考值U*;将所述功率值Pess和功率偏差值△Psoc进行加法计算,获得功率输入参考值P*;Step 4: According to the power value P h , the voltage calculation unit sequentially undergoes a high-pass filter control algorithm, an addition operation, and obtains a voltage input reference value U * ; performs an addition calculation on the power value P ess and a power deviation value △ P soc , obtain a power input reference value P * ;
步骤5:根据所述功率输入参考值P*对混合储能单元的电池容量进行设置;根据所述电压输入参考值U*对混合储能单元的输出或输出的电压以及电流的大小进行控制;Step 5: setting the battery capacity of the hybrid energy storage unit according to the power input reference value P * ; controlling the output or output voltage and current of the hybrid energy storage unit according to the voltage input reference value U * ;
步骤6:获取海上风场模块的实时功率值Pw;获取期望并网功率Pout;Step 6: Obtain the real-time power value P w of the offshore wind farm module; obtain the expected grid-connected power P out ;
步骤7:当所述功率值Pw大于所述网功率Pout时,混合储能单元切换成吸能模式,通过直流母线吸收海上风场模块中的功率;Step 7: When the power value P w is greater than the grid power P out , the hybrid energy storage unit switches to the energy absorption mode, and absorbs the power in the offshore wind farm module through the DC bus;
当所述功率值Pw小于所述网功率Pout时,混合储能单元切换成供能模式,通过直流母线向海上风场模块输送功率。When the power value P w is smaller than the grid power P out , the hybrid energy storage unit switches to an energy supply mode, and transmits power to the offshore wind farm module through the DC bus.
进一步,所述步骤2中虚拟惯量控制单元根据所述频率值fmeans、频率参考值fref,通过具有P、I、D三个调节器的PID控制算法计算获得功率值Pess。Further, in the step 2, the virtual inertia control unit calculates and obtains the power value P ess through the PID control algorithm with three regulators P, I, and D according to the frequency value f means and the frequency reference value f ref .
进一步地,所述步骤5中根据所述电压输入参考值U*对混合储能单元的输出或输出的电压以及电流的大小进行控制的方法为:将电压输入参考值U*作为DC/DC变换器电压电流双闭环控制算法输入参数,通过DC/DC变换器电压电流双闭环控制算法的输出量控制混合储能单元的输出或输出的电压以及电流的大小。Further, in the
进一步地,所述步骤5中DC/DC变换器电压电流双闭环控制算法为采用模糊PID控制算法的DC/DC变换器电压电流双闭环控制算法。Further, the DC/DC converter voltage and current double closed-loop control algorithm in
本发明的有益效果:Beneficial effects of the present invention:
本发明利用HVDC技术有效解决大型陆上风电基地及远海风电场分布分散,将分散的风功率集中长距离、跨区域外送,同时通过由蓄电池和超级电容组成的混合储能模块为风电场系统提供惯量响应,混合储能模块采用模糊PID控制,将混合储能和海上风电场虚拟惯量控制相结合,且充分利用混合储能模块充放电功能使得电网更加稳定。The invention utilizes the HVDC technology to effectively solve the scattered distribution of large-scale onshore wind power bases and offshore wind farms, concentrates the scattered wind power over long distances, and sends it across regions. Inertia response is provided, and the hybrid energy storage module adopts fuzzy PID control, which combines the hybrid energy storage with the virtual inertia control of the offshore wind farm, and makes full use of the charging and discharging function of the hybrid energy storage module to make the power grid more stable.
附图说明Description of drawings
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:The features and advantages of the present invention will be more clearly understood by referring to the accompanying drawings, which are schematic and should not be construed as limiting the invention in any way. In the accompanying drawings:
图1为本发明中一种海上风电系统储能装置的电路示意图;Fig. 1 is a schematic circuit diagram of an energy storage device for an offshore wind power system in the present invention;
图2为本发明中混合储能单元的电路示意图;Fig. 2 is a schematic circuit diagram of a hybrid energy storage unit in the present invention;
图3为本发明中输出频率参考值fref的控制算法结构图;Fig. 3 is a control algorithm structural diagram of the output frequency reference value f ref in the present invention;
图4为本发明中模糊PID控制算法结构图;Fig. 4 is fuzzy PID control algorithm structural diagram among the present invention;
图5为本发明中DC/DC变换器电压电流双闭环控制算法结构图;5 is a structural diagram of a DC/DC converter voltage and current double closed-loop control algorithm in the present invention;
图6为本发明中对功率值Ph处理的算法结构图;Fig. 6 is the algorithm structural diagram that power value Ph is processed among the present invention;
图7为本发明中基于储能的虚拟惯量控制算法结构图。Fig. 7 is a structural diagram of the virtual inertia control algorithm based on energy storage in the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts fall within the protection scope of the present invention.
如图1所示,本发明实施例提供一种海上风电系统储能装置,包括:海上风场模块、变电模块、陆上发电传输模块、混合储能模块;As shown in Figure 1, an embodiment of the present invention provides an energy storage device for an offshore wind power system, including: an offshore wind farm module, a power transformation module, an onshore power generation transmission module, and a hybrid energy storage module;
海上风场模块包括:数组风力机45组;风力机45组包括:风力机45、齿轮箱46、双馈风机47、风电整流器1、风电逆变器2、第一变压器48;The offshore wind farm module includes: 45 groups of array wind turbines; the 45 groups of wind turbines include:
变电模块包括:第一交流母线3、第二变压器4、第二交流母线6、高压直流输电单元36;The power transformation module includes: a first AC bus 3, a second transformer 4, a second AC bus 6, and a high-voltage direct
陆上发电传输模块包括:陆上发电传输单元19、第三交流母线21;The onshore power generation transmission module includes: an onshore power
混合储能模块包括:锁相环37、数据处理单元、混合储能单元5、直流母线42;The hybrid energy storage module includes: a phase-locked loop 37, a data processing unit, a hybrid
风力机45的输出端与齿轮箱46的输入轴连接;齿轮箱46的输出轴与双馈风机47的输入端连接;双馈风机47的输出端分别与风电整流器1的交流输入端、第一变压器48输入端连接;风电整流器1的直流输出端与风电逆变器2直流输入端连接,风电整流器1的直流输出端与直流母线42连接;风电逆变器2的交流输出端与第一变压器48的输入端连接;第一变压器48的输出端与第一交流母线3连接;第二变压器4的输入端与第一交流母线3连接,输出端与第二交流母线6连接;第二交流母线6的输出端与高压直流输电单元36的输入端连接;高压直流输电单元36的输出端与锁相环37输入端连接;锁相环37的输出端分别与第三交流母线21、数据处理单元的输入端连接;第三交流母线21的输出端分别与陆上发电传输单元19、数据处理单元的输入端连接;直流母线42的输出端与数据处理单元的输入端连接;数据处理单元的输出端与混合储能单元5的输入端连接,数据处理单元基于从锁相环37获取的功率角以及频率值、从第三交流母线21获取的电流值及电压值、从直流母线42获取的电流值及电压值,输出直接作用于混合储能单元5上的电压值及功率值,对混合储能单元5充电;混合储能单元5的充放电端与直流母线42连接,混合储能单元5基于自身电压值以及功率值,对直流母线42充放电;The output end of the wind turbine 45 is connected with the input shaft of the gear box 46; the output shaft of the gear box 46 is connected with the input end of the doubly-fed fan 47; The input end of the transformer 48 is connected; the DC output end of the wind power rectifier 1 is connected to the DC input end of the wind power inverter 2, and the DC output end of the wind power rectifier 1 is connected to the DC bus 42; the AC output end of the wind power inverter 2 is connected to the first transformer The input end of 48 is connected; the output end of the first transformer 48 is connected with the first AC bus 3; the input end of the second transformer 4 is connected with the first AC bus 3, and the output end is connected with the second AC bus 6; the second AC bus The output terminal of 6 is connected with the input terminal of HVDC transmission unit 36; the output terminal of HVDC transmission unit 36 is connected with the input terminal of PLL 37; the output terminal of PLL 37 is respectively connected with the third AC bus 21 and the data processing unit The input end of the third AC bus 21 is connected with the input end of the land power generation transmission unit 19 and the data processing unit respectively; the output end of the DC bus 42 is connected with the input end of the data processing unit; the output of the data processing unit end is connected with the input end of the hybrid energy storage unit 5, and the data processing unit is based on the power angle and the frequency value obtained from the phase-locked loop 37, the current value and the voltage value obtained from the third AC bus 21, and the current obtained from the DC bus 42 value and voltage value, and output the voltage value and power value directly acting on the hybrid energy storage unit 5 to charge the hybrid energy storage unit 5; the charging and discharging terminals of the hybrid energy storage unit 5 are connected to the DC bus 42, and the hybrid energy storage unit 5 Charge and discharge the DC bus 42 based on its own voltage value and power value;
其中,数据处理单元包括:虚拟惯量控制单元38、功率频率计算单元39、电压计算单元40、功率计算单元41、第一加法器43、第二加法器44;Wherein, the data processing unit includes: virtual
功率频率计算单元39的输入端分别与第三交流母线21的输出端、锁相环37的输出端,输出端分别与虚拟惯量控制单元38的输入端以及第一加法器43的输入端连接,功率频率计算单元39基于从锁相环37获取的电网电压角度θ、从第三交流母线21获取的电网电压值Uabc及电网电流值Iabc,经过3/2变换计算向第一加法器43输出并网功率值Pg,并基于并网功率值Pg向虚拟惯量控制单元38输出频率参考值fref;虚拟惯量控制单元38的输入端与锁相环37的输出端连接,输出端与第二加法器44的输入端连接,虚拟惯量控制单元38基于从锁相环37获取的频率值fmeans、频率参考值fref,经过PID控制算法计算向第二加法器44输出功率值Pess;功率计算单元41的输入端与直流母线42的输出端连接,电压计算单元40基于从直流母线42获取的电压值U0及电流值I0,经过功率计算向第一加法器43输出功率值P0;第一加法器43的输出端与电压计算单元40的输入端连接,第一加法器43将并网功率值Pg以及功率值P0进行加法计算向电压计算单元40输出功率值Ph;电压计算单元40的输出端与混合储能单元5的输入端连接,电压计算单元40基于功率值Ph,经过DC/DC变换器电压电流双闭环控制算法向混合储能单元5输出电压输入参考值U*;第二加法器44的输出端与混合储能单元5的输入端连接,第二加法器44将功率值Pess以及功率偏差值△Psoc相加后向混合储能单元5输出功率输入参考值P*,其中功率偏差值△Psoc是功率值Ph经过高通滤波控制算法后与混合储能单元5的实时功率值Pc进行加法计算得到的功率偏差值。The input end of the power
如图2所示,混合储能单元5包括:直流母线接入端23、第二十四电阻24、第三十电阻30、第二十五电抗25、第三十一电抗31、第二十六二极管26、第二十七二极管27、第三十二二极管32、第三十三二极管33、第二十八电容28、第三十四电容34以及混合储能电池29;As shown in Figure 2, the hybrid
直流母线接入端23的正极分别与第二十四电阻24的一端、第三十四电容34的一端、第三十二二极管32的正极、混合储能电池29的第一引脚连接,直流母线接入端23的负极分别与第三十四电容34的另一端、第三十三二极管33的负极、第二十七二极管27的正极、第二十八电容28的一端、混合储能电池29的第一引脚连接;第二十四电阻24的另一端与第二十五电抗25的一端连接;第二十五电抗25的另一端分别与第二十六二极管26的正极、第二十七二极管27的负极连接;第二十六二极管26的负极分别与第二十八电容28的另一端以及混合储能电池29的第二引脚连接;第三十三二极管33的正极分别与第三十二二极管32的正极、第三十一电抗31的一端连接;第三十一电抗31的另一端与第三十电阻30的一端连接;第三十电阻30的另一端与合储能电池的第二引脚连接;混合储能电池29的输入端与数据处理单元连接。该电路可以实现混合储能电池29的充放电。The positive pole of the DC
本发明海上风电系统储能装置的控制方法如下:The control method of the energy storage device of the offshore wind power system of the present invention is as follows:
海上风电系统储能装置的控制方法:包括如下步骤:A control method for an energy storage device of an offshore wind power system: comprising the following steps:
步骤1:从直流母线42上获取电压值U0和电流值I0;从锁相环37上获取电网电压角度θ和频率值fmeans;从第三交流母线21上获取电网电压值Uabc和电网电流值Iabc;从混合储能单元5获取实时功率值Pc;Step 1: Obtain voltage value U 0 and current value I 0 from
步骤2:功率频率计算单元39根据所述电网电压角度θ、电网电压值Uabc及电网电流值Iabc,通过3/2变换计算获得并网功率值Pg,并根据所述并网功率值Pg获取频率参考值fref;Step 2: The power
虚拟惯量控制单元38根据所述频率值fmeans、频率参考值fref,通过具有P、I、D三个调节器的PID控制算法计算获得功率值Pess;The virtual
功率计算单元41根据所述电压值U0及电流值I0,通过功率获得功率值P0;The
步骤3:将所述功率值P0和并网功率值Pg进行加法运算,获得功率值Ph;所述功率值Ph依次经过高通滤波控制算法及加法运算后与所述功率值Pc进行加法计算,获得的功率偏差值△Psoc;Step 3: Add the power value P 0 and the grid-connected power value P g to obtain the power value P h ; the power value P h is combined with the power value P c after the high-pass filter control algorithm and the addition operation in turn Perform addition calculation to obtain the power deviation value △P soc ;
步骤4:电压计算单元40根据所述功率值Ph,依次经过高通滤波控制算法、加法运算及获得电压输入参考值U*;将所述功率值Pess和功率偏差值△Psoc进行加法计算,获得功率输入参考值P*;Step 4: According to the power value P h , the
步骤5:根据所述功率输入参考值P*对混合储能单元5的电池容量进行设置;将电压输入参考值U*作为采用模糊PID控制算法的DC/DC变换器电压电流双闭环控制算法输入参数,通过DC/DC变换器电压电流双闭环控制算法的输出量控制混合储能单元5的输出或输出的电压以及电流的大小;Step 5: Set the battery capacity of the hybrid
步骤6:获取海上风场模块的实时功率值Pw;获取期望并网功率Pout;Step 6: Obtain the real-time power value P w of the offshore wind farm module; obtain the expected grid-connected power P out ;
步骤7:当所述功率值Pw大于所述网功率Pout时,混合储能单元5切换成吸能模式,通过直流母线42吸收海上风场模块中的功率;Step 7: When the power value P w is greater than the grid power P out , the hybrid
当所述功率值Pw小于所述网功率Pout时,混合储能单元5切换成供能模式,通过直流母线42向海上风场模块输送功率。When the power value P w is smaller than the grid power P out , the hybrid
图3-图7所示的是本发明控制方法中的所用控制算法的结构示意图,如图3所示的输出频率参考值fref的控制算法结构图,首先通过锁相环PLL的作用得到电网电压角度θ,通过3/2变换将电网电压Uabc和电网电流Iabc变换为dq坐标系上,再将dq坐标系上电压电流相乘得到各自的功率并相加得到并网目标参考功率Pg,然后通过功率转频率计算得到频率参考值fref。What Fig. 3-Fig. 7 shows is the structural representation of the control algorithm used in the control method of the present invention, the control algorithm structural diagram of the output frequency reference value fref as shown in Fig. 3, at first obtain grid voltage by the effect of phase-locked loop PLL Angle θ, the grid voltage U abc and grid current I abc are transformed into the dq coordinate system through 3/2 transformation, and then the voltage and current on the dq coordinate system are multiplied to obtain their respective powers and added to obtain the grid-connected target reference power P g , and then the frequency reference value f ref is obtained through power-to-frequency calculation.
如图4所示模糊PID功率控制结构图,其中Pb *既表示蓄电池功率Psb *,同时表示超级电容功率Psc *,输出的功率Pc反馈后与输入功率Pb *的混合储能功率偏差值ΔPSOC作用于三个部分,一部分作为模糊控制算法的一个输入值,另外一部分微分后得到微分变化率Ec作为模糊控制算法的第二个输入量,最后一部分为PID控制器的输入值,而KP,Ki,Kd分别代表比例积分微分环节三个参数作为PID控制器的输入值,并得到的电压值U*经混合储能单元后得到功率值Pc在经功率传感器后作为反馈量。As shown in Figure 4, the fuzzy PID power control structure diagram, where P b * not only represents the battery power P sb * , but also represents the super capacitor power P sc * , the output power Pc is fed back and the mixed energy storage power of the input power P b * The deviation value ΔP SOC acts on three parts, one part is used as an input value of the fuzzy control algorithm, the other part is differentiated to obtain the differential change rate Ec as the second input quantity of the fuzzy control algorithm, and the last part is the input value of the PID controller , and K P , K i , K d respectively represent the three parameters of the proportional integral differential link as the input value of the PID controller, and the obtained voltage value U * is passed through the hybrid energy storage unit to obtain the power value P c after passing through the power sensor as feedback.
如图5所示DC/DC变换器电压电流双闭环控制结构图,由PID控制器得到的U*与DC/DC变换器提供的电压值Usoc之差作为模糊PID控制算法的输入,由模糊PID控制算法得到的电流值I*与DC/DC变换器提供的电流值I再作为模糊PID控制算法的输入,再经开关控制器,输出的控制脉冲作为DC/DC变换器的开关导通信号,DC/DC变换器接混合储能单元。As shown in Figure 5, the DC/DC converter voltage and current double closed-loop control structure diagram, the difference between the U * obtained by the PID controller and the voltage value U soc provided by the DC/DC converter is used as the input of the fuzzy PID control algorithm, and the fuzzy PID control algorithm is controlled by the fuzzy The current value I * obtained by the PID control algorithm and the current value I provided by the DC/DC converter are used as the input of the fuzzy PID control algorithm, and then the control pulse output by the switch controller is used as the switch conduction signal of the DC/DC converter , the DC/DC converter is connected to the hybrid energy storage unit.
如图6所示的功率电流计算模块图,由图1中得到的功率值Ph由高通滤波控制算法后得到超级电容功率参考值Psc *和蓄电池功率参考值Psb *,其中超级电容功率参考值Psc *和蓄电池功率参考值Psb *在图4中用Pb *表示,经图4模糊PID控制算法得到U*后作为图5的DC/DC电压电流双闭环控制的输入值。As shown in the power current calculation module diagram in Figure 6, the power value P h obtained in Figure 1 is obtained by the high-pass filter control algorithm to obtain the supercapacitor power reference value P sc * and the battery power reference value P sb * , where the supercapacitor power Reference value P sc * and battery power reference value P sb * are denoted by P b * in Fig. 4, U * obtained by fuzzy PID control algorithm in Fig. 4 is used as the input value of DC/DC voltage and current double closed-loop control in Fig. 5.
如图7所示为基于的综合虚拟惯量控制图,其中fmeans为锁相环PLL提供的频率值,Kp为比例调节系数,Ki为积分调节系数,Kd为微分调节系数,Pess为虚拟惯量PID控制功率输出值,采用反馈系统频率偏差经过比例积分微分(PID)控制器来控制储能功率输出,即:Pess=-KpΔf-Ki∫Δf-Kddf/dt。输出的功率P*由两部分组成,一部分为基于PID控制后输出的储能功率Pess,另一部分为混合储能功率偏差值ΔPsoc。其中,ΔPsoc包括两部分,第一部分为蓄电池功率偏差ΔPsb,第二部分为超级电容功率偏差ΔPsc,两者共同作为混合储能单元ESS的输入值。As shown in Figure 7, it is based on the integrated virtual inertia control diagram, where f means is the frequency value provided by the phase-locked loop PLL, K p is the proportional adjustment coefficient, K i is the integral adjustment coefficient, K d is the differential adjustment coefficient, P ess The power output value is controlled by the virtual inertia PID, and the frequency deviation of the feedback system is used to control the energy storage power output through the proportional integral differential (PID) controller, that is: P ess =-K p Δf-K i ∫Δf-K d df/dt . The output power P * consists of two parts, one part is the output energy storage power Pess based on PID control, and the other part is the hybrid energy storage power deviation value ΔP soc . Among them, ΔP soc includes two parts, the first part is the battery power deviation ΔP sb , and the second part is the supercapacitor power deviation ΔP sc , both of which are used as the input value of the hybrid energy storage unit ESS.
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。Although the embodiments of the present invention have been described in conjunction with the accompanying drawings, those skilled in the art can make various modifications and variations without departing from the spirit and scope of the present invention, and such modifications and variations all fall into the scope of the appended claims. within the limited range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911088357.9A CN110611332B (en) | 2019-11-08 | 2019-11-08 | Energy storage device of offshore wind power system and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911088357.9A CN110611332B (en) | 2019-11-08 | 2019-11-08 | Energy storage device of offshore wind power system and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110611332A CN110611332A (en) | 2019-12-24 |
CN110611332B true CN110611332B (en) | 2023-04-28 |
Family
ID=68895788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911088357.9A Active CN110611332B (en) | 2019-11-08 | 2019-11-08 | Energy storage device of offshore wind power system and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110611332B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111486057A (en) * | 2020-04-21 | 2020-08-04 | 西安热工研究院有限公司 | An offshore wind power generation system based on gravity energy storage technology |
CN112383094A (en) * | 2020-12-07 | 2021-02-19 | 江苏科技大学 | VSC-MTDC offshore wind power device and droop control method |
CN114069711A (en) * | 2021-11-25 | 2022-02-18 | 江苏科技大学 | Virtual inertia control system for offshore wind power |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204886202U (en) * | 2015-08-28 | 2015-12-16 | 国网北京市电力公司 | Wind energy storage system |
CN105429183A (en) * | 2016-01-06 | 2016-03-23 | 河海大学 | Permanent magnetic direct-drive type offshore wind power plant grid-connected system topology structure and control method thereof |
CN105656068A (en) * | 2016-03-23 | 2016-06-08 | 河海大学 | Balance switching method for storage battery sets in hybrid energy storage system |
CN108448644A (en) * | 2017-02-16 | 2018-08-24 | 中国电力科学研究院 | A control method and system for a virtual synchronous generator used in a battery energy storage system |
-
2019
- 2019-11-08 CN CN201911088357.9A patent/CN110611332B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204886202U (en) * | 2015-08-28 | 2015-12-16 | 国网北京市电力公司 | Wind energy storage system |
CN105429183A (en) * | 2016-01-06 | 2016-03-23 | 河海大学 | Permanent magnetic direct-drive type offshore wind power plant grid-connected system topology structure and control method thereof |
CN105656068A (en) * | 2016-03-23 | 2016-06-08 | 河海大学 | Balance switching method for storage battery sets in hybrid energy storage system |
CN108448644A (en) * | 2017-02-16 | 2018-08-24 | 中国电力科学研究院 | A control method and system for a virtual synchronous generator used in a battery energy storage system |
Non-Patent Citations (1)
Title |
---|
一种基于储能技术的风电场虚拟惯量补偿策略;刘巨等;《中国电机工程学报》;20150405;第35卷(第7期);1956-2962 * |
Also Published As
Publication number | Publication date |
---|---|
CN110611332A (en) | 2019-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110970933B (en) | Active support control-based virtual inertia compensation method for light-storage combined power generation system | |
CN109586343A (en) | Photovoltaic-energy-storing and power-generating system and method based on virtual synchronous generator control | |
CN105870953B (en) | A kind of light storage joint grid-connected system and its control method | |
CN105186554B (en) | The virtual synchronous generator method for becoming excellent certainly with rotary inertia and damping | |
CN103595068B (en) | Mixed energy storage system stabilizes the control method of honourable output-power fluctuation | |
CN105356505B (en) | Multi-source distributed generation system and control method suitable for micro-capacitance sensor | |
WO2022142812A1 (en) | Multi-end offshore wind power flexible direct current and energy storage cooperative grid-connected system and control method thereof | |
CN110611332B (en) | Energy storage device of offshore wind power system and control method thereof | |
CN110867873A (en) | A frequency control method for ocean-going island microgrid | |
CN108462196A (en) | The adaptive droop control methods of new energy VSG auxiliary frequency modulation P-V and system | |
CN112086997A (en) | Photovoltaic coordination frequency modulation control method based on variable power tracking and super capacitor storage | |
CN115473279B (en) | A wind-solar storage off-grid microgrid operation control method containing electrolyzed water hydrogen production load | |
CN108964097A (en) | Water-storage and renewable energy power generation synthetic operation system and method | |
CN108879726A (en) | Adaptive virtual synchronous control system and method applied to DC transmission system | |
CN106532725B (en) | Virtual synchronous generator type distributed power supply-based power distribution network voltage control method | |
CN106329574A (en) | Photovoltaic power station reactive voltage control method based on irradiance change | |
CN115603372A (en) | A new energy delivery system and its control method | |
CN112688344A (en) | Wind power plant frequency control method and system for offshore wind power base delivery system | |
Wu et al. | Voltage control of offshore wind farm considering reactive ability of electrochemical energy storage | |
CN107069797B (en) | A grid-connected method for distributed wind farms with doubly-fed wind turbines | |
CN104377717B (en) | A kind of energy storage control system for stabilizing wind power | |
Yuan et al. | Modeling and control strategy of wind-solar hydrogen storage coupled power generation system | |
Zhai et al. | A Coordinated Control Strategy of Wind Power/Hydrogen Integrated System | |
CN117595290A (en) | Photovoltaic inverter voltage-reactive power control system and method for reducing SVC capacity configuration | |
CN113765133B (en) | Offshore wind power flexible-direct system and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240119 Address after: 200120, Room 1006A, No. 958 Lujiazui Ring Road, Pudong New Area, Shanghai Patentee after: Shanghai Shenergy New Energy Investment Co.,Ltd. Address before: Science and Technology Office of Jiangsu University of science and technology, No.2, Mengxi Road, Zhenjiang, Jiangsu, 212003 Patentee before: JIANGSU University OF SCIENCE AND TECHNOLOGY |