CN110607544B - Aqueous electroplating solution for preparing titanium nitride coating film and preparation method and application thereof - Google Patents

Aqueous electroplating solution for preparing titanium nitride coating film and preparation method and application thereof Download PDF

Info

Publication number
CN110607544B
CN110607544B CN201910798170.1A CN201910798170A CN110607544B CN 110607544 B CN110607544 B CN 110607544B CN 201910798170 A CN201910798170 A CN 201910798170A CN 110607544 B CN110607544 B CN 110607544B
Authority
CN
China
Prior art keywords
titanium nitride
nitride coating
preparing
water
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910798170.1A
Other languages
Chinese (zh)
Other versions
CN110607544A (en
Inventor
罗锴
刘军
施志聪
陈镕枫
邹祖良
欧阳远
刘恒
黄蔼琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910798170.1A priority Critical patent/CN110607544B/en
Publication of CN110607544A publication Critical patent/CN110607544A/en
Application granted granted Critical
Publication of CN110607544B publication Critical patent/CN110607544B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The invention relates to an aqueous electroplating solution, in particular to an aqueous electroplating solution for preparing a titanium nitride coating, and a preparation method and application thereof. The aqueous electroplating solution for preparing the titanium nitride coating comprises potassium salt, sodium metasilicate, a wetting agent, a stabilizer, a brightener and the like. The aqueous electroplating solution for preparing the titanium nitride coating is cheap and efficient, the raw materials are easy to obtain, the cost is low, the preparation condition requirement is low, and expensive equipment is not required; and the application range is wide, and the surface with any shape can be met. Meanwhile, the prepared film has better thickness and can obviously improve the protective performance.

Description

Aqueous electroplating solution for preparing titanium nitride coating film and preparation method and application thereof
Technical Field
The invention relates to an aqueous electroplating solution, in particular to an aqueous electroplating solution for preparing a titanium nitride coating, and a preparation method and application thereof.
Background
Conventional thin film fabrication methods have focused primarily on CVD and PVD. The disadvantages of both types of processes are the excessively thin film thickness (of the order of a few microns), the considerable reduction in the protective properties of the coating, in particular its corrosion protection, and the high cost, the need for expensive equipment and the relatively severe preparation conditions. Meanwhile, it is difficult to coat a material having a complicated surface shape.
The titanium nitride film is widely used, the most mature preparation technology, and has various excellent performances: including extremely high hardness, corrosion resistance, abrasion resistance, high melting point, and excellent electrical conductivity. TiN belongs to a gap phase, the melting point is as high as 2955 ℃, atoms are combined into a covalent bond, a metal bond and a mixed bond of ionic bonds, and the metal bond exists among the metal atoms. Therefore, the TiN coating (thin film) has high hardness (theoretical hardness 21GPa), excellent heat resistance, wear resistance, corrosion resistance, and the like, and has remarkable metal characteristics: metallic luster, excellent conductivity and superconductivity. Based on the advantages, the titanium nitride film has important applications in many fields, such as friction-resistant and corrosion-resistant coatings for cutting tools, mechanical parts and high-temperature structural materials, diffusion barrier layers and conductive films in the microelectronic industry, and can also be used for preparing high-efficiency energy-saving coated glass due to high reflectivity in the infrared band. In addition, its color comparable to gold makes it also useful for decorative coatings.
At present, the titanium nitride film is prepared by vapor deposition, magnetron sputtering, ion plating and other processes. However, the above process has inherent limitations due to its process characteristics, that is, the size and shape of the coated substrate are greatly limited due to the process characteristics, and high vacuum conditions are mostly required.
Therefore, it is desirable to provide a method for preparing a titanium nitride coating film with a suitable size and shape at a low cost and without strict requirements on production conditions.
Disclosure of Invention
In order to overcome the disadvantages and shortcomings of the prior art, the invention provides an aqueous electroplating solution for preparing a titanium nitride coating.
Another object of the present invention is to provide a method for preparing the above aqueous plating solution for titanium nitride plating film.
The invention also aims to provide application of the aqueous electroplating solution for preparing the titanium nitride coating.
The purpose of the invention is realized by the following technical scheme:
an aqueous plating solution for preparing a titanium nitride coating film, comprising the following components:
5-30 mol/Kg of potassium salt in water;
0.3-3 mol/Kg of water of sodium metasilicate;
the potassium salt is at least one of potassium acetate and potassium thiocyanate;
when the potassium salt is potassium acetate, the using amount of the potassium salt is 5-25 mol/Kg of water; when the potassium salt is potassium thiocyanate, the using amount of the potassium thiocyanate is 5-30 mol/Kg of water;
the aqueous electroplating solution for preparing the titanium nitride coating preferably comprises the following components:
10-23 mol/Kg of potassium salt in water;
0.6-2.3 mol/Kg of water of sodium metasilicate;
when the potassium salt is potassium acetate, the dosage is preferably 10-21 mol/Kg of water; when the potassium salt is potassium thiocyanate, the preferred dosage is 12-23 mol/Kg of water;
the aqueous plating solution for preparing the titanium nitride coating preferably further comprises the following components:
0.05-0.2 mol/Kg of water as a stabilizer;
0.01-0.1 mol/Kg of water as brightener;
0.02-0.2 mol/Kg of water as a wetting agent;
the aqueous plating solution for preparing a titanium nitride coating film further preferably further comprises the following components:
0.08-0.18 mol/Kg of water as a stabilizer;
0.01-0.1 mol/Kg of water as brightener;
0.03-0.15 mol/Kg of water as a wetting agent;
the stabilizer is preferably sodium citrate, calcium gluconate, 2, 6-di-tert-butyl-4-methylphenol, dilauryl thiodipropionate, distearyl thiodipropionate or trinitrophenol;
the brightener is preferably protein, sodium benzoate, naphthalenesulfonic acid, saccharin, butynediol, sulfimide or sulfobenzaldehyde;
the composition unit of the protein is preferably glycine, glutamic acid and lysine, and the molecular weight is less than 8000;
the wetting agent is preferably sodium dodecyl sulfate, lithium dodecyl sulfate, isooctyl alcohol, epoxy acrylate, dicyclopentadiene dioxide epoxy resin or polyoxyethylene laurate;
the preparation method of the aqueous electroplating solution for preparing the titanium nitride coating comprises the following steps:
dissolving potassium salt of the aqueous electroplating solution for preparing the titanium nitride coating in water, adding the rest components, and uniformly mixing to obtain the aqueous electroplating solution for preparing the titanium nitride coating;
the application of the aqueous electroplating solution for preparing the titanium nitride coating in preparing the titanium nitride coating;
a titanium nitride coating film, which is prepared from the aqueous electroplating solution for preparing the titanium nitride coating film;
the preparation method of the titanium nitride coating film comprises the following steps:
pouring the aqueous electroplating solution for preparing the titanium nitride coating into an electroplating bath, taking a titanium sheet as a working electrode and a counter electrode, and putting the titanium sheet into the electroplating bath for electroplating to obtain the titanium nitride coating;
the titanium sheet is pretreated as follows: cleaning with clear water, alcohol, hydrochloric acid and ultrasound;
the electroplating conditions are preferably as follows:
the reduction current is-0.5 to-0.2 mA/cm2The electroplating time is 4-6 h;
the principle of the invention is as follows:
the electrochemical window of water is narrow, many materials (such as titanium nitride) with standard reduction electrode potential lower than hydrogen cannot be prepared by an electroplating method, and water is electrolyzed to generate hydrogen during electroplating, so that a coating cannot be obtained. In conventional electroplating baths, potassium acetate or potassium thiocyanate is generally used as the supporting electrolyte, at very low concentrations. The invention utilizes the ultrahigh solubility of the titanium nitride and the titanium nitride, so that the addition amount of water in the plating solution is far less than that of salt, the activity of water molecules is reduced, the electrochemical window of the aqueous solution is enlarged, the reaction of hydrogen gas precipitation is more difficult to occur, and the electroplating of the titanium nitride is realized. While sodium metasilicate is added to stabilize the high concentration of potassium salt.
Compared with the prior art, the invention has the following advantages and effects:
(1) the electroplating solution provided by the invention contains potassium acetate and/or potassium thiocyanate, sodium metasilicate and other components, can expand the electrochemical window of the aqueous solution, restrain water molecules, make the reaction of hydrogen precipitation more difficult to occur, inhibit the generation of hydrogen, and enable the material with the standard reduction electrode potential lower than that of hydrogen to realize electroplating preparation.
(2) The titanium nitride coating prepared by the method is cheap and efficient, the raw materials are easy to obtain, the cost is low, expensive equipment is not required, and the preparation condition requirement is low; the application range is wide, and the material can meet the requirements of materials with surfaces of any shapes.
(3) The titanium nitride coating film is prepared in an electroplating mode, the surface with any shape can be met, the thickness of the film can be controlled through electroplating parameters, the thickness of the prepared coating film is more suitable, and the problem of poor coating protection performance, particularly poor corrosion resistance, caused by excessively thin coating thickness can be solved.
Drawings
FIG. 1 is a scanning electron micrograph of titanium nitride in example 1.
FIG. 2 is an energy dispersive X-ray spectroscopy chart of the titanium nitride composition of example 1.
FIG. 3 is a scanning electron micrograph of titanium nitride in example 2.
FIG. 4 is an energy dispersive X-ray spectroscopy plot of titanium nitride in example 2.
FIG. 5 is a scanning electron micrograph of titanium nitride in example 3.
FIG. 6 is an energy dispersive X-ray spectroscopy plot of titanium nitride in example 3.
FIG. 7 is a scanning electron micrograph of titanium nitride in example 4.
FIG. 8 is an energy dispersive X-ray spectroscopy plot of titanium nitride in example 4.
Detailed Description
The present invention will be described in further detail with reference to examples and drawings, but the present invention is not limited thereto.
The reagents used in the following examples are either commercially available or self-made.
Example 1
(1) Weighing 26g of sodium metasilicate pentahydrate and 200g of potassium acetate in a glove box;
(2) dissolving the potassium acetate weighed in the step (1) in 400ml of deionized water, and then placing the deionized water in a magnetic stirrer for stirring until the potassium acetate is completely dissolved; pouring the sodium metasilicate pentahydrate weighed in the step (1) into the solution, and simultaneously adding 5.9g of sodium citrate, 0.58g of sodium benzoate and 2.4g of sodium dodecyl sulfate to continue stirring until the sodium metasilicate pentahydrate is completely dissolved; standing for 3h to obtain an aqueous electroplating solution for preparing the titanium nitride coating;
(3) pouring 200ml of the aqueous electroplating solution for preparing the titanium nitride coating prepared in the step (2) into an electroplating bath, taking out two titanium sheets which are cleaned by clear water, alcohol, hydrochloric acid and ultrasound and are taken as a working electrode and a counter electrode, and putting the titanium sheets into the electroplating bath for electroplating, wherein the reference electrode used in the electroplating is an Ag/AgCl electrode, the reduction current is-0.5 mA, and the electroplating time is 6 hours, so as to obtain the titanium nitride coating.
Example 2
(1) Weighing 140g of sodium metasilicate pentahydrate and 590g of potassium acetate in a glove box;
(2) dissolving the potassium acetate weighed in the step (1) in 400ml of deionized water, and then placing the deionized water in a magnetic stirrer for stirring until the potassium acetate is completely dissolved; pouring the sodium metasilicate pentahydrate weighed in the step (1) into the solution, and adding 17.2g of calcium gluconate, 3.3g of naphthalenesulfonic acid and 4.2g of isooctanol at the same time, and continuing stirring until the calcium gluconate, the naphthalenesulfonic acid and the isooctanol are completely dissolved; standing for a period of time to obtain the aqueous electroplating solution for preparing the titanium nitride coating.
(3) Pouring 200ml of the aqueous electroplating solution for preparing the titanium nitride coating prepared in the step (2) into an electroplating bath, taking out two titanium sheets which are cleaned by clear water, alcohol, hydrochloric acid and ultrasound and are used as a working electrode and a counter electrode, putting the titanium sheets into the electroplating bath, introducing nitrogen, and then electroplating, wherein the reference electrode used in the electroplating is an Ag/AgCl electrode, the reduction current is-0.5 mA/cm2And the electroplating time is 6 hours, so that the titanium nitride coating is obtained.
Example 3
(1) Weighing 583g of potassium thiocyanate and 127g of sodium metasilicate pentahydrate in a glove box;
(2) dissolving the potassium thiocyanate weighed in the step (1) in 200ml of deionized water, and then placing the deionized water in a magnetic stirrer for stirring until the potassium thiocyanate is completely dissolved; pouring the sodium metasilicate pentahydrate weighed in the step (1) into the solution, and simultaneously adding 16.5g of dilauryl thiodipropionate, 1.2g of butynediol and 8g of lithium dodecyl sulfate, and continuously stirring until the materials are completely dissolved; standing for a period of time to obtain an aqueous electroplating solution for preparing the titanium nitride coating;
(3) mixing 100ml of the mixture(2) Pouring the prepared aqueous electroplating solution for preparing the titanium nitride coating into an electroplating bath, taking out two titanium sheets which are cleaned by clear water, alcohol, hydrochloric acid and ultrasonic wave as a working electrode and a counter electrode, and putting the titanium sheets into the electroplating bath for electroplating, wherein the reference electrode used in the electroplating is an Ag/AgCl electrode, and the reduction current is-0.5 mA/cm2And the electroplating time is 4 hours, so that the titanium nitride coating is obtained.
Example 4
(1) Weighing 520g of potassium thiocyanate, 60g of potassium acetate and 127g of sodium metasilicate pentahydrate in a glove box;
(2) dissolving the potassium thiocyanate weighed in the step (1) in 200ml of deionized water, and then placing the deionized water in a magnetic stirrer for stirring until the potassium thiocyanate is completely dissolved; then adding 60g of potassium acetate weighed in the step (1), and stirring until the potassium acetate is completely dissolved; then the sodium metasilicate pentahydrate weighed in the step (1) is poured into the solution, and 9.1g of trinitrophenol, 3.6g of saccharin and 9.6g of polyoxyethylene laurate are added at the same time, and stirring is continued until complete dissolution. Standing for a period of time to obtain an aqueous electroplating solution for preparing the titanium nitride coating;
(3) pouring 100ml of the aqueous electroplating solution for preparing the titanium nitride coating prepared in the step (2) into an electroplating bath. Taking out two titanium sheets which are cleaned by clear water, alcohol, hydrochloric acid and ultrasonic wave as a working electrode and a counter electrode, putting the titanium sheets into a plating bath for plating, wherein the reference electrode used in the plating is an Ag/AgCl electrode, and the reduction potential is-0.2 mA/cm2And the electroplating time is 6 hours, so that the titanium nitride coating is obtained.
Effects of the embodiment
(1) Scanning Electron Microscope (SEM) analysis of each of the titanium nitride coatings obtained in examples 1 to 4 showed that the titanium nitride coatings were as shown in FIGS. 1, 3, 5 and 7.
As can be seen from fig. 1, the titanium nitride coating film prepared in example 1 was wrinkled; as can be seen from FIG. 3, in example 2, after nitrogen gas was introduced during the process of preparing the coating film, the morphology of the prepared titanium nitride coating film was similar to that of example 1, but the nitrogen content was increased from 8.681% to 13.957% (tables 1 and 2).
TABLE 1 energy dispersive X-ray spectroscopy analysis of the titanium nitride coating composition obtained in example 1
Figure RE-GDA0002271118310000051
Figure RE-GDA0002271118310000061
TABLE 2 energy dispersive X-ray spectroscopy analysis of the titanium nitride coating composition obtained in example 2
Element(s) Crest line Strength (c/s) Atomic percent (%) Concentration (wt.%)
C Ka 0.00 0.000 0.000
N Ka 44.54 13.957 4.547
O Ka 0.00 0.000 0.000
K Ka 0.44 0.018 0.016
Ti Ka 1,196.73 86.025 95.437
100.000 100.000 Sum of
FIGS. 5 and 7 are scanning electron micrographs of the titanium nitride coating films obtained in examples 3 and 4, respectively. Among them, examples 3 and 4 in which potassium thiocyanate was used as a potassium salt were significantly changed in morphology, as compared with example 1 in which potassium acetate was used as a potassium salt, the titanium nitride coating film obtained in example 3 was composed of fine particles, and the titanium nitride coating film obtained in example 4 was large in titanium nitride particles.
FIGS. 2, 4, 6 and 8 are graphs of energy dispersive X-ray spectroscopy of the titanium nitride coating films prepared in examples 1 to 4, respectively.
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, combinations, and simplifications are intended to be included in the scope of the present invention.

Claims (7)

1. A preparation method of a titanium nitride coating film is characterized by comprising the following steps:
pouring the aqueous electroplating solution for preparing the titanium nitride coating into an electroplating bath, taking a titanium sheet as a working electrode and a counter electrode, and placing the titanium sheet into the electroplating bath for electroplating to obtain the titanium nitride coating; the electroplating conditions are as follows: the reduction current is-0.5 to-0.2 mA/cm2The electroplating time is 4-6 h;
the aqueous electroplating solution for preparing the titanium nitride coating comprises the following components:
5-30 mol/Kg of water of potassium salt and 0.3-3 mol/Kg of water of sodium metasilicate;
the potassium salt is potassium acetate and potassium thiocyanate.
2. The method of preparing a titanium nitride coating film according to claim 1, characterized in that:
the aqueous electroplating solution for preparing the titanium nitride coating comprises the following components:
10 to 23mol/Kg of water of potassium salt and 0.6 to 2.3mol/Kg of water of sodium metasilicate.
3. The method for producing a titanium nitride coating film according to claim 1 or 2, characterized in that:
the aqueous electroplating solution for preparing the titanium nitride coating also comprises the following components:
0.05 to 0.2mol/Kg of water as a stabilizer, 0.01 to 0.1mol/Kg of water as a brightener, and 0.02 to 0.2mol/Kg of water as a wetting agent.
4. The method of preparing a titanium nitride coating film according to claim 3, characterized in that:
the aqueous electroplating solution for preparing the titanium nitride coating also comprises the following components:
0.08-0.18 mol/Kg of water as stabilizer, 0.01-0.1 mol/Kg of water as brightener, and 0.03-0.15 mol/Kg of water as wetting agent.
5. The method of preparing a titanium nitride coating film according to claim 3, characterized in that:
the stabilizer is sodium citrate, calcium gluconate, 2, 6-di-tert-butyl-4-methylphenol, dilauryl thiodipropionate, distearyl thiodipropionate or trinitrophenol.
6. The method of preparing a titanium nitride coating film according to claim 3, characterized in that: the brightener is protein, sodium benzoate, naphthalenesulfonic acid, saccharin, butynediol, sulfimide or sulfobenzaldehyde.
7. The method of preparing a titanium nitride coating film according to claim 3, characterized in that:
the wetting agent is sodium dodecyl sulfate, lithium dodecyl sulfate, isooctanol, epoxy acrylate, dicyclopentadiene dioxide epoxy resin or polyoxyethylene laurate.
CN201910798170.1A 2019-08-27 2019-08-27 Aqueous electroplating solution for preparing titanium nitride coating film and preparation method and application thereof Active CN110607544B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910798170.1A CN110607544B (en) 2019-08-27 2019-08-27 Aqueous electroplating solution for preparing titanium nitride coating film and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910798170.1A CN110607544B (en) 2019-08-27 2019-08-27 Aqueous electroplating solution for preparing titanium nitride coating film and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN110607544A CN110607544A (en) 2019-12-24
CN110607544B true CN110607544B (en) 2021-09-07

Family

ID=68890481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910798170.1A Active CN110607544B (en) 2019-08-27 2019-08-27 Aqueous electroplating solution for preparing titanium nitride coating film and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN110607544B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328111B (en) * 2021-05-25 2023-04-21 上海电力大学 Stainless steel bipolar plate with chromium-based nitride composite coating and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177678A (en) * 2013-03-15 2014-09-25 Jfe Steel Corp Manufacturing method of surface-treated steel plate and surface-treated steel plate, resin-coated steel plate, and can and can top

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177397A (en) * 1985-02-01 1986-08-09 Nippon Denki Kagaku Kogyosho:Kk Surface treatment of titanium and titanium alloy
JPS61177399A (en) * 1985-02-01 1986-08-09 Nippon Denki Kagaku Kogyosho:Kk Surface treatment of titanium and titanium alloy
GB9727342D0 (en) * 1997-12-24 1998-02-25 Univ Edinburgh Titanium nitride and other metal nitrides electro chemical synthesis
RU2496924C1 (en) * 2012-06-26 2013-10-27 Ольга Васильевна Попова Modifying method of titanium surface and its alloys
RU2516142C2 (en) * 2012-08-15 2014-05-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" Method to modify titanium surface
CN108754562B (en) * 2018-06-14 2020-04-14 江西理工大学 Preparation method of TiN film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177678A (en) * 2013-03-15 2014-09-25 Jfe Steel Corp Manufacturing method of surface-treated steel plate and surface-treated steel plate, resin-coated steel plate, and can and can top

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电镀钛;王士逯;《电镀与涂饰》;19970731;第16卷(第4期);全文 *

Also Published As

Publication number Publication date
CN110607544A (en) 2019-12-24

Similar Documents

Publication Publication Date Title
CN109518237B (en) Zinc-nickel-phosphorus electroplating solution, preparation method thereof and electroplating method
CN110802225B (en) Preparation method of copper-coated graphene
CN108456898B (en) Low-concentration sulfate trivalent chromium rapid chromium plating electroplating solution and preparation method thereof
CN110607544B (en) Aqueous electroplating solution for preparing titanium nitride coating film and preparation method and application thereof
CN101029407A (en) Method for electroposition Monel alloy cladding
JPH0246676B2 (en)
CN107299368B (en) Electroplating method for cyanide-free composite plating of RE-TiO 2 -Ag layer on surface of steel substrate
CN112609175B (en) Supercritical CO 2 Preparation method of magnesium alloy chemical conversion film
CN110184631B (en) Cyanide-free gold plating electroplating solution and preparation method and electroplating process thereof
CN113430586A (en) Method for improving mechanical property of electrolytic copper foil and additive used by method
CN113308693A (en) High-strength corrosion-resistant stainless steel pipe fitting and machining process thereof
KR101979870B1 (en) Spacer for camera lens and preparing method thereof
CN107385440B (en) Electroplating method for cyanide-free composite plating of La-TiO 2 -Ag layer on surface of steel substrate
CN1032040A (en) The method for preparing composite tin-plating layer
CN114686867B (en) Novel efficient zinc series surface conditioner and preparation method and application thereof
JP3422595B2 (en) Zinc displacement bath for aluminum alloy
CN112760686B (en) Cathode electrolysis activating solution, preparation method and application thereof
Jiang et al. Effect of submicron Sn and heat treatment temperature on corrosion resistance of Ni-P composite coatings
CN111876803B (en) Preparation method of cadmium-tin or cadmium-titanium alloy coating on surface of steel strip
WO2024098288A1 (en) Fe-co-ni-cu-zn high-entropy alloy and preparation method therefor
CN110029329B (en) Graphite composite material and preparation method thereof
CN1280213A (en) Producing technology for copper-clad panel
CN114892241A (en) High-temperature wear-resistant Ni-Mo-based nitride ceramic phase composite coating and preparation method thereof
JPH1072689A (en) Low hydrogen overvoltage cathode and its production
JP2001262390A (en) Palladium plating liquid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant