CN110601379B - 一种应用于电流互感器的利用单相ac/dc整流电路实现电子负载功能的控制方法 - Google Patents

一种应用于电流互感器的利用单相ac/dc整流电路实现电子负载功能的控制方法 Download PDF

Info

Publication number
CN110601379B
CN110601379B CN201910850759.1A CN201910850759A CN110601379B CN 110601379 B CN110601379 B CN 110601379B CN 201910850759 A CN201910850759 A CN 201910850759A CN 110601379 B CN110601379 B CN 110601379B
Authority
CN
China
Prior art keywords
current
phase
voltage
rectification circuit
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910850759.1A
Other languages
English (en)
Other versions
CN110601379A (zh
Inventor
孟润泉
韩肖清
杨宇
张鹏宇
王磊
任春光
王子昂
杜毅
焦皎
关正
赵一潼
翟晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910850759.1A priority Critical patent/CN110601379B/zh
Publication of CN110601379A publication Critical patent/CN110601379A/zh
Application granted granted Critical
Publication of CN110601379B publication Critical patent/CN110601379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及特种电源供能领域,具体为一种应用于电流互感器的利用单相AC/DC整流电路实现电子负载功能的控制方法,采用电压外环,电流内环的双闭环控制。双闭环控制具有结构简单、控制性能优良等特点。采集输出电压与输入电流为被控对象。通过电压外环实现稳压输出,通过电流内环实现参考电流的跟踪。电压外环采用PI控制,通过将电压误差信号送入PI控制器,实现对直流参考电压的无静差跟踪。锁相环通过控制参考电流相位,实现电子负载模拟阻抗性质的目标。电流内环采用准比例谐振控制器,通过将电流误差信号送入准PR控制器,实现对交流参考电流的无静差跟踪。准PR控制器的输出作为PWM发生器的调制波,送入SPWM波发生器,控制VSR电路,实现目标阻抗的模拟。

Description

一种应用于电流互感器的利用单相AC/DC整流电路实现电子 负载功能的控制方法
技术领域
本发明涉及特种电源供能领域,具体为一种应用于电流互感器的利用单相AC/DC整流电路实现电子负载功能的控制方法。
背景技术
高压输电线路是连接各个地区的经脉,其安全稳定运行是建设坚强智能电网的重要一环,建设基于传感网络的智能电网输电线路在线监测系统也是构建泛在电力物联网的重要环节,但高压输电线路通常直接暴露在野外,分布范围广,线路距离长,为确保输电线路稳定运行给输电线路监测设备及传感器提供稳定的能源成了当前需要解决的重要问题。
现有为高压输电线路监测设备供能的方法主要有四种:(1)蓄电池供电。因蓄电池占用体积过大且循环寿命有限需频繁更换,不便于在野外为高压输电线路监控设备供电。(2)太阳能蓄电池组合供能。利用光伏效应将太阳能转换为电能并用蓄电池储存,此类方法成本低,易于实现,但也有明显的缺点,电源不能在无光条件下长时间使用。(3)激光供能。采用激光从地面低电位侧通过光纤将光能传送到高电位侧,再由光电转换器件(光电池)将光能量转换成为电能量,再经过DC-DC变换后,提供稳定的电压输出。随着电子器件尤其是光电池、大功率半导体激光二极管和高效率单片集成DC-DC变换器的广泛应用,这种供电方式在实际使用中越来越可靠。这种方式的突出优点是因为激光二极管里面都有一个光探测器,根据光探测器给出的光电流反馈控制激光器的电流,保证了自动功率控制,从而能使其恒功工作(主要是保证一定变温条件下恒功),所以输出光源功率比较稳定,通过光电池转换电能得到的电源纹波小,噪声低,而且也不易受到外界杂散光源和电路负载变化的影响。(4)分压电容供能。利用高压输电线路和均压环的对地分布电容获取能量,需隔离电路,增加了电路复杂性,并且受湿度,温度影响输出功率有限。电流互感器(CT)为高压侧设备供能因其能量采集的适应性强、使用寿命长、维护简便而备受关注。为了提供足够的能量,应用了与取电线圈的自感应谐振的串联补偿电容。然而,在这种情况下,容易发生过电压现象,并且在大范围导线电流变化下难以提供稳定的输出功率。
发明内容
本发明针对现有为高压输电线路监控设备及传感器供电电源的功率不足、运行可靠性较差、运行环境要求高等缺点,设计了一种应用于电流互感器的利用单相AC/DC整流电路实现电子负载功能的控制方法,采用感应取电原理使供电电源的供电可靠性提高,受环境影响较低,利用磁耦合谐振原理提高了取电功率,可以满足大部分高压输电线路监控设备和传感器的供电要求。
本发明是采用如下的技术方案实现的:一种应用于电流互感器的利用单相AC/DC整流电路实现电子负载功能的控制方法,单相AC/DC整流电路包括电流互感器、单相整流电路和直流滤波电容,电流互感器的二次侧输出端和单相整流电路的交流侧连接,单相整流电路的直流侧连接直流滤波电容并作为装置的输出端,电流互感器的二次侧输出端连接单相整流电路相当于在二次侧并联等效可调电子负载Z0,电流互感器二次侧实测功率
Figure BDA0002196834500000021
式中I1为电流互感器一次侧电流,Rδ为带气隙铁芯磁阻,ω为输电线路角频率,N2为二次绕组匝数,Z0为二次侧可调电子负载阻抗,Z0=R0+jX0
该控制方法具体包括以下步骤:
(1)检测单相整流电路输出电压Udc与输入电流Iac
(2)将电流互感器二次侧实测功率P与电流互感器二次侧需要获取的目标功率P1相比较;
(3)若P<P1,此时通过调节可调电子负载Z0变为容性,减少励磁电感的分流作用,以增加二次侧的输出功率,具体调节步骤如下;
(31)将参考直流电压信号
Figure BDA0002196834500000022
与单相整流电路输出电压Udc相减的电压误差信号送入PI控制器获得参考交流电流幅值
Figure BDA0002196834500000023
(32)检测单相整流电路输入电压Uac,Uac通过锁相环获得参考电流相位;
(33)将参考交流电流幅值
Figure BDA0002196834500000024
与参考电流相位相乘获得参考电流
Figure BDA0002196834500000025
(34)将参考电流
Figure BDA0002196834500000026
与输入电流Iac相减获得交流电流误差信号;
(35)将交流电流误差信号送入准PR控制器;
(36)将准PR控制器的输出作为PWM发生器的调制波,送入PWM发生器,产生四路信号,分别控制单相整流电路四个开关管。
(4)若P≥P1,通过调节可调电子负载Z0为感性,增加对二次侧负载的分流作用,减少励磁电流,使铁芯工作在线性区,具体调节步骤如下;
(41)设目标功率P1与电流互感器二次侧实测功率P相等,因此根据实测功率P(有功功率)与系统实测的复功率求出无功电流Iq
(42)将参考直流电压信号
Figure BDA0002196834500000031
与单相整流电路输出电压Udc相减的电压误差信号送入PI控制器获得参考交流电流幅值
Figure BDA0002196834500000032
(43)检测单相整流电路输入电压Uac,Uac通过锁相环获得参考电流相位;
(44)将参考交流电流幅值
Figure BDA0002196834500000033
与参考电流相位相乘获得参考电流
Figure BDA0002196834500000034
(44)将参考电流
Figure BDA0002196834500000035
与输入电流Iac、无功电流Iq相减获得交流电流误差信号;
(45)将交流电流误差信号送入准PR控制器;
(46)将准PR控制器的输出作为PWM发生器的调制波,送入PWM发生器,产生四路信号,分别控制单相整流电路四个开关管。
上述的一种应用于电流互感器的利用单相AC/DC整流电路实现电子负载功能的控制方法,步骤(32)锁相环获得的参考电流相位与电压相位同相时,电流互感器励磁阻抗与可调电子负载达到并联谐振状态,流过负载的电流达到最大,电流互感器工作在获取最大功率方式。
上述的一种基于电流互感器的感应取电装置,电流互感器铁芯选用材料为铁基纳米晶合金。
与现有研究相比,本发明所具有的有益效果如下:
(1)相对于传统方法,本发明所用的电流互感器控制方法可以提高电流互感器的取能功率,为高压输电线路监控设备及传感器提供稳定的能量。
(2)本发明所用方法可以在一次侧电流低于阈值下限时(P<P1),将通过调节单相整流器实现电子负载功能,电子负载与取能CT的激磁阻抗发生并联谐振,此时取能CT工作在获取最大功率方式,减小了电流互感器因励磁电感而产生的无功损耗;在一次侧电流高于阈值上限时(P≥P1),将调节电子负载为感性,抑制取能CT铁芯磁路过早发生饱和,提高了一次侧电流阈值上限。
(3)本发明相对于传统方法可以使电流互感器取能系统在只有一级AC/DC时取得较大的功率及稳定的直流电压,省去了传统方法的后级DC/DC电路,减小了设备体积和成本。
附图说明
图1是本发明所涉及的电流互感器取能模型原理图。
图2是本发明所涉及的电流互感器简化电路图。
图3是本发明所涉及的取电线圈负载相量图。
图4是本发明所涉及的电子负载输出特性图。
图5是本发明所涉及的整流电路原理图。
图6是本发明所涉及的电子负载控制原理图。
图7是本发明所涉及的准PR传递函数伯德图。
图8是本发明所涉及的电子负载实验验证图。
图9是本发明所涉及的典型电流互感器取能时的直流电压。
图10是本发明所涉及的电子负载完全补偿励磁阻抗状态图。
图11是本发明所涉及的电流互感器并联电子负载时直流电压输出图。
具体实施方式
如图1所示,电流互感器由开气隙的两个半圆铁芯组成,为降低铁芯铁耗,铁芯选用材料为铁基纳米晶合金(Fe73.5CuNb3Si13.5B9),N1为一次侧线圈匝数(原边绕组匝数为1匝),N2为二次侧绕组匝数,Z0为可调电子负载,由单相整流电路等效而来,单相整流电路选用VSR电路。
电流互感器简化电路如图2所示,电流互感器工作时因原边匝数N1=1,一次电压与阻抗很小,所以对电路压降影响可忽略。
如图3所示,通过对电流互感器简化电路图分析建立了取电线圈负载相量图。
图4为电子负载输出特性图。如图4所示,通过可调对电子负载Z0的输出特性分析可以得知:
(1)电流互感器二次侧与无并联电子负载Z0的情况相比,调节电子负载为容性,在一定范围内可以增强二次侧电动势
Figure BDA0002196834500000041
当调节可调电子负载为感性时会减弱
Figure BDA0002196834500000051
(2)一次侧电流较小时(P<P1),通过调节电子负载Z0变为容性,减少励磁电感Lm的分流作用以增加二次侧的输出功率,当
Figure BDA0002196834500000052
时,励磁阻抗与电子负载达到并联谐振状态,流过负载的电流达到最大。
(3)一次侧电流过大时(P≥P1),铁芯饱和,二次侧电压出现尖峰波形失真,导致铁芯发热严重时烧毁电路二次侧电压,为避免铁芯饱和使铁芯处于线性区内,二次侧电压E2应满足E2<E2m=4.44fN2BmS(Bm为铁芯饱和磁通密度),可以通过调节电子负载为感性,增加对后级负载的分流作用,减少励磁电流Im使铁芯工作在线性区。
通过分析得出可调电子负载的两种工作状态:
⑴在一次侧电流过小时为使二次侧获得足够的输出功率,通过调节电子负载为容性以增加二次侧输出功率。
⑵在一次侧电流过大时为避免铁芯饱和,减少二次侧的输出功率,通过调节电子负载为感性,以使铁芯工作在线性区,为二次侧负载提供稳定的输出功率。
一次侧电流可以由Rogowski线圈测得由此可以计算出可调电子负载变化的精确值。
图5为整流电路原理图。如图5所示,单相VSR整流电路采用单极型正弦脉宽调制(SPWM),以降低CT二次侧的谐波含量,获得高品质的输出波形。
如图6所示,单相单极型VSR控制方法采用电压外环,电流内环的双闭环控制。双闭环控制具有结构简单、控制性能优良等特点。采集输出电压Udc与输入电流Iac为被控对象。通过电压外环实现稳压输出,通过电流内环实现参考电流的跟踪。电压外环采用PI控制,通过将电压误差信号送入PI控制器,实现对直流参考电压
Figure BDA0002196834500000053
的无静差跟踪。锁相环通过控制参考电流相位,实现电子负载模拟阻抗性质的目标。电流内环采用准比例谐振控制器QPR(quasi proportional resonant),通过将电流误差信号送入准PR控制器,实现对交流参考电流的无静差跟踪。准PR控制器的输出作为PWM发生器的调制波,送入SPWM波发生器,产生四路信号,分别控制VSR电路四个开关管,实现目标阻抗的模拟。
图7为准PR传递函数伯德图所示,系统在电网角频率ω=100π处获得最大增益,并在一定频率波动范围内也能获得较大增益,表明系统具有较高的稳定性,具有一定抗电网频率干扰的能力。
图8为电子负载实验验证,(a)模拟10mh感性负载,(b)模拟500μF容性负载。
典型电流互感器取能时波形如图9所示,此时I1为41.92A,直流输出电压为9.43V。
图10为电子负载完全补偿励磁阻抗状态图,此时I1为36.67A,电子负载完全补偿,直流侧电压升高到20V,是没有电子负载时的2倍,功率上升4倍达到9W。
当一次侧电流I1较大时并联电子负载,可以调节二次侧输出功率,如图11所示,(a)图I1为102A,电子负载模拟感性负载降低输出功率,直流输出电压为20.414V。(b)图I1为173A,直流输出电压为21.324V,震荡幅值不超过10%。为直流侧负载提供稳定的9W输出功率。

Claims (3)

1.一种应用于电流互感器的利用单相AC/DC整流电路实现电子负载功能的控制方法,其特征在于单相AC/DC整流电路包括电流互感器、单相整流电路和直流滤波电容,电流互感器的二次侧线输出端和单相整流电路的交流侧连接,单相整流电路的直流侧连接直流滤波电容并作为装置的输出端,电流互感器的二次侧输出端连接单相整流电路相当于在二次侧并联等效可调电子负载Z0,电流互感器二次侧实测功率
Figure FDA0003860891850000011
式中I1为电流互感器一次侧电流,Rδ为带气隙铁芯磁阻,ω为输电线路角频率,N2为二次绕组匝数,Z0为二次侧可调电子负载阻抗,Z0=R0+jX0
该控制方法具体包括以下步骤:
(1)检测单相整流电路输出电压Udc与输入电流Iac
(2)将电流互感器二次侧实测功率P与电流互感器二次侧需要获取的目标功率P1相比较;
(3)若P<P1;此时通过调节可调电子负载Z0变为容性,以增加二次侧的输出功率,具体调节步骤如下;
(31)将参考直流电压信号
Figure FDA0003860891850000012
与单相整流电路输出电压Udc相减的电压误差信号送入PI控制器获得参考交流电流幅值
Figure FDA0003860891850000013
(32)检测单相整流电路输入电压Uac,Uac通过锁相环获得参考电流相位;
(33)将参考交流电流幅值
Figure FDA0003860891850000014
与参考电流相位相乘获得参考电流
Figure FDA0003860891850000015
(34)将参考电流
Figure FDA0003860891850000016
与输入电流Iac相减获得交流电流误差信号;
(35)将交流电流误差信号送入准PR控制器;
(36)将准PR控制器的输出作为PWM发生器的调制波,送入PWM发生器,产生四路信号,分别控制单相整流电路四个开关管;
(4)若P≥P1;通过调节可调电子负载Z0为感性,增加对二次侧负载的分流作用,减少励磁电流,使铁芯工作在线性区,具体调节步骤如下;
(41)设目标功率P1与电流互感器二次侧实测功率P相等,因此根据实测功率P与系统实测的复功率求出无功电流Iq
(42)将参考直流电压信号
Figure FDA0003860891850000021
与单相整流电路输出电压Udc相减的电压误差信号送入PI控制器获得参考交流电流幅值
Figure FDA0003860891850000022
(43)检测单相整流电路输入电压Uac,Uac通过锁相环获得参考电流相位;
(44)将参考交流电流幅值
Figure FDA0003860891850000023
与参考电流相位相乘获得参考电流
Figure FDA0003860891850000024
(44)将参考电流
Figure FDA0003860891850000025
与输入电流Iac、无功电流Iq相减获得交流电流误差信号;
(45)将交流电流误差信号送入准PR控制器;
(46)将准PR控制器的输出作为PWM发生器的调制波,送入PWM发生器,产生四路信号,分别控制单相整流电路四个开关管。
2.根据权利要求1所述的一种应用于电流互感器的利用单相AC/DC整流电路实现电子负载功能的控制方法,其特征在于步骤(32)锁相环获得的参考电流相位与电压相位同相时,电流互感器励磁阻抗与可调电子负载达到并联谐振状态,流过负载的电流达到最大,电流互感器工作在获取最大功率方式。
3.根据权利要求1或2所述的一种应用于电流互感器的利用单相AC/DC整流电路实现电子负载功能的控制方法,其特征在于电流互感器铁芯选用材料为铁基纳米晶合金。
CN201910850759.1A 2019-09-10 2019-09-10 一种应用于电流互感器的利用单相ac/dc整流电路实现电子负载功能的控制方法 Active CN110601379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910850759.1A CN110601379B (zh) 2019-09-10 2019-09-10 一种应用于电流互感器的利用单相ac/dc整流电路实现电子负载功能的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910850759.1A CN110601379B (zh) 2019-09-10 2019-09-10 一种应用于电流互感器的利用单相ac/dc整流电路实现电子负载功能的控制方法

Publications (2)

Publication Number Publication Date
CN110601379A CN110601379A (zh) 2019-12-20
CN110601379B true CN110601379B (zh) 2022-11-22

Family

ID=68858440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910850759.1A Active CN110601379B (zh) 2019-09-10 2019-09-10 一种应用于电流互感器的利用单相ac/dc整流电路实现电子负载功能的控制方法

Country Status (1)

Country Link
CN (1) CN110601379B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106394270A (zh) * 2015-07-27 2017-02-15 福特全球技术公司 感应式电力传输的电压控制方法
CN106921221A (zh) * 2015-12-18 2017-07-04 英特尔Ip公司 调节的负载调制电路和用于产生调节的负载调制信令的方法
KR20170104883A (ko) * 2016-03-08 2017-09-18 엘지이노텍 주식회사 무선 전력 수신기 및 그의 동작 방법
CN107749626A (zh) * 2017-12-04 2018-03-02 梁克昌 一种能排除背景谐波电压影响检测真实滤波效果的检测方法
CN108899978A (zh) * 2018-07-10 2018-11-27 杨勇 基于可调阻抗的高可靠性大工作范围感应取能装置及调控方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106394270A (zh) * 2015-07-27 2017-02-15 福特全球技术公司 感应式电力传输的电压控制方法
CN106921221A (zh) * 2015-12-18 2017-07-04 英特尔Ip公司 调节的负载调制电路和用于产生调节的负载调制信令的方法
KR20170104883A (ko) * 2016-03-08 2017-09-18 엘지이노텍 주식회사 무선 전력 수신기 및 그의 동작 방법
CN107749626A (zh) * 2017-12-04 2018-03-02 梁克昌 一种能排除背景谐波电压影响检测真实滤波效果的检测方法
CN108899978A (zh) * 2018-07-10 2018-11-27 杨勇 基于可调阻抗的高可靠性大工作范围感应取能装置及调控方法

Also Published As

Publication number Publication date
CN110601379A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
US10217559B2 (en) Multiphase coupled and integrated inductors with printed circuit board (PBC) windings for power factor correction (PFC) converters
Zhu et al. Output power stabilization for wireless power transfer system employing primary-side-only control
KR101851995B1 (ko) 무선 충전기용 공진 컨버터 및 그 구현방법
CN101442222B (zh) 高压感应取能电源和从高压线获取电源以进行供电的方法
US20140354303A1 (en) Method and apparatus for deriving current for control in a resonant power converter
KR20200018244A (ko) 충전 회로의 위상 시프트 제어 방법
CN103840670A (zh) 一种节能型高频开关电源
CN102522900A (zh) 定增益自激式非接触谐振变换器及其控制方法
CN108899978B (zh) 基于可调阻抗的高可靠性大工作范围感应取能装置及调控方法
CN111532151B (zh) 一种电动汽车无线充电的系统及方法
CN103166474A (zh) 原边串联副边串并联补偿非接触谐振变换器
CN103490653A (zh) 光伏并网电流和直流电压二次纹波抑制控制系统及控制方法
KR101208252B1 (ko) 태양에너지 발전시스템의 최대전력점 추종을 위한 전류 지령치 생성방법 및 장치
Song et al. A control strategy for wireless EV charging system to improve weak coupling output based on variable inductor and capacitor
CN103475258A (zh) 可调放电参数的高压脉冲电源
CN112994269A (zh) 一种提升系统互操作性的无线电能传输装置及控制方法
CN111030266A (zh) 基于电磁超材料的无线充电系统及恒流恒压充电控制方法
CN110601379B (zh) 一种应用于电流互感器的利用单相ac/dc整流电路实现电子负载功能的控制方法
CN211236016U (zh) 一种无线电能传输恒压或恒流输出的频率在线检测电路
CN112311106A (zh) 一种单级全桥恒流恒压无线充电装置及其控制方法
CN116094192B (zh) 一种用于实现恒流输出的多路无线电能传输系统
CN112421734A (zh) 一种单级式高阶补偿恒流恒压无线充电装置及方法
CN111740510A (zh) 基于移相调节控制的无线充电方法及系统
CN115593250A (zh) 恒功率无线充电系统
CN203086360U (zh) 一种节能型高频开关电源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant