CN110596174B - 一种用于评估高反射率膜损耗稳定性的测试方法 - Google Patents

一种用于评估高反射率膜损耗稳定性的测试方法 Download PDF

Info

Publication number
CN110596174B
CN110596174B CN201910831127.0A CN201910831127A CN110596174B CN 110596174 B CN110596174 B CN 110596174B CN 201910831127 A CN201910831127 A CN 201910831127A CN 110596174 B CN110596174 B CN 110596174B
Authority
CN
China
Prior art keywords
peak
xps
reflection film
alpha
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910831127.0A
Other languages
English (en)
Other versions
CN110596174A (zh
Inventor
曾慧中
杨潇
幸代鹏
张文旭
张万里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910831127.0A priority Critical patent/CN110596174B/zh
Publication of CN110596174A publication Critical patent/CN110596174A/zh
Application granted granted Critical
Publication of CN110596174B publication Critical patent/CN110596174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/085Investigating materials by wave or particle radiation secondary emission photo-electron spectrum [ESCA, XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明属于材料测试技术领域,具体涉及了一种用于评估高反射率膜损耗稳定性的X射线辐照测试方法。本发明利用X射线的电荷积累效应,模拟高反膜因荷电积累的失效过程:采用的X射线源对高反膜表面进行荷电处理,在累积的处理过程中;同时利用光电子能谱仪原位监测高反膜表面化学态的变化,间断的进行XPS分析,检测高反膜表面的各元素的化学态变化。通过对随机选取的失效组样品和非失效组样品进行统计分析,并引入α和β参数描述O1s峰的对称性,只用到了两个拟合参数,就可以评估辐照荷电老化时的损耗变化,便于工程实际应用,是一种方便、快捷的判别方法。特别适合用于膜层材料工艺实验的快速优化、工艺监控等环节。

Description

一种用于评估高反射率膜损耗稳定性的测试方法
技术领域
本发明属于材料测试技术领域,具体涉及了一种用于评估高反射率膜损耗稳定性的X射线辐照测试方法。
背景技术
高反射率膜(简称高反膜)其损耗普遍低于100ppm(100*10-6),是激光器、激光陀螺、引力波探测器等激光系统的关键组件之一。高反膜实际常采用多层介质膜,使高反膜的反射率达99.9999%以上。高反膜应用环境复杂,损耗会随着使用时间衰变,高反膜的损耗稳定性是评价高反膜性能的一个重要指标。
目前,高反膜损耗稳定性的测量方法为光衰法,即激光脉冲通过光轴导入到光腔,激光脉冲在两个反射镜之间来回反射而形成振荡,由探测器检测激光脉冲的衰减过程,这种方法需要精密光学仪器、操作复杂、无法实时原位测试,耗时长。如何快速评估高反膜损耗稳定性,成为快速优化高反膜材料与结构一项十分重要的工作。
发明内容
针对上述存在问题或不足,为解决现有高反膜损耗稳定性测量方法操作复杂、无法实时原位 测试以及耗时长的问题,本发明提供了一种用于评估高反射率膜损耗稳定性的测试方法。
具体技术方案如下:
步骤1:对待测高反膜进行初始状态XPS采谱;
步骤2:采谱完成后,关闭XPS设备的中和器,通过设备自带的X射线对样品进行2-7分钟辐照,使得高反膜表面有电荷积累;
步骤3:辐照完毕后,立即开启中和器,对辐照后的高反膜进行XPS测试;
步骤4:重复步骤2、3,对高反膜进行总计2-7次辐照和3-8次XPS测试;
步骤5:对获得的所有待测高反膜样品的XPS光电子谱进行分析,分析辐照前后O1s峰的形状变化,O1s峰对称性差的样品其损耗大;
步骤6:对O1s峰进行高斯-洛伦兹线型(GL30)拟合,并引入α和β参数描述Gaussian-Lorentz函数的分对称性。
当α=β=1.0时,峰形为标准的对称峰,当α或β偏离1.0时,峰形对称性出现差异。其中,α和β的大小分别对应O1s左、右两侧峰形偏离的对称Gaussian-Lorentz峰的程度。峰形函数(LA)数学形式为
Figure BDA0002190742300000011
其中L是标准的Gaussian-Lorentz函数,f是峰的半高宽(FWHM),e是峰的中心位置,x是XPS谱图Binding Energy。
步骤7:用辐照后待测样品XPS谱图的拟合参数α和β去评估待测高反膜的损耗,对称性越好的样品,即α和β在1.0-1.1之间,其损耗稳定性较好,变化小于35ppm,而对称性差的的样品(α和β偏离1.0),其损耗稳定性较差,变化大于35ppm。
本发明利用X射线的电荷积累效应,模拟高反膜因荷电积累的失效过程。采用X射线光电子能谱仪实现X射线诱导的荷电积累,同时利用光电子能谱仪原位监测高反膜表面化学态的变化。在监测表面化学状态时需要关闭XPS电荷中和系统,再开启射线源。采用X射线源对高反膜表面进行荷电处理,在累积的处理过程中,间断的进行XPS分析,检测高反膜表面的各元素的化学态变化。通过对随机选取的失效组样品(损耗增加大于35ppm)和非失效组样品进行统计分析,结果表明高反膜中O1s峰的对称性与高反膜的损耗增加存在关联。
传统XPS分析O1s峰使用多峰拟合,多层介质高反膜O1s峰使用多峰拟合依次为吸附氧峰、结合氧峰和氧空位峰,拟合峰需要用峰中心位置(Position)、半高宽(FWHM)和峰面积(Area)去描述,多峰拟合参数多,不利于快速评估,为了解决这个问题,我们引入了α和β参数描述O1s峰的对称性,只用到了两个拟合参数,就可以评估辐照荷电老化时的损耗变化,便于工程实际应用,是一种方便、快捷的判别方法。特别适合用于膜层材料工艺实验的快速优化、工艺监控等环节。
综上所述,本发明提供了一种简单、实时原位的高反膜损耗稳定性测量方法。
附图说明
图1为实施例高反膜样品的典型XPS图谱;
图2为实施例辐照荷电前后,典型样品O1s峰的XPS图谱出现明显变化;
图3为实施例损耗稳定与损耗不稳定样品辐照次数与样品α和β关系;
图4为实施例经验指数α、β和高反膜损耗增加的关系。
具体实施方式
下面结合附图和实例对本发明进行进一步说明:
对多层介质高反膜样品进行了X射线辐照,并用XPS分析其表面荷电后薄膜化学态变化。
具体实验方法:
第一步、对高反膜样品进行初始状态XPS采谱,包括全谱和高分辨率的碳元素(C1s)、氧元素(O1s)、硅元素谱(Si2p);
第二步、采谱完成后,关闭XPS设备的中和器,通过设备自带的X射线对样品进行5分钟辐照,使得高反膜表面有电荷积累;
第三步、辐照完毕后,立即开启中和器,对辐照后的高反膜进行XPS测试,重复上述采谱过程;然后重复前两步,对高反膜进行总计4次辐照和5次XPS测试;
第四步、进行XPS光电子谱分析:首先通过对吸附碳元素(C1s)对比标准284.8eV谱进行图谱校正;随后对氧元素(O 1s)和硅元素(Si 2p)进行解谱分析。
本实施例典型的高反膜样品X射线加速辐照实验结果如图1所示。图1为图谱对称性变化样品的硅元素和氧元素图谱。图中由下往上表示辐照次数增加后测到的图谱。通过对XPS 图谱进行分析,可以发现整个实验过程中硅元素和氧元素图谱有显著变化的高反膜样品,具体呈现为,在硅元素和氧元素图谱中有两个峰出现,一个主峰和一个偏移到低结合能位置的肩峰。
如图2所示,拟合后的图谱数据还可以看到在每一次测量过程中,氧元素主峰的中心位置和对称性均保持不变,而肩峰的位置和强度随着荷电次数的增加发生了细微变化。具有这类特征的高反膜损耗性能较差,最大的损耗达到100ppm。由此可见,采用X射线加速辐照的方法可以有效分辨出膜材料的损耗性能差异。由于X射线辐照会在高反膜表面诱导出大量电荷,与等离子体作用产生的电荷类似,但数量更大,起到了加速老化试验的目的。
分析过程中,我们采用标准雪莉模型扣除背底和高斯-洛伦兹线型进行拟合。相比较于 Gaussian-Lorentz对称峰形函数(即α=β=1.0),采用含α和β参数的LA峰形函数可以很好的拟合出实验结果,拟合的残存显著降低。虽然采用该峰形函数没有考虑电子轨道的自旋劈裂、 X光电子产率变化、表面效应等影响XPS峰形的物理现象,但是,由于拟合参数相对较少,便于工程化应用,而且实验上也能够有效分辨出在辐照充电条件下,损耗增加的样品和损耗没有显著增加的样品,是一种方便、快捷的判别方法。
对高反膜O1s峰形对称性参数α和β变化与对应的损耗变化关系进行统计后发现(如图 3所示),对称性越好的样品,即α和β在1.0-1.1之间,其损耗稳定性较好,变化小于35ppm,而对称性差的的样品(α和β偏离1.0),其损耗其损耗稳定性较差,变化大于35ppm。采用上述方法,分析了若干批次随机选取的高反膜样品。部分样品(即损耗不稳定的样品)在辐照前后,O1s峰出现不同程度的变化,尤其是氧空位的特征峰的变化十分显著。实验完成后,对这些样品的损耗进行了测量,结果发现损耗在X射线辐照荷电处理前后变化均大于100ppm。
这些实验结果说明,X射线辐照可用于评估高反膜损耗稳定性。该实验方法的建立,可以有效的将XPS分析结果和高反膜损耗稳定性关联起来(如图4所示,虚线框内是损耗稳定的样品),有效解决前期研究中各类材料分析结果与pm量级损耗增加之间缺乏关联性实验数据的难题,可用于膜层材料工艺实验的快速优化、工艺监控等环节。

Claims (1)

1.一种用于评估高反射率膜损耗稳定性的测试方法,具体步骤如下:
步骤1:对待测高反膜进行初始状态XPS采谱;
步骤2:采谱完成后,关闭XPS设备的中和器,通过设备自带的X射线对样品进行2-7分钟辐照,使得高反膜表面有电荷积累;
步骤3:辐照完毕后,立即开启中和器,对辐照后的高反膜进行XPS测试;
步骤4:重复步骤2、3,对高反膜进行总计2-7次辐照和3-8次XPS测试;
步骤5:对获得的所有待测高反膜样品的XPS光电子谱进行分析,分析辐照前后O1s峰的形状变化,O1s峰对称性差的样品其损耗大;
步骤6:对O1s峰进行高斯-洛伦兹线型GL30拟合,并引入α和β参数描述Gaussian-Lorentz函数的分对称性;
当α=β=1.0时,峰形为标准的对称峰,当α或β偏离1.0时,峰形对称性出现差异; 其中,α和β的大小分别对应O1s左、右两侧峰形偏离的对称Gaussian-Lorentz峰的程度;峰形函数LA数学形式为
Figure FDA0002190742290000011
其中L是标准的Gaussian-Lorentz函数,f是峰的半高宽FWHM,e是峰的中心位置,x是XPS谱图Binding Energy;
步骤7:用辐照后待测样品XPS谱图的拟合参数α和β去评估待测高反膜的损耗,对称性越好的样品,即α和β在1.0-1.1之间,其损耗稳定性较好,变化小于35ppm,而对称性差的样品α和β偏离1.0,其损耗稳定性较差,变化大于35ppm。
CN201910831127.0A 2019-09-04 2019-09-04 一种用于评估高反射率膜损耗稳定性的测试方法 Active CN110596174B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910831127.0A CN110596174B (zh) 2019-09-04 2019-09-04 一种用于评估高反射率膜损耗稳定性的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910831127.0A CN110596174B (zh) 2019-09-04 2019-09-04 一种用于评估高反射率膜损耗稳定性的测试方法

Publications (2)

Publication Number Publication Date
CN110596174A CN110596174A (zh) 2019-12-20
CN110596174B true CN110596174B (zh) 2021-03-30

Family

ID=68857408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910831127.0A Active CN110596174B (zh) 2019-09-04 2019-09-04 一种用于评估高反射率膜损耗稳定性的测试方法

Country Status (1)

Country Link
CN (1) CN110596174B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053007A (zh) * 2009-10-29 2011-05-11 龙兴武 一种高反射率膜片膜内损耗参数的绝对测量方法
CN102251224A (zh) * 2011-07-11 2011-11-23 中国科学院金属研究所 一种在SiC纤维表面沉积薄膜的装置及方法
CN104458641A (zh) * 2014-12-02 2015-03-25 中国航天科工集团第三研究院第八三五八研究所 一种SiO2薄膜红外特征吸收峰分峰数量确定方法
CN106461428A (zh) * 2014-04-25 2017-02-22 瑞沃拉公司 使用结合的xps和xrf技术测定锗化硅厚度和组成

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104462A1 (en) * 2007-08-16 2009-04-23 Reflective X-Ray Optics Llc X-ray multilayer films and smoothing layers for x-ray optics having improved stress and roughness properties and method of making same
US9240254B2 (en) * 2011-09-27 2016-01-19 Revera, Incorporated System and method for characterizing a film by X-ray photoelectron and low-energy X-ray fluorescence spectroscopy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053007A (zh) * 2009-10-29 2011-05-11 龙兴武 一种高反射率膜片膜内损耗参数的绝对测量方法
CN102251224A (zh) * 2011-07-11 2011-11-23 中国科学院金属研究所 一种在SiC纤维表面沉积薄膜的装置及方法
CN106461428A (zh) * 2014-04-25 2017-02-22 瑞沃拉公司 使用结合的xps和xrf技术测定锗化硅厚度和组成
CN104458641A (zh) * 2014-12-02 2015-03-25 中国航天科工集团第三研究院第八三五八研究所 一种SiO2薄膜红外特征吸收峰分峰数量确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XPS studies of charging effect induced by X-ray irradiation on amorphous SiO2 thin films;Xing Dai Peng et al.;《IOP Conference Series: Materials Science and Engineering》;20190410;第490卷;第1-6页 *
高反射膜损耗的理论研究;王鹏;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20160315(第03期);全文 *

Also Published As

Publication number Publication date
CN110596174A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
Woodbury et al. Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomonas sphaeroides
Smith et al. Superbroadening in H 2 O and D 2 O by self-focused picosecond pulses from a YAlG: Nd laser
von Busch et al. Photodissociation of H 2+ and D 2+: Experiment
Jones et al. Photolysis of nitrogen dioxide
Bloemink et al. Collisional removal of O2 (b 1Σg+, v= 1, 2) by O2, N2, and CO2
Crowther et al. The Genesis solar xenon composition and its relationship to planetary xenon signatures
Li et al. Time-resolved pump–probe spectroscopy with spectral domain ghost imaging
Verhoef et al. Time-and-energy-resolved measurement of Auger cascades following Kr 3d excitation by attosecond pulses
Delon et al. The visible excitation spectrum of jet cooled NO2: Statistical analysis of rovibronic interactions
CN110596174B (zh) 一种用于评估高反射率膜损耗稳定性的测试方法
Ho et al. Infrared Spectral Properties of the Naphthalene Cation: Radiative Cooling Kinetics Experiments and Density Functional Calculations
Jordan Jr et al. Collision-induced mixing in the first excited states of sodium and potassium
Fan et al. Absolute generalized-oscillator-strength measurement of preionization-edge electronic excitations in the valence and 2 p shells of argon
Mahan et al. Rotational excitation and radiative lifetimes of N2+
Guillemin et al. Angular and dynamical properties in resonant inelastic x-ray scattering: Case study of chlorine-containing molecules
Soules et al. Design of Differential X‐Ray Filters for Low‐Intensity Scattering Experiments
Grieman et al. The laser induced fluorescence spectrum of trapped CD+
Trevitt et al. Calibration of a quadrupole ion trap for particle mass spectrometry
George et al. Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission
Henke An introduction to low energy x-ray and electron analysis
Samson et al. The photoionization cross sections of molecular chlorine
Ediger et al. Excitation spectra of the np 3Π g, n′ p 3Σ+ g← 5 s 3Σ+ u (1 u, 0− u) Rydberg series of Kr2
Jeong et al. Simulation study on the measurements of diffusion coefficients in solid materials by short-lived radiotracer beams
Hsu et al. Rotationally resolved photoelectron study of O 2: Identification of the vibrational progressions for O 2+(2 2 Π u, 2 Σ u−) at 19.6–21.0 eV
Louw et al. Spurious Counts in Geiger Counters and the Pretreatment of the Electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant