CN110594597A - 水务管网dma漏损分析系统 - Google Patents

水务管网dma漏损分析系统 Download PDF

Info

Publication number
CN110594597A
CN110594597A CN201910945287.8A CN201910945287A CN110594597A CN 110594597 A CN110594597 A CN 110594597A CN 201910945287 A CN201910945287 A CN 201910945287A CN 110594597 A CN110594597 A CN 110594597A
Authority
CN
China
Prior art keywords
resistor
wall thickness
pipe network
thickness information
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910945287.8A
Other languages
English (en)
Other versions
CN110594597B (zh
Inventor
张帆
陈方亮
李伟
魏琪
王辉
黄丽娜
王现伟
王欣
刘杰
彭丁丁
王玉开
乔森
张玉
江佩
赵尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHENGZHOU LITONG WATER Co Ltd
Original Assignee
ZHENGZHOU LITONG WATER Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHENGZHOU LITONG WATER Co Ltd filed Critical ZHENGZHOU LITONG WATER Co Ltd
Priority to CN201910945287.8A priority Critical patent/CN110594597B/zh
Publication of CN110594597A publication Critical patent/CN110594597A/zh
Application granted granted Critical
Publication of CN110594597B publication Critical patent/CN110594597B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/36Investigating fluid-tightness of structures by using fluid or vacuum by detecting change in dimensions of the structure being tested

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明的水务管网DMA漏损分析系统,均匀布置于DMA一区域内的三个霍尔传感器检测的管网壁厚信息经运算放大器AR1为核心的均值计算电路计算出平均壁厚信息,之后进入预处理电路,一路经运算放大器AR3为核心的放大电路进行1/10比例衰减,1/10衰减后平均壁厚信息为滞回比较电路提供供电电源,另一路通过计算出一个电磁传感器检测的管网壁厚信息与平均壁厚信息的差值、转换为正差值,进入滞回比较电路初步判断,低于1/10衰减后平均壁厚信息时,以一路平均壁厚信息传输到主机,超过1/10衰减后平均壁厚信息时,三个霍尔传感器检测的管网壁厚信息均向主机传输,以此通过对传输到主机的信息进行预处理,保证检漏质量的前提下,减少信息传输量,提升主机分析效率。

Description

水务管网DMA漏损分析系统
技术领域
本发明涉及管网漏损分析技术领域,特别是涉及水务管网DMA漏损分析系统。
背景技术
通过对水务管网实行多级DMA区块化、网络化,逐级进行流量、压力监测,实现区域压力调控,可以大大提高检漏的工作效率,缩短检漏时间,控制漏损严重化,通过在DMA各区域内选点配置检漏仪器、流量计、压力记录仪、霍尔传感器等进行数据采集,通过网络传输到主机,进行水平衡数据分析,判断出当前管理漏损的泄漏水平,优化减压阀的设置和开启,也即通过压力调控降低漏损,将泄漏维持在一个最佳水平,而通过霍尔传感器检测金属管网壁厚作依据,由主机判断物理漏损(铁、刚管网本身结构是否断裂等造成的损耗)是否存在泄漏,由于管网管材品种繁多、管材管件陈旧替换、电腐蚀造成管道内部腐蚀,会使检测的壁厚信息范围偏差大,若主机采用统一的量化标准来分析判断,会造成主机误判为漏损的情况,若主机对不同的管材、不同腐蚀度应采用相应的量化标准,会影响主机分析效率。
发明内容
针对上述情况,为克服现有技术之缺陷,本发明之目的在于提供水务管网DMA漏损分析系统,具有构思巧妙、人性化设计的特性,通过对检测的信息进行平均值计算、差值计算、迟滞比较,使壁厚信息一致的以一路向主机传输,不一致的分别传输到主机,能保证检漏质量的前提下,减少信息传输量,提升主机分析效率。
其解决的技术方案是,包括DMA分区管网漏损采集模块、DMA分区管网漏损分析模块,所述DMA分区管网漏损采集模块通过置于DMA分区管网的霍尔传感器实时检测管网的壁厚,传输到DMA分区管网漏损分析模块进行管网物理漏损分析,其特征在于,均匀布置于DMA一区域内的三个霍尔传感器检测的管网壁厚信息经运算放大器AR1为核心的均值计算电路计算出平均壁厚信息,之后进入预处理电路,一路经闭合的继电器K1常闭触点进入运算放大器AR3为核心的放大电路进行1/10比例衰减,1/10衰减后平均壁厚信息为滞回比较电路提供供电电源,另一路通过三极管Q1、三极管Q2计算出一个霍尔传感器检测的管网壁厚信息与平均壁厚信息的差值,差值经运算放大器AR2、二极管D4、二极管D5组成的绝对值电路转换为正差值,正差值进入运算放大器AR4、三极管Q3、电阻R16、电阻R17组成的滞回比较电路,判断壁厚是否异常,异常时输出高电平,三极管Q4导通、继电器K1线圈得电,常闭触点K1-4断开,平均壁厚信息不再传输到主机,同时常开触点K1-1、K1-2、K1-3闭合,三个霍尔传感器检测的管网壁厚信息均向DMA分区管网漏损分析模块的主机传输。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:均匀布置于DMA一区域内的三个霍尔传感器检测的金属管网壁厚信息经均值计算电路计算出平均壁厚信息,一路经闭合的继电器K1常闭触点进入运算放大器AR3为核心的放大电路进行1/10比例衰减,1/10衰减后平均壁厚信息为滞回比较电路提供供电电源,作量化标准分析判断,另一路通过三极管Q1、三极管Q2计算出一个霍尔传感器检测的管网壁厚信息与平均壁厚信息的差值,差值经转换为正差值,正差值进入滞回比较电路,低于1/10衰减后平均壁厚信息时,也即壁厚信息一致时,平均壁厚信息传输到主机,以平均壁厚信息传输能滤除单个霍尔传感器检测存在的随机干扰,提高壁厚检测的精度,同时减少信息传数量,提升主机分析效率,超过1/10衰减后平均壁厚信息时,判定有漏损的可能,三个霍尔传感器检测的管网壁厚信息均向DMA分区管网漏损分析模块的主机传输,由主机调出历史记录作标准来逐一分析管网是否漏损,保证检漏的质量,以此通过对传输到主机的信息进行预处理,保证检漏质量的前提下,减少信息传输量,提升主机分析效率。
附图说明
图1为本发明的电路连接原理图。
具体实施方式
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考附图1对实施例的详细说明中,将可清楚的呈现。以下实施例中所提到的结构内容,均是以说明书附图为参考。
水务管网DMA漏损分析系统,包括DMA分区管网漏损采集模块、DMA分区管网漏损分析模块,所述DMA分区管网漏损采集模块通过置于DMA分区管网的霍尔传感器实时检测金属管网的壁厚,传输到DMA分区管网漏损分析模块进行金属管网物理漏损分析,均匀布置于DMA一区域内的三个霍尔传感器检测的管网壁厚信息分别经LC滤波、二极管单向导电后,加到电阻R1-电阻R5、运算放大器AR1组成的均值计算电路,计算出平均壁厚信息,之后进入预处理电路,一路经闭合的继电器K1常闭触点进入运算放大器AR3为核心的放大电路进行1/10比例衰减,1/10衰减后平均壁厚信息为滞回比较电路提供供电电源,作量化标准分析判断,另一路通过三极管Q1、三极管Q2计算出一个霍尔传感器检测的管网壁厚信息与平均壁厚信息的差值,差值经运算放大器AR2、二极管D4、二极管D5组成的绝对值电路转换为正差值,正差值进入运算放大器AR4、三极管Q3、电阻R16、电阻R17组成的滞回比较电路,与1/10衰减后平均壁厚信息进行滞回比较,低于1/10衰减后平均壁厚信息时,输出低电平,平均壁厚信息经继电器K1常闭触点K1-4传输到主机,以平均壁厚信息传输能滤除单个霍尔传感器检测存在的随机干扰,提高壁厚检测的精度,同时减少信息传数量,提升主机分析效率,超过1/10衰减后平均壁厚信息时异常时,判定有漏损的可能,输出高电平,三极管Q4导通、继电器K1线圈得电,常闭触点K1-4断开,平均壁厚信息不再传输到主机,同时常开触点K1-1、K1-2、K1-3闭合,三个霍尔传感器检测的管网壁厚信息均向DMA分区管网漏损分析模块的主机传输,由主机调出历史记录(对不同的管材、不同腐蚀度检测的壁厚信息的记录)作标准来逐一分析管网是否漏损,以此保证检漏的质量。
在上述技术方案中,所述预处理电路将接收的平均壁厚信息一路经闭合的继电器K1常闭触点K1-4进入运算放大器AR3、电阻R8-R10为核心的放大电路进行1/10比例衰减,1/10衰减后平均壁厚信息为滞回比较电路提供供电电源(由于管材不同、使用时间不同,也即正常老化时,检测的壁厚信息会不同,因此采用平均壁厚信息作滞回比较电路待比较的供电电源,也即作比较的阈值值),另一路通过三极管Q1、三极管Q2计算出任一个霍尔传感器检测的管网壁厚信息与平均壁厚信息的差值(由于壁厚信息异常时,任一路霍尔传感器检测的管网壁厚信息与平均壁厚信息的差值均异常,只是差值的大小不一,因此只需选用一路与平均壁厚信息计算差值就可判断),差值经运算放大器AR2、二极管D4、二极管D5组成的绝对值电路转换为正差值,正差值进入运算放大器AR4、三极管Q3、电阻R16、电阻R17组成的滞回比较电路初步判断检测的壁厚是否异常,与1/10衰减后平均壁厚信息进行滞回比较,低于1/10衰减后平均壁厚信息时,输出低电平,平均壁厚信息经继电器K1常闭触点K1-4传输到主机,以平均壁厚信息传输能滤除单个霍尔传感器检测存在的随机干扰,提高壁厚检测的精度,超过1/10衰减后平均壁厚信息时异常时,判定有漏损的可能,输出高电平,三极管Q4导通、继电器K1线圈得电,常闭触点K1-4断开,平均壁厚信息不再传输到主机,同时常开触点K1-1、K1-2、K1-3闭合,三个霍尔传感器检测的管网壁厚信息均向DMA分区管网漏损分析模块的主机传输,由主机调出历史记录(对不同的管材、不同腐蚀度检测的壁厚信息的记录)作标准来逐一分析管网是否漏损,以此保证检漏的质量,包括电阻R7,电阻R7的一端连接运算放大器AR1的输出端,电阻R7的另一端分别连接继电器K1常闭触点K1-4的一端、三极管Q1的基极,继电器K1常闭触点K1-4的另一端连接电阻R8的一端,电阻R8的另一端分别连接运算放大器AR3的同相输入端、电阻R10的一端,运算放大器AR3的反相输入端通过电阻R9连接地,电阻R10的另一端连接运算放大器AR3的输出端、电阻R11 的一端,电阻R11的另一端分别连接三极管Q3的集电极、电阻R17的另一端,三极管Q1的发射极分别连接三极管Q2的集电极、电阻R6的一端、接地电容C4的一端,电阻R6的另一端连接二极管D1的负极,三极管Q2的发射极分别连接接地电阻R15的一端、电阻R13的一端,电阻R13的另一端分别连接运算放大器AR2的反相输入端、二极管D4的正极,运算放大器AR2的同相输入端连接电阻R12的一端,电阻R12的另一端分别连接二极管D5的正极、运算放大器AR2的输出端,二极管D5的负极分别连接二极管D4的负极、电阻R14的一端,电阻R14的另一端连接运算放大器AR4的同相输入端,运算放大器AR4的反相输入端分别连接接地电阻R16的一端、三极管Q3的发射极、电阻R17的一端,运算放大器AR4的输出端分别连接三极管Q3的基极、电阻R17的另一端、电阻R18的一端,电阻R18的另一端连接三极管Q4的基极,三极管Q4的发射极连接地,三极管Q4的集电极分别连接继电器K1线圈一端、二极管D6的正极,继电器K1线圈另一端、二极管D6的负极连接电源+12V。
在上述技术方案中,所述均值计算电路通过均匀布置于DMA一区域内的三个型号为UGN3503的霍尔传感器实时检测管网管材的壁厚信息(0-5V),也即磨损状况(可由申请号为201610257382 .5公开种用于城市供水的地下金属管道漏损检测电路,公开的利用电磁感应原理,检测的地下金属供水管道产生的磁场强度,利用霍尔传感器将磁场强度转换为电压信号,电压信号反应磨损状况而获得),分别经LC滤波、二极管单向导电后,加到电阻R1-电阻R5、运算放大器AR1组成的均值计算电路,在此设置电阻R1、R2、R3的阻值相等,且为电阻R5阻值的3倍,以此计算出平均壁厚信息,包括电感L1、L2、L3,电感L1、L2、L3的一端分别连接均匀布置于DMA一区域内的三个霍尔传感器检测的管网壁厚信息,电感L1、L2、L3的另一端分别连接接地电容C1的一端和二极管D1的正极及继电器K1常开触点K1-1的一端、接地电容C2的一端和二极管D2的正极及继电器K1常开触点K1-2的一端、接地电容C3的一端和二极管D3的正极及继电器K1常开触点K1-3的一端,继电器K1常开触点K1-1、K1-2、K1-3的另一端均连接主机的IO口,二极管D1、D2、D3的负极分别经电阻R1、R2、R3连接运算放大器AR1的同相输入端、电阻R5的一端,运算放大器AR1的输出端连接电阻R5的另一端,运算放大器AR1的反相输入端通过电阻R4连接地。
本发明具体使用时,包括DMA分区管网漏损采集模块、DMA分区管网漏损分析模块,所述DMA分区管网漏损采集模块通过置于DMA分区管网的霍尔传感器实时检测金属管网的壁厚,传输到DMA分区管网漏损分析模块进行金属管网物理漏损分析,均匀布置于DMA一区域内的三个霍尔传感器检测的管网壁厚信息分别经LC滤波、二极管单向导电后,加到电阻R1-电阻R5、运算放大器AR1组成的均值计算电路,计算出平均壁厚信息,之后进入预处理电路,一路经闭合的继电器K1常闭触点进入运算放大器AR3为核心的放大电路进行1/10比例衰减,1/10衰减后平均壁厚信息为滞回比较电路提供供电电源,作量化标准分析判断,另一路通过三极管Q1、三极管Q2计算出一个霍尔传感器检测的管网壁厚信息与平均壁厚信息的差值,差值经运算放大器AR2、二极管D4、二极管D5组成的绝对值电路转换为正差值,正差值进入运算放大器AR4、三极管Q3、电阻R16、电阻R17组成的滞回比较电路,与1/10衰减后平均壁厚信息进行滞回比较,初步判断检测的壁厚是否异常,低于1/10衰减后平均壁厚信息时,输出低电平,平均壁厚信息经继电器K1常闭触点K1-4传输到主机,以平均壁厚信息传输能滤除单个霍尔传感器检测存在的随机干扰,提高壁厚检测的精度,超过1/10衰减后平均壁厚信息时异常时,判定有漏损的可能,输出高电平,三极管Q4导通、继电器K1线圈得电,常闭触点K1-4断开,平均壁厚信息不再传输到主机,同时常开触点K1-1、K1-2、K1-3闭合,三个霍尔传感器检测的管网壁厚信息均向DMA分区管网漏损分析模块的主机传输,由主机调出历史记录(对不同的管材、不同腐蚀度检测的壁厚信息的记录)作标准来逐一分析管网是否漏损,保证检漏的质量,以此通过对传输到主机的信息进行预处理,保证检漏质量的前提下,减少信息传输量,提升主机分析效率。

Claims (3)

1.水务管网DMA漏损分析系统,包括DMA分区管网漏损采集模块、DMA分区管网漏损分析模块,所述DMA分区管网漏损采集模块通过置于DMA分区管网的霍尔传感器实时检测金属管网的壁厚,传输到DMA分区管网漏损分析模块进行管网物理漏损分析,其特征在于,均匀布置于DMA一区域内的三个霍尔传感器检测的管网壁厚信息经运算放大器AR1为核心的均值计算电路计算出平均壁厚信息,之后进入预处理电路,一路经闭合的继电器K1常闭触点进入运算放大器AR3为核心的放大电路进行1/10比例衰减,1/10衰减后平均壁厚信息为滞回比较电路提供供电电源,另一路通过三极管Q1、三极管Q2计算出一个霍尔传感器检测的管网壁厚信息与平均壁厚信息的差值,差值经运算放大器AR2、二极管D4、二极管D5组成的绝对值电路转换为正差值,正差值进入运算放大器AR4、三极管Q3、电阻R16、电阻R17组成的滞回比较电路,判断壁厚是否异常,异常时输出高电平,三极管Q4导通、继电器K1线圈得电,常闭触点K1-4断开,平均壁厚信息不再传输到主机,同时常开触点K1-1、K1-2、K1-3闭合,三个霍尔传感器检测的管网壁厚信息均向DMA分区管网漏损分析模块的主机传输。
2.如权利要求1所述水务管网DMA漏损分析系统,其特征在于,所述预处理电路包括电阻R7,电阻R7的一端连接运算放大器AR1的输出端,电阻R7的另一端分别连接继电器K1常闭触点K1-4的一端、三极管Q1的基极,继电器K1常闭触点K1-4的另一端连接电阻R8的一端,电阻R8的另一端分别连接运算放大器AR3的同相输入端、电阻R10的一端,运算放大器AR3的反相输入端通过电阻R9连接地,电阻R10的另一端连接运算放大器AR3的输出端、电阻R11 的一端,电阻R11的另一端分别连接三极管Q3的集电极、电阻R17的另一端,三极管Q1的发射极分别连接三极管Q2的集电极、电阻R6的一端、接地电容C4的一端,电阻R6的另一端连接二极管D1的负极,三极管Q2的发射极分别连接接地电阻R15的一端、电阻R13的一端,电阻R13的另一端分别连接运算放大器AR2的反相输入端、二极管D4的正极,运算放大器AR2的同相输入端连接电阻R12的一端,电阻R12的另一端分别连接二极管D5的正极、运算放大器AR2的输出端,二极管D5的负极分别连接二极管D4的负极、电阻R14的一端,电阻R14的另一端连接运算放大器AR4的同相输入端,运算放大器AR4的反相输入端分别连接接地电阻R16的一端、三极管Q3的发射极、电阻R17的一端,运算放大器AR4的输出端分别连接三极管Q3的基极、电阻R17的另一端、电阻R18的一端,电阻R18的另一端连接三极管Q4的基极,三极管Q4的发射极连接地,三极管Q4的集电极分别连接继电器K1线圈一端、二极管D6的正极,继电器K1线圈另一端、二极管D6的负极连接电源+12V。
3.如权利要求1所述水务管网DMA漏损分析系统,其特征在于,所述均值计算电路包括电感L1、L2、L3,电感L1、L2、L3的一端分别连接均匀布置于DMA一区域内的三个霍尔传感器检测的管网壁厚信息,电感L1、L2、L3的另一端分别连接接地电容C1的一端和二极管D1的正极及继电器K1常开触点K1-1的一端、接地电容C2的一端和二极管D2的正极及继电器K1常开触点K1-2的一端、接地电容C3的一端和二极管D3的正极及继电器K1常开触点K1-3的一端,继电器K1常开触点K1-1、K1-2、K1-3的另一端均连接主机的IO口,二极管D1、D2、D3的负极分别经电阻R1、R2、R3连接运算放大器AR1的同相输入端、电阻R5的一端,运算放大器AR1的输出端连接电阻R5的另一端,运算放大器AR1的反相输入端通过电阻R4连接地。
CN201910945287.8A 2019-09-30 2019-09-30 水务管网dma漏损分析系统 Active CN110594597B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910945287.8A CN110594597B (zh) 2019-09-30 2019-09-30 水务管网dma漏损分析系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910945287.8A CN110594597B (zh) 2019-09-30 2019-09-30 水务管网dma漏损分析系统

Publications (2)

Publication Number Publication Date
CN110594597A true CN110594597A (zh) 2019-12-20
CN110594597B CN110594597B (zh) 2021-01-01

Family

ID=68865421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910945287.8A Active CN110594597B (zh) 2019-09-30 2019-09-30 水务管网dma漏损分析系统

Country Status (1)

Country Link
CN (1) CN110594597B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991942A (zh) * 2019-12-25 2020-04-10 郑州力通水务有限公司 智慧水务dma漏损分析系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167938A (ja) * 1982-03-30 1983-10-04 Agency Of Ind Science & Technol パイプラインの漏洩発生検出装置
JPS59150321A (ja) * 1983-06-27 1984-08-28 Toshiba Corp 漏水検出装置
JP2005331374A (ja) * 2004-05-20 2005-12-02 Saginomiya Seisakusho Inc 漏水監視装置及び漏水個所検知方法
CN101210855A (zh) * 2006-12-27 2008-07-02 中芯国际集成电路制造(上海)有限公司 多路漏液检测器
CN102495132A (zh) * 2011-12-13 2012-06-13 东北大学 一种用于海底管道漏磁内检测器的多通道数据采集装置
CN104061443A (zh) * 2014-07-01 2014-09-24 北京昊科航科技有限责任公司 管道安全预警与泄漏监测报警方法
CN105736954A (zh) * 2016-04-21 2016-07-06 杭州电子科技大学 一种用于城市供水的地下金属管道漏损检测电路
CN205540159U (zh) * 2016-01-25 2016-08-31 胡宇祥 一种基于物联网的智能家居防漏水系统
CN108332060A (zh) * 2018-01-30 2018-07-27 周口师范学院 一种管道漏水智能监控系统
CN109831180A (zh) * 2019-02-26 2019-05-31 郑州力通水务有限公司 一种供水远程监控系统用信号补偿电路
CN209149162U (zh) * 2018-09-21 2019-07-23 镇平县豫龙纺织有限公司 一种纺织工厂用温控设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167938A (ja) * 1982-03-30 1983-10-04 Agency Of Ind Science & Technol パイプラインの漏洩発生検出装置
JPS59150321A (ja) * 1983-06-27 1984-08-28 Toshiba Corp 漏水検出装置
JP2005331374A (ja) * 2004-05-20 2005-12-02 Saginomiya Seisakusho Inc 漏水監視装置及び漏水個所検知方法
CN101210855A (zh) * 2006-12-27 2008-07-02 中芯国际集成电路制造(上海)有限公司 多路漏液检测器
CN102495132A (zh) * 2011-12-13 2012-06-13 东北大学 一种用于海底管道漏磁内检测器的多通道数据采集装置
CN104061443A (zh) * 2014-07-01 2014-09-24 北京昊科航科技有限责任公司 管道安全预警与泄漏监测报警方法
CN205540159U (zh) * 2016-01-25 2016-08-31 胡宇祥 一种基于物联网的智能家居防漏水系统
CN105736954A (zh) * 2016-04-21 2016-07-06 杭州电子科技大学 一种用于城市供水的地下金属管道漏损检测电路
CN108332060A (zh) * 2018-01-30 2018-07-27 周口师范学院 一种管道漏水智能监控系统
CN209149162U (zh) * 2018-09-21 2019-07-23 镇平县豫龙纺织有限公司 一种纺织工厂用温控设备
CN109831180A (zh) * 2019-02-26 2019-05-31 郑州力通水务有限公司 一种供水远程监控系统用信号补偿电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
范永胜: "供水管网终端泄漏检测仪的设计", 《自动化与仪表》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110991942A (zh) * 2019-12-25 2020-04-10 郑州力通水务有限公司 智慧水务dma漏损分析系统

Also Published As

Publication number Publication date
CN110594597B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN105911342A (zh) 基于功率持续时间特性的电饭煲非侵入辨识方法
CN106680637A (zh) 非侵入式家用负荷投切事件实时监测方法
CN105927863A (zh) Dma分区管网泄漏在线检测定位系统及其检测定位方法
CN105716803A (zh) 一种供水管网漏损监控的综合分析装置及其方法
CN112034260B (zh) 一种配电台区低压线损精益分析与反窃电精准定位方法
CN110594597B (zh) 水务管网dma漏损分析系统
CN108828375B (zh) 基于双回路智能电能表的空调用电监控系统及监控方法
CN113390583B (zh) 用于水表的漏水检测方法、水表、供水系统及应用方法
CN116108604B (zh) 一种供水管网异常检测方法、系统、设备及存储介质
CN113109004A (zh) 一种污水管网漏损监测方法及其系统
CN112903052A (zh) 一种基于水表异常用水量的漏水监控方法和系统
CN109061374A (zh) 利用变电站自动化系统的氧化锌避雷器监测方法及装置
CN109210386A (zh) 一种漏水检测方法、电子设备及存储介质
CN114449373B (zh) 一种基于物联网无线传输的智慧水务系统
CN111830438B (zh) 一种变压器故障检测方法及变压器
CN110750760A (zh) 一种基于态势感知和控制图的异常理论线损检测方法
CN203719690U (zh) 一种电力充油设备油质在线监测装置
EP4071454A1 (en) Method for locating a leak in a water supply network
CN212433929U (zh) 燃气泄漏报警系统
CN205537806U (zh) 一种智能燃气表
CN112377821A (zh) 基于智能水表平台大数据的管道漏损排查方法及系统
CN111044935B (zh) 变压器铁芯多点接地带电检测装置
CN114063003A (zh) 基于小台区的电能表测量误差检测方法、系统及存储介质
CN113933747A (zh) 电压互感器二次回路接地电流检测系统及检测方法
CN208636302U (zh) 一种检测饮用水ORP及pH值的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 450001 4th floor, building 2, No.9, Yunshan Road, high tech Industrial Development Zone, Zhengzhou City, Henan Province

Patentee after: ZHENGZHOU LITONG WATER Co.,Ltd.

Address before: 450001 1007, block a, Xicheng science and technology building, 41 Jinsuo Road, high tech Industrial Development Zone, Zhengzhou City, Henan Province

Patentee before: ZHENGZHOU LITONG WATER Co.,Ltd.