CN110592107B - 一种燕麦叶枯病菌基因CvDUF1及其应用 - Google Patents

一种燕麦叶枯病菌基因CvDUF1及其应用 Download PDF

Info

Publication number
CN110592107B
CN110592107B CN201910950510.8A CN201910950510A CN110592107B CN 110592107 B CN110592107 B CN 110592107B CN 201910950510 A CN201910950510 A CN 201910950510A CN 110592107 B CN110592107 B CN 110592107B
Authority
CN
China
Prior art keywords
gene
cvduf1
oat
leaf blight
toxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910950510.8A
Other languages
English (en)
Other versions
CN110592107A (zh
Inventor
张祥辉
朱耿林
丛杰
纪旭
王璐
刘金亮
潘洪玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910950510.8A priority Critical patent/CN110592107B/zh
Publication of CN110592107A publication Critical patent/CN110592107A/zh
Application granted granted Critical
Publication of CN110592107B publication Critical patent/CN110592107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/37Assays involving biological materials from specific organisms or of a specific nature from fungi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pathology (AREA)
  • Botany (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

一种燕麦叶枯病菌CvDUF1基因及其应用属微生物基因工程技术领域,本发明提供的来自燕麦叶枯病菌的控制毒素形成的CvDUF1基因,其DNA序列如SEQ ID No:1所示;CvDUF1基因可在植物抗燕麦叶枯病基因工程领域中应用;通过对燕麦叶枯病菌的控制毒素形成的蛋白质CvDUF1进行缺失、突变或修饰,而使其毒素形成受限,可作为靶标在设计和筛选抗燕麦叶枯病药剂中应用。

Description

一种燕麦叶枯病菌基因CvDUF1及其应用
技术领域
本发明属微生物基因工程技术领域,具体涉及植物保护领域中控制真菌毒素形成的基因的发现及应用。
背景技术
燕麦叶枯病是由一种平脐蠕孢菌Cochliobolusvictoriae引起,燕麦叶枯病主要危害叶片、叶鞘、颖等地上部。叶片染病初期会形成边缘不明显的黄色至黄褐色病斑,后逐渐扩大,中间褐色,四周略带黄色。病斑多时,从叶尖端逐渐向下枯死。该病多从下部叶片开始发生并向上扩展。并且,燕麦叶枯病菌可以产生一种毒素-victorin,毒素victorin稀释一百万倍以后仍对特定基因型的燕麦品种有毒害作用,从此也提出了寄主专化性毒素的概念,并得到广泛研究。毒素victorin是燕麦叶枯病菌成功侵染燕麦的必要元素之一。不能产生victorin的菌株则不能对燕麦产生致病性,而离体的victorin也能侵染燕麦。燕麦对victorin的感病性主要由燕麦Vb基因决定,含有Vb基因的燕麦表现为感病,不含有Vb基因的燕麦表现为抗病。而Vb基因与燕麦抗锈病的Pc2基因是同一个基因,因此燕麦叶枯病的感病性是与一个抗性基因相关联的。并且victorin能够引起燕麦的防卫反应,包括胼胝质积累,氧爆发以及细胞程序性死亡。而victorin主要包括5种结构,分别是B、C、D、E和Victoricine,结构C为主要结构,活性占比达到85%-90%。燕麦叶枯病每年给燕麦生产造成了极大的损失,尤其毒素victorin的产生给人畜安全产生很大影响。而毒素victorin的产生机制目前还不清楚,这给燕麦叶枯病的防治造成了很大的困难。
DUF1(Domain of Unknown Function 1)基因是一个在燕麦叶枯病菌中的未知功能基因,通过分析DUF1基因的功能,评价其在燕麦叶枯病菌毒素产生中的作用,有利于鉴定潜在的防治靶标,用于筛选新型防控燕麦叶枯病菌的药剂。
发明内容
本发明的目的旨在提供一种控制真菌毒素形成的基因。
本发明所提供的控制毒素形成的基因来源于燕麦叶枯病菌(Cochliobolusvictoriae)菌株FI3,名称为CvDUF1,其DNA序列如SEQ ID No:1所示。该DNA序列为CvDUF1基因的开放阅读框,由1004个核苷酸组成,其中包含3个内含子序列。
本发明所述燕麦叶枯病菌(Cochliobolus victoriae)CvDUF1基因可在调控燕麦叶枯病菌毒素产生中应用。
对来自燕麦叶枯病菌(Cochliobolusvictoriae)菌株FI3的控制毒素形成的CvDUF1基因进行缺失、突变或修饰,而使其毒素形成受阻,可作为靶标在设计和筛选抗燕麦叶枯病药剂中应用。
本发明证明了CvDUF1基因的缺失,导致燕麦叶枯病菌毒素不能形成,说明CvDUF1基因是燕麦叶枯病菌(Cochliobolus victoriae)菌株FI3毒素形成所必需的基因。目前,关于CvDUF1基因影响毒素形成方面还没有报道,本研究是第一次报道。因此,筛选能够阻止该基因表达与其蛋白质的表达、修饰及定位的化合物,可以有效控制燕麦叶枯病的发生,从而有助于开发新型杀菌剂,即本发明所提供的CvDUF1基因的一个重要用途是:该基因的表达与其编码的蛋白质产物的表达、修饰及定位,可以作为重要候选靶标位点,用于抗燕麦叶枯病药剂的设计和筛选。
附图说明
图1为燕麦叶枯病菌(Cochliobolus victoriae)菌株FI3CvDUF1基因的敲除策略(通过同源重组进行基因替换)示意图
其中:Cv FI3为燕麦叶枯病菌野生型菌株,ΔCvduf1为CvDUF1基因的缺失突变体;引物F1/R1与F2/R2分别用于扩增CvDUF1基因的上下游序列,用作敲除的同源臂;引物F/R,U/NLC37,NLC38/D用于验证突变体。
图2为CvDUF1基因缺失突变体的PCR验证电泳图
其中:F/R、U/NLC37、D/NLC38为所用引物;1为燕麦叶枯病菌(Cochliobolusvictoriae)FI3野生型菌株,2和3为CvDUF1基因缺失突变体;(1)F/R为部分CvDUF1基因扩增结果,(2)U/NLC37为CvDUF1基因上游序列加部分潮霉素序列扩增结果,(3)D/NLC38为CvDUF1基因下游序列加部分潮霉素序列扩增结果。
图3为CvDUF1基因的缺失突变体、野生型菌株及阴性对照菌株(不能产生毒素菌株)的毒素产生测定对比照片
其中:所用试管中液体为各个菌株的培养液,所用叶片为燕麦幼苗叶片,如果菌株能产生毒素,经过24h培养后燕麦叶片会发生弯曲。1为燕麦叶枯病菌(Cochliobolusvictoriae)FI3野生型菌株,2和3为不能产生毒素的燕麦叶枯病菌菌株(阴性对照),4和5为CvDUF1基因的缺失突变体菌株。
图4为CvDUF1基因的缺失突变体与野生型菌株产生毒素的ESI-EIC谱图
其中:将各个菌株接种在液体Fries’培养基培养15天后,进行毒素测定。标准品为纯毒素标准品,WT为燕麦叶枯病菌野生型菌株,ΔCvDUF1为CvDUF1基因的缺失突变体菌株。
具体实施方式
为了更好地描述本发明,下面通过具体的实施例予以进一步说明,下述实施例中的方法,如无特别说明,均为常规方法。
本发明中燕麦叶枯病菌(Cochliobolusvictoriae)菌株FI3提供者为美国康奈尔大学的Babara Gillian Turgeon。
提供者联系方式为:
Dept.of Plant Pathology&Plant-Microbe Biology,334Plant Science Bldg.,Cornell University,Ithaca,NY 14850,United States.E-mail:bgt1@cornell.edu。
实施例1 CvDUF1基因的相关性分析
CvDUF1基因是通过对燕麦叶枯病菌基因组分析获得。燕麦叶枯病菌CvDUF1基因的开放阅读框由1004个核苷酸组成,包含3个内含子。
实施例2CvDUF1基因的敲除
1)CvDUF1基因上下游以及潮霉素基因的扩增
采用引物F1(5'-GGAGCATGCATTTCTCTACGA-3')与R1(5'-TCCTGTGTGAAATTGTTATCCGCTTGGTATCAAAAGAAAAACAACTGAA-3'),以燕麦叶枯病菌野生型菌株FI3的基因组DNA为模板扩增CvDUF1基因上游702bp片段,采用F2(5'-GTCGTGACTGGGAAAACCCTGGCGTGCTACGAGCAGCAGCTAAA-3')与R2(5'-ATGGTGGAGCTGATTTCTGG-3')扩增燕麦叶枯病菌CvDUF1基因下游850bp片段,采用引物M13F(5'-CGCCAGGGTTTTCCCAGTCACGAC-3')和M13R(5'-AGCGGATAACAATTTCACACAGGA-3'),以载体pUCATPH为模板扩增2549bp潮霉素基因。反应体系为:10mmol/L dNTP Mixture,1μL;5×PCR buffer,10μL;上下游引物各2.5μL(10μmol/mL);模板DNA,2μL;Phusion polymerase,0.5μL(5U);ddH2O,31.5μL;扩增程序为:98℃预变性2分钟,然后(1)98℃,变性20秒;(2)65℃,退火30秒;(3)72℃,延伸30秒;(4)循环30次;(5)72℃延伸10分钟。将上述3个片段共同转入燕麦叶枯病菌野生型菌株FI3中。
2)燕麦叶枯病菌(Cochliobolus victoriae)菌株FI3转化
a.燕麦叶枯病菌(Cochliobolus victoriae)菌株FI3的产孢培养
从-80℃冰箱取少量燕麦叶枯病菌FI3菌株分生孢子,滴加于CMX培养基【每升CMX培养基包含:0.1g/mL四水合硝酸钙溶液10mL,10mL溶液B,0.5mL微量元素溶液,1g酵母提取物,0.5g酶解干酪素,0.5g酸解干酪素,10g木糖,20g琼脂粉。(每升溶液B包括:20g磷酸二氢钾,25g七水合硫酸镁,15g氯化钠)(每升微量元素溶液包括:57.2mg硼酸,393mg五水合硫酸铜,13.1mg碘化钾,60.4mg一水合硫酸锰,36.8mg四水合钼酸铵,5.49g一水合硫酸锌,948.2mg六水合氯化铁)】上,置24℃培养2周,用CM液体培养基【每升CM培养基包含:0.1g/mL四水合硝酸钙溶液10mL,10mL溶液B,0.5mL微量元素溶液,1g酵母提取物,0.5g酶解干酪素,0.5g酸解干酪素,10g葡萄糖,20g琼脂粉。(每升溶液B包括:20g磷酸二氢钾,25g七水合硫酸镁,15g氯化钠)(每升微量元素溶液包括:57.2mg硼酸,393mg五水合硫酸铜,13.1mg碘化钾,60.4mg一水合硫酸锰,36.8mg四水合钼酸铵,5.49g一水合硫酸锌,948.2mg六水合氯化铁)】刮取、收集孢子,显微镜观察,利用血球计数器调节孢子浓度为1×106/mL。
b.燕麦叶枯病菌(Cochliobolus victoriae)菌株FI3转化
吸取1mL孢子悬浮液于100mLCM液体培养基中,24℃振荡培养(150rpm)28h,离心收集菌丝于80mL酶解液(3.27g氯化钠,0.8g崩溃酶)中酶解2h,收集原生质体。将原生质体用10mLSTC溶液洗涤3次,并最终溶解于500μLSTC溶液(每100mLSTC溶液包括:21.86g山梨醇,1Mtris-HCL1mL,0.735g二水合氯化钙)中。将25mL准备好的PCR片段与100μL原生质体溶液充分混匀,加入1mLPEG溶液(每50mLPEG溶液中包括:聚乙二醇30g,1Mtris-HCL0.5mL,0.37g二水合氯化钙)。最后用1mLSTC溶液稀释,并与再生培养基混合,30℃过夜培养,每个培养皿中加入含有150μg/mL潮霉素的水琼脂10mL,30℃培养3d后挑取扩展的菌落到含有同样抗生素的CMX培养基上。
3)缺失突变体的验证
选用三对引物通过PCR扩增对转化子进行筛选。扩增结果符合如下结果的,确定为CvDUF1基因缺失突变体:上游同源臂之外基因组上的引物U(5'-ACAACGCGTGGATAGAAACA-3')与潮霉素抗性基因的引物NLC37(5'-GGATGCCTCCGCTCGAAGTA-3')配对可以扩增到预期大小(2.1kb)的重组片段;下游同源臂之外基因组上的引物D(5'-CGGTATATCGCCGTTCAACT-3')与潮霉素抗性基因的引物NLC38(5'-CGTTGCAAGACCTGCCTGAA-3')配对可以扩增到预期大小(3.0kb)的重组片段;而编码区引物F(5'-CGGTATGCTCATCGTCCTTT-3')与R(5'-CATTGAGCAGCCTGTCGTAA-3')无扩增条带(野生型菌株可扩增到644kb片段)(见图2)。结果,从转化子中筛选到2株CvDUF1基因缺失突变体,用于后续功能分析。
实施例3CvDUF1基因在燕麦叶枯病菌(Cochliobolus victoriae)菌株FI3毒素产生中
的作用
将燕麦叶枯病菌野生型菌株FI3和CvDUF1基因缺失突变体分别接种于固体CMX培养基上,生长两周后,用5mLFries’培养基【酒石酸铵5g,硝酸铵1g,磷酸二氢钾1g,七水合硫酸镁0.5g,氯化钠0.1g,两水合氯化钙0.13g,蔗糖30g,酵母浸粉1g,铁溶液1mL,用水定容至1L。(铁溶液:七水合硫酸亚铁2g,EDTA2.41g,用水定容至100mL)】冲洗菌丝及分生孢子,收集菌丝及孢子悬浮液至20mLFries’培养基中,黑暗培养15天后用于毒素测定。
毒素生物测定:将上述培养液用纱布过滤,去除菌丝体,取2mL培养液加入试管中,取生长两周左右的燕麦幼苗叶片放入试管中培养24h。过夜培养后如果燕麦叶片保持直立,则证明菌株不能产生毒素,如燕麦叶片变弯曲,则证明菌株能产生毒素。
毒素的仪器测定:将上述培养液用纱布过滤,去除菌丝体,过反向C18柱进行纯化,除去杂质。然后用乙腈/水(50/50)对C18柱进行淋洗,将淋洗液过凝胶柱分离,后用10mMNaCL溶液淋洗,将淋洗液进行浓缩干燥,并用乙腈进行溶解,上高效液相色谱进行测定。高效液相色谱检测条件为:流动相为25%乙腈水溶液,检测器为紫外检测器,检测波长254nm,色谱柱为C18柱。
Figure BDA0002225512420000051
序 列 表
发明名称:一种燕麦叶枯病菌基因CvDUF1及其应用”
SEQ ID No:1的序列
   (i)序列特征:(A)长度:1004 bp;(B)类型:核苷酸;(C)链性:单链
   (ii)分子类型:DNA
   (iii)序列描述:SEQ ID No:1
1-60 atgagctcag cagcatatag ccgagtagat tcaagttcaa ctgacagaaatagtgatgaa
61-120 tatcacaaag aacggtacct tgcacttaga acgaataatg ctaagggtttcaaaggagtt 121-180 caaaggcgat tatggatagc gattaattcc agtttatggc ttgttacactcggtatgctc 181-240 atcgtccttt tacggcggga gagtttgggc acgagaaacg gcgggtttgagcttgggttc 241-300 tcagctactg agcttggtat gacaaacaac attgatctac cgtattcatccaatcgctaa 301-360 ctagaaaatc agccgctacg tttcgaacca ttagaatctc tactgagatattcaatcagc 361-420 ctgaaggaac atcgttctct acattaccta cgtcgtctta tgtaggtgaaccaacagagg 421-480 agattgacaa tgcttggagg atattagttt cccgtaagca agactttccagaatcaatta 481-540 ctcaggccta tgctcattgc tcttctcact agcaactgtc ctttacctaaaagaggacga 541-600 gattggcgag tataaaaaca gcactaccaa gcaagacaac ctctgggtcgccgggtcagt 601-660 tttataccaa acttggctga acctcatgcc ttatttctag taaaaatagacgttgctaac 661-720 attttcattt ggttagtttg caagtatacc actaccttca ctgcattaacgcactacgcc 721-780 gcgcagcata ccaacatgtt tacggggctc cgacaaagga acatctaaatcacctcgacc 781-840 attgcattga catgttacga caggctgctc aatgtcaatc tgacctgacacctatgttat 841-900 atttcaaccc cgagaatgac ccaaacacta tgctcattaa gtcacaccaacactcttgtc 901-960 gccggtttga tttagtaaat gaatgggcga tggctcggtc tcagtgcaaagggaatacta 961-1004cttgtgccat cgaagtaggg aagcaagtag gcggcgagat gtaa

Claims (1)

1.一种燕麦叶枯病菌(Cochliobolus victoriaeCvDUF1基因作为靶标在设计和筛选抗燕麦叶枯病药剂中应用,其中所述基因的DNA序列如SEQ ID NO.1所示。
CN201910950510.8A 2019-10-08 2019-10-08 一种燕麦叶枯病菌基因CvDUF1及其应用 Active CN110592107B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910950510.8A CN110592107B (zh) 2019-10-08 2019-10-08 一种燕麦叶枯病菌基因CvDUF1及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910950510.8A CN110592107B (zh) 2019-10-08 2019-10-08 一种燕麦叶枯病菌基因CvDUF1及其应用

Publications (2)

Publication Number Publication Date
CN110592107A CN110592107A (zh) 2019-12-20
CN110592107B true CN110592107B (zh) 2021-09-17

Family

ID=68865728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910950510.8A Active CN110592107B (zh) 2019-10-08 2019-10-08 一种燕麦叶枯病菌基因CvDUF1及其应用

Country Status (1)

Country Link
CN (1) CN110592107B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015201677A1 (en) * 2011-06-13 2015-04-23 Suncor Energy Inc. Delivery of paraffinic oil-containing compositions to root tissue of plants
US9573980B2 (en) * 2013-03-15 2017-02-21 Spogen Biotech Inc. Fusion proteins and methods for stimulating plant growth, protecting plants from pathogens, and immobilizing Bacillus spores on plant roots

Also Published As

Publication number Publication date
CN110592107A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
Proctor et al. Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation
Deng et al. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system
Oberegger et al. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans
Hof et al. Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity in rice
Liu et al. Agrobacterium-mediated transformation as a useful tool for the molecular genetic study of the phytopathogen Curvularia lunata
Shima et al. Identification of three mutant loci conferring carboxin-resistance and development of a novel transformation system in Aspergillus oryzae
Li et al. Siderophore biosynthesis but not reductive iron assimilation is essential for the dimorphic fungus Nomuraea rileyi conidiation, dimorphism transition, resistance to oxidative stress, pigmented microsclerotium formation, and virulence
CN105154454B (zh) 一种与致病力相关的灰霉病菌基因BcArs2及其应用
CN109609526B (zh) 一种大麦条纹病致病性基因PgPBS及其应用
Ushimaru et al. Development of an efficient gene targeting system in Colletotrichum higginsianum using a non-homologous end-joining mutant and Agrobacterium tumefaciens-mediated gene transfer
El Hadrami et al. A cupin domain-containing protein with a quercetinase activity (VdQase) regulates Verticillium dahliae's pathogenicity and contributes to counteracting host defenses
CN105154453A (zh) 一种与致病力相关的灰霉病菌基因BcSep4及其应用
Reilly et al. Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger
Xie et al. Characterization of three multicopper oxidases in the filamentous fungus Podospora anserina: A new role of an ABR1-like protein in fungal development?
Zhang et al. Functional analysis of the pathogenicity-related gene VdPR1 in the vascular wilt fungus Verticillium dahliae
Zhu et al. Overexpression of chitinase in the endophyte Phomopsis liquidambaris enhances wheat resistance to Fusarium graminearum
Binh et al. Establishment of a new and efficient Agrobacterium-mediated transformation system in the nematicidal fungus Purpureocillium lilacinum
L’Haridon et al. Isolation of differentially expressed genes during interactions between tomato cells and a protective or a non-protective strain of Fusarium oxysporum
CN110592107B (zh) 一种燕麦叶枯病菌基因CvDUF1及其应用
Balcerzak et al. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts
CN105483146A (zh) 一种与致病力相关的灰霉病菌基因BcAls1及其应用
Németh et al. What is the role of the nitrate reductase (euknr) gene in fungi that live in nitrate-free environments? A targeted gene knock-out study in Ampelomyces mycoparasites
Ito et al. Post‐transcriptional silencing of the tomatinase gene in Fusarium oxysporum f. sp lycopersici
CN110846328B (zh) 一种燕麦叶枯病菌基因CvCAO1及其应用
CN108410879B (zh) 水稻捕光色素叶绿素a/b结合蛋白Lhcb5在稻瘟病菌抗性中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant