CN110591125B - Soluble three-dimensional crosslinked elastomer and preparation and treatment method thereof - Google Patents

Soluble three-dimensional crosslinked elastomer and preparation and treatment method thereof Download PDF

Info

Publication number
CN110591125B
CN110591125B CN201910700803.0A CN201910700803A CN110591125B CN 110591125 B CN110591125 B CN 110591125B CN 201910700803 A CN201910700803 A CN 201910700803A CN 110591125 B CN110591125 B CN 110591125B
Authority
CN
China
Prior art keywords
triazole
terminated
elastomer
dimensional crosslinked
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910700803.0A
Other languages
Chinese (zh)
Other versions
CN110591125A (en
Inventor
翟进贤
郭晓燕
耿泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201910700803.0A priority Critical patent/CN110591125B/en
Publication of CN110591125A publication Critical patent/CN110591125A/en
Application granted granted Critical
Publication of CN110591125B publication Critical patent/CN110591125B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/093Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2347/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters

Abstract

The invention relates to a soluble three-dimensional crosslinked elastomer, a preparation method and a treatment method thereof, belonging to the technical field of composite solid propellants. The invention adopts the reaction of triazole-terminated prepolymer and halide to generate the triazolium radical three-dimensional cross-linked polymer elastic material. The elastomers have a stable chemically crosslinked network. Unlike conventional covalently crosslinked polymeric elastomers, triazolium ion crosslinked polymeric elastomers can undergo ion exchange reactions upon exposure to monohalogenated compounds, resulting in the dissociation of three-dimensional crosslinked networks. The composite solid propellant prepared by the elastomer can realize the dissociation of a polymer cross-linked network, the elastomer is changed from a solid state to a liquid state, and the high-efficiency recovery and utilization of the waste composite solid propellant are realized.

Description

Soluble three-dimensional crosslinked elastomer and preparation and treatment method thereof
Technical Field
The invention relates to a soluble three-dimensional crosslinked elastomer, a preparation method and a treatment method thereof, belonging to the technical field of composite solid propellants.
Background
The composite solid propellant is used as a power source of the solid rocket engine and is required to meet the energy requirement of the solid rocket engine; meanwhile, as an engineering component, the composite solid propellant also needs to have certain mechanical properties in a wider temperature range, and meets the requirements of different working environments. The composite solid propellant is a composite material which takes a polymer cross-linked network elastomer as a continuous phase and takes solid filler as a dispersed phase, wherein the polymer continuous phase is a matrix for bearing the mechanical property of the composite solid propellant; the polymer elastomer with stable and good mechanical properties is a prerequisite guarantee for preparing the high-performance composite solid propellant.
In order to ensure the stability of the mechanical properties of the composite solid propellant, the polymer elastomer with a stable three-dimensional cross-linked network structure is the preferred material for preparing the composite solid propellant. Therefore, since the twentieth and forty years, polysulfide rubber (PSR) composite propellants, polybutadiene acrylic acid (PBAA) composite propellants, polybutadiene acrylonitrile acrylate (PBAN) composite propellants, carboxyl-terminated polybutadiene (CTPB) composite propellants, hydroxyl-terminated polybutadiene (HTPB) composite propellants, nitrate plasticized polyether composite propellants (NEPE), azide polyether composite propellants plasticized by energetic plasticizers, and the like, which have been experienced by composite solid propellants in succession, all adopt polymer networks with covalent bonds three-dimensionally crosslinked as continuous phase matrix materials of the composite solid propellants.
Due to the fact that the covalent bond three-dimensional cross-linked polymer network structure is stable and difficult to dissociate, the waste composite solid propellant is extremely difficult to treat. At present, the problems of serious environmental pollution, potential safety hazard, high cost and the like caused by the waste composite solid propellant are generally treated by adopting a method such as an open-air burning method, a high-pressure water cutting method, a liquid nitrogen cutting method and other extraction methods. The adhesive system in the composite solid propellant component is modified, so that the three-dimensional chemical crosslinked polymer network structure is easy to decompose or dissociate, and the realization of the high-efficiency recycling of the waste composite solid propellant component is an important way for reducing the manufacturing cost of the composite solid propellant and eliminating the problem of post-treatment of the waste composite solid propellant.
Disclosure of Invention
The invention aims to solve the problem that a conventional covalent bond three-dimensional crosslinked polymer elastomer is difficult to dissociate, and provides a solvent-soluble ionic bond crosslinked polymer elastomer, and a preparation method and a treatment method thereof.
The invention takes triazole-terminated prepolymer as adhesive, takes micromolecular polybasic halogenated compound as curing agent, and generates triazolium ion crosslinking points through alkylation reaction between triazole-terminated groups in the prepolymer and the curing agent to form an ionic bond three-dimensional crosslinked polymer network structure. When a monohalogenated compound is encountered, the triazolium ion three-dimensional cross-linked structure is dissociated, and the solid polymer elastomer is changed into sol liquid.
The purpose of the invention is realized by the following technical scheme.
The soluble three-dimensional crosslinked elastomer comprises a triazole-terminated prepolymer adhesive and a curing agent, wherein the ratio of the number of moles of triazole functional groups in the adhesive to the number of moles of halogen in the curing agent is 0.8-1.2: 1;
wherein the curing agent is a multifunctional halogen-terminated compound;
the Triazole-terminated prepolymer adhesive is one of Triazole-terminated polybutadiene (TTPB), Triazole-terminated polyether (TTPE) or a mixture thereof;
the triazole-terminated prepolymer specifically refers to triazole-terminated polybutadiene, triazole-terminated polyethylene glycol, triazole-terminated polyethylene oxide tetrahydrofuran copolyether, triazole-terminated polyazaglycidyl ether and triazole-terminated poly-3, 3-diazacyclomethylbutyltetrahydrofuran copolyether;
the preparation method of the triazole-terminated polybutadiene comprises the following steps:
(1) dissolving alkynyl-terminated polybutadiene in n-heptane solvent, placing in a container with mechanical stirring and nitrogen protection, adding sodium ascorbate and CuSO4Stirring uniformly;
(2) adding azide to the vessel of step (1) to obtain a mixture; the azide is benzyl azide or 2-azido methyl acetate;
(3) reacting the mixture obtained in the step (2) for 3-6 hours at the temperature of 30-80 ℃ under the stirring condition, cooling, and removing the nitrogen protection;
(4) and (4) extracting the reaction mixture obtained in the step (3) with distilled water for three times, and performing rotary evaporation and drying to obtain the triazole-terminated polybutadiene prepolymer.
In the step (1), the alkynyl-terminated polybutadiene, the n-heptane solvent, the sodium ascorbate and the CuSO are used4The mass ratio of (A) to (B) is 100: 180-260: 1-2: 0.4-0.6;
in the step (2), the ratio of the number of moles of azide added to the number of moles of alkynyl-terminated groups of the alkynyl-terminated polybutadiene in the step (1) is 1: 1.
The preparation method of the triazole-terminated polyethylene glycol comprises the following steps:
(1) dissolving azido terminated polyethylene glycol in tetrahydrofuran solvent, and placing the solution with mechanical stirringMixing in a container protected by nitrogen, adding sodium ascorbate and CuSO4Stirring uniformly;
(2) adding propargyl alcohol into the container in the step (1);
(3) reacting the mixed solution obtained in the step (2) for 3-6 hours at the temperature of 30-60 ℃ under the stirring condition, cooling, and removing the nitrogen protection;
(4) and (4) extracting the reaction mixture obtained in the step (3) with distilled water for three times, and performing rotary evaporation and drying to obtain the triazole-terminated polyethylene glycol.
In the step (1), the azido-terminated polyethylene glycol, tetrahydrofuran, sodium ascorbate and CuSO are used4The mass ratio of (A) to (B) is 100: 180-600: 0.5-1.5: 0.3-0.5;
in the step (2), the molar ratio of the added propiolic alcohol to the terminal azido group of the terminal azido polyethylene glycol in the step (1) is 1: 1.
The preparation method of the triazole-terminated polyethylene oxide tetrahydrofuran copolyether comprises the following steps:
(1) dissolving azido-terminated polyethylene oxide tetrahydrofuran copolyether in tetrahydrofuran solvent, placing in a container with mechanical stirring and nitrogen protection, adding sodium ascorbate and CuSO4Stirring uniformly;
(2) adding propargyl alcohol into the container in the step (1);
(3) reacting the mixed solution obtained in the step (2) for 3-6 hours at the temperature of 30-60 ℃ under the stirring condition, cooling, and removing the nitrogen protection;
(4) and (4) extracting the reaction mixture obtained in the step (3) with distilled water for three times, and performing rotary evaporation and drying to obtain the triazole-terminated polyethylene oxide tetrahydrofuran copolyether.
In the step (1), the azido-terminated polyethylene oxide tetrahydrofuran copolyether, tetrahydrofuran, sodium ascorbate and CuSO are used4The mass ratio of (A) to (B) is 100: 180-600: 0.5-1.5: 0.3-0.5;
in the step (2), the molar ratio of the added propiolic alcohol to the terminal azido group of the terminal azido polyethylene oxide tetrahydrofuran copolyether in the step (1) is 1: 1.
The preparation method of the triazole-terminated polyazide glycidyl ether comprises the following steps:
(1) putting hydroxyl-terminated polyazide glycidyl ether and an anhydrous tetrahydrofuran solvent into a container with a mechanical stirring and condensing tube device;
(2) adding excessive Toluene Diisocyanate (TDI) into the container in the step (1) at room temperature, uniformly stirring, heating to 50-65 ℃, reacting for 6-8 hours, and cooling to room temperature;
(3) adding 1-benzyl-4-hydroxymethyl triazole in an equimolar amount with the isocyanate group of TDI used in the step (2) into the container in the step (2), uniformly stirring, heating to 50-65 ℃, and continuing to react for 6-8 hours;
(4) removing the tetrahydrofuran solvent in the step (3) by rotary evaporation to obtain a crude product of the triazole-terminated polyazide glycidyl ether;
(5) and (3) dissolving the crude product of the terminal triazolyl polyazide glycidyl ether obtained in the step (4) in a DMF solvent, adding distilled water, oscillating, standing for layering, and carrying out reduced pressure distillation on an oil phase to obtain the terminal triazolyl polyazide glycidyl ether.
In the step (2), the meaning of the excess TDI is as follows: when the number of moles of hydroxyl groups of the hydroxyl-terminated polyazide glycidyl ether in the step (1) is 1, the number of moles of TDI in the step (2) is not less than 1.5.
The preparation method of the triazole-terminated poly 3, 3-diazacyclomethylbutyltetrahydrofuran copolyether comprises the following steps:
(1) putting hydroxyl-terminated poly (3, 3-di-azidomethyloxetanyl tetrahydrofuran) copolyether and anhydrous tetrahydrofuran solvent into a container with a mechanical stirring and condensing tube device;
(2) adding excessive TDI into the container in the step (1) at room temperature, uniformly stirring, heating to 50-65 ℃, reacting for 6-8 hours, and cooling to room temperature;
(3) adding 1-benzyl-4-hydroxymethyl triazole in an equimolar amount with the isocyanate group of TDI used in the step (2) into the container in the step (2), uniformly stirring, heating to 50-65 ℃, and continuing to react for 6-8 hours;
(4) removing the tetrahydrofuran solvent in the step (3) by rotary evaporation to obtain a crude product of the triazole-terminated poly (3, 3-di-azidomethylbutyltetrahydrofuran copolyether);
(5) and (3) dissolving the crude product of the triazole-terminated poly (3, 3-di-azidomethylbutyltetrahydrofuran) copolyether obtained in the step (4) in a DMF solvent, adding distilled water, oscillating, standing for layering, taking an oil phase, and carrying out reduced pressure distillation to obtain the triazole-terminated poly (3, 3-di-azidomethylbutyltetrahydrofuran) copolyether.
In the step (2), the meaning of the excess TDI is as follows: when the hydroxyl group number of the hydroxyl-terminated poly (3, 3-di-azidomethyloxetanyl tetrahydrofuran copolyether in the step (1) is 1, the number of moles of TDI in the step (2) is not less than 1.5.
The triazole-terminated prepolymer is a high-molecular prepolymer with 2 or more triazole-terminated groups in a high-molecular chain structure, and the molecular weight of the prepolymer is 3000-10000 g/mol;
the polyfunctional terminal halogen compound is a compound containing 2 or more than 2 halogen atoms in one molecular structure, and the halogen atoms are bromine atoms or iodine atoms;
the polyfunctional terminal halogen compound is specifically one or a mixture of two or more of 1, 2-dibromopropane, 1, 3-dibromopropane, 1, 4-dibromobutane, 1, 5-dibromopentane, 1, 5-diiodobutane, 1, 6-diiodohexane, 1, 6-dibromohexane, 1, 7-dibromoheptane, 1, 7-diiodoheptane, 1, 8-diiodooctane, 1, 8-dibromooctane, 1, 6-diiododecadifluorohexane, ethylene glycol dibromoisobutyrate, 1,2, 3-tribromopropane, tribromomethylpropane, triiodomethylpropane, tribromoneopentyl alcohol, 4 '-diiodo-1, 1' -biphenyl, and 1, 4-dibromonaphthalene.
A preparation method of a soluble three-dimensional crosslinked elastomer comprises the following specific implementation steps:
(1) adding a triazole-terminated prepolymer binder to a reactor;
(2) adding a curing agent into the reactor in the step (1), and uniformly stirring;
(3) vacuum casting the mixture obtained in the step (2) into a mould;
(4) and (3) putting the mould into an oven, heating to 80-100 ℃, and reacting triazole groups in the mould mixture with a halogenated compound to generate the triazolium crosslinked polymer elastomer, so as to obtain the three-dimensional crosslinked elastomer.
A method for processing soluble three-dimensional cross-linked elastomer comprises the following steps:
soaking the obtained three-dimensional crosslinked elastomer in a solvent, and gradually dissolving the three-dimensional crosslinked elastomer into a solution for 5-6 days; the solvent is a monohalogenated substance, specifically 1-bromopentane, 1-bromohexane, 1-bromooctane, 1-iodopentane, 1-iodohexane or 1-iodooctane.
Advantageous effects
The invention adopts the reaction of triazole-terminated prepolymer adhesive and halide to generate the triazolium radical three-dimensional cross-linked polymer elastomer material. The elastomers have a stable chemically crosslinked network. Unlike conventional covalently crosslinked polymeric elastomers, triazolium ion crosslinked polymeric elastomers can undergo ion exchange reactions upon exposure to monohalogenated compounds, resulting in the dissociation of three-dimensional crosslinked networks. The composite solid propellant prepared by the elastomer can realize the dissociation of a polymer cross-linked network, the elastomer is changed from a solid state to a liquid state, and the high-efficiency recovery and utilization of the waste composite solid propellant are realized.
Detailed Description
The present invention is further illustrated by the following examples, which are not intended to limit the scope of the invention.
The number average molecular weight of the alkynyl-terminated polybutadiene used in the illustrated embodiment is 3000g mol-1Alkynyl content 0.66mmol g-1
The preparation method of the triazole-terminated polybutadiene comprises the following steps:
1) 100g of alkynyl-terminated polybutadiene is dissolved in 200mL of n-heptane solvent, placed in a 500mL three-neck flask with a stirring device and nitrogen protection, and added with 1.31g of sodium ascorbate and 0.527g of CuSO4Stirring uniformly;
2) 8.788g of benzyl azide in molar equivalent to the terminal alkynyl group in step 1) was added to the vessel in step 1); [ or 2-azidoacetic acid methyl ester 7.597g ]
3) Reacting the mixed solution obtained in the step 2) for 4 hours at 50 ℃ under the condition of stirring, cooling, and removing the nitrogen protection;
4) the reaction mixture obtained in step 3) was extracted three times with 50mL of distilled water, and after rotary evaporation and drying, about 95g of a triazole-terminated polybutadiene prepolymer was obtained.
The infrared analysis of the product showed 3306cm-1The infrared absorption peak of the terminal alkynyl disappears,13absorption peaks corresponding to alkynyl carbons at 74.3 ppm and 79.9ppm in a C NMR spectrum disappear; in that1An H NMR spectrum shows that a characteristic absorption peak of triazole group appears at about 8.2ppm, which indicates that polybutadiene terminal alkynyl has completely reacted with azide group in benzyl azide compound to generate terminal triazole polybutadiene.
There are exemplified the number average molecular weight of 4000g mol of the azido-terminated polyethylene glycol used in the embodiment-1Azido content 0.462mmol g-1
The preparation method of the triazole-terminated polyethylene glycol comprises the following steps:
1) 40g of azido-terminated polyethylene glycol is dissolved in 200mL of tetrahydrofuran solvent, placed in a 500mL three-neck flask with mechanical stirring and nitrogen protection, and added with 0.37g of sodium ascorbate and 0.15g of CuSO4Stirring uniformly;
2) adding 1.04g of propiolic alcohol to the vessel of step 1);
3) reacting the mixed solution obtained in the step 2) for 4 hours at 40 ℃ under the condition of stirring, cooling, and removing the nitrogen protection;
4) extracting the reaction mixture obtained in the step 3) with distilled water for three times, and performing rotary evaporation and drying to obtain 38g of triazole-terminated polyethylene glycol.
The infrared analysis of the product showed 2100cm-1The terminal azido group infrared absorption peak disappears,13the characteristic absorption peaks corresponding to the carbon atoms connected with the azide groups at 50.75 ppm and 50.63ppm in the C NMR spectrum disappear; in that1The H NMR spectrum shows a characteristic absorption peak of the triazole group at about 8.2 ppm. Indicating that the polyether terminal azido group and the alkynyl have completely reacted to generate the terminal triazolyl group.
There are enumerated number average molecular weights of 4000g mol for the azido-terminated polyethylene oxide tetrahydrofuran copolyethers used in the embodiments-1Azido content 0.462mmol g-1
The preparation method of the triazole-terminated polyethylene oxide tetrahydrofuran copolyether comprises the following steps:
1) 100g of azido-terminated polyethylene oxide tetrahydrofuran copolyether is dissolved in 200mL of tetrahydrofuran solvent, the mixture is placed in a 500mL three-neck flask with mechanical stirring and nitrogen protection, and 0.92g of sodium ascorbate and 0.37g of CuSO are added4Stirring uniformly;
2) adding 2.59g of propiolic alcohol to the vessel of step 1);
3) reacting the mixed solution obtained in the step 2) for 4 hours at 40 ℃ under the condition of stirring, cooling, and removing the nitrogen protection;
4) extracting the reaction mixture obtained in the step 3) with distilled water for three times, and performing rotary evaporation and drying to obtain 96g of triazole-terminated polyethylene oxide tetrahydrofuran copolyether.
The infrared analysis of the product showed 2100cm-1The terminal azido group infrared absorption peak disappears,13the characteristic absorption peaks corresponding to the carbon atoms connected with the azide groups at 50.75 ppm and 50.63ppm in the C NMR spectrum disappear; in that1The H NMR spectrum shows a characteristic absorption peak of the triazole group at about 8.2 ppm. Indicating that the polyether terminal azido group and the alkynyl have completely reacted to generate the terminal triazolyl group.
The number average molecular weight of the hydroxy-terminated polyazidyl glycidyl ether used in the embodiment is 4100g mol-1Hydroxyl group content 0.48mmol g-1
The preparation method of the triazole-terminated polyazide glycidyl ether comprises the following steps:
1) 25g of hydroxyl-terminated polyaziridine glycidyl ether subjected to vacuum dehydration and 20mL of anhydrous tetrahydrofuran solvent are placed into a 250mL three-necked bottle with a mechanical stirring and condensing tube device;
2) adding 3.26g of TDI into the container in the step 1) at room temperature, uniformly stirring, heating to 65 ℃ for reacting for 6 hours, and then cooling to room temperature;
3) adding 7.08g of 1-benzyl-4-hydroxymethyl triazole into the container in the step 2), uniformly stirring, and heating to 65 ℃ for reaction for 6 hours;
4) removing the tetrahydrofuran solvent in the step 3) by rotary evaporation to obtain a crude product of the triazole-terminated polyazide glycidyl ether;
5) dissolving the crude product of the terminal triazolyl poly azide glycidyl ether obtained in the step 4) in 20mL of DMF solvent, adding 20mL of distilled water, oscillating, standing for layering, and carrying out reduced pressure distillation on an oil phase to obtain the terminal triazolyl poly azide glycidyl ether.
The infrared analysis of the product shows that the product is triazole-based poly-azide glycidyl ether at 3500cm-1The infrared absorption peaks of the hydroxyl groups at the left and right parts disappear; in that1The H NMR spectrum shows a characteristic absorption peak of the triazole group at about 8.2 ppm. Indicating that the terminal hydroxyl group of the terminal hydroxyl polyazide glycidyl ether is completely modified by the terminal group to obtain the terminal triazolyl polyazide glycidyl ether.
There are enumerated the number-average molecular weights of 3800g mol of the hydroxyl-terminated poly-3, 3-diazacyclomethylbut-tetrahydrofuran copolyethers used in the embodiments-1Hydroxyl group content 0.49mmol g-1
The preparation method of the triazole-terminated poly 3, 3-diazacyclomethylbutyltetrahydrofuran copolyether comprises the following steps:
1) putting 25g of hydroxyl-terminated poly (3, 3-di-azidomethyloxetanyl tetrahydrofuran) copolyether subjected to vacuum dehydration and 20mL of anhydrous tetrahydrofuran solvent into a 250mL three-necked bottle with a mechanical stirring and condensing tube device;
2) adding 3.26g of TDI into the container in the step 1) at room temperature, uniformly stirring, heating to 65 ℃ for reacting for 6 hours, and then cooling to room temperature;
3) adding 7.08g of 1-benzyl-4-hydroxymethyl triazole into the container in the step 2), uniformly stirring, and heating to 65 ℃ for reaction for 6 hours;
4) removing the tetrahydrofuran solvent in the step 3) by rotary evaporation to obtain a crude product of the triazole-terminated poly (3, 3-di-azidomethylbutyltetrahydrofuran copolyether;
5) dissolving the crude product of the triazole-terminated poly (3, 3-di-azidomethylbut-butyltetrahydrofuran) copolyether obtained in the step 4) in 20mL of DMF solvent, adding 20mL of distilled water, oscillating, standing for layering, and carrying out reduced pressure distillation on an oil phase to obtain the triazole-terminated poly (3, 3-di-azidomethylbut-butyltetrahydrofuran) copolyether.
The infrared analysis of the product shows that the product of triazole poly 3, 3-diazacyclomethyloxetanyl tetrahydrofuran copolyether is 3500cm-1The infrared absorption peaks of the hydroxyl groups at the left and right parts disappear; in that1The triazole group appears at about 8.2ppm of H NMR spectrumAnd (5) characterizing an absorption peak. The end hydroxyl of the hydroxyl-terminated poly-3, 3-diazacyclomethyloxetanyl tetrahydrofuran copolyether is shown to be completely modified by end groups to obtain the triazole-terminated poly-3, 3-diazacyclomethyloxetanyl tetrahydrofuran copolyether.
The number average molecular weight of the polymer-Terminated Triazolyl Polybutadiene (TTPB) prepolymer used in the examples is 3000g mol-1The molar content of the triazolyl functional group is 0.67mmol g-1(ii) a Triazole-terminated polyethylene oxide tetrahydrofuran copolyether (TTPET) prepolymer number average molecular weight 3900g mol-1The molar content of the triazolyl functional group is 0.467mmol g-1(ii) a Number average molecular weight of prepolymer of triazole-terminated poly (azido) glycidyl ether is 4200g mol-1The molar content of triazolyl functional groups is 0.460mmol g-1(ii) a Number average molecular weight of triazole-terminated poly (3, 3-bis-azidomethyloxetanyl tetrahydrofuran) copolyether is 3900g mol-1The molar content of the triazolyl functional group is 0.47mmol g-1(ii) a The mechanical property test refers to GJB 770A-97-413.1.
Example 1
20g of triazole-terminated polybutadiene is put into a dry beaker, 1.452g of tribromoneopentanol curing agent is added, and the mixture is stirred uniformly. Then vacuum casting into a tetrafluoroethylene mold, and curing for 6 days at 90 ℃ to obtain the triazolium ion crosslinked polybutadiene elastomer. The elastic body has a mechanical tensile strength of 1.35MPa at 20 ℃ and an elongation of 180%.
1g of the obtained elastomer was immersed in 5g of 1-bromopentane solvent, and after 5 days, the elastomer was completely dissolved and became liquid.
Example 2
20g of triazole-terminated polyethylene oxide tetrahydrofuran copolyether is put into a dry beaker, 1.012g of tribromoneopentanol curing agent is added, and the mixture is stirred uniformly. Then pouring the mixture into a tetrafluoroethylene mold in vacuum, and curing the mixture for 6 days at 90 ℃ to obtain the triazolium ion crosslinked polyethylene oxide tetrahydrofuran copolyether elastomer. The elastic body has a mechanical tensile strength of 1.25MPa at 20 ℃ and an elongation of 130%.
1g of the obtained elastomer was immersed in 5g of 1-bromopentane solvent, and after 5 days, the elastomer was completely dissolved and became liquid.
Example 3
20g of triazole-terminated polyethylene oxide tetrahydrofuran copolyether is put into a dry beaker, and 0.285g of 1, 6-dibromohexane and 0.759g of tribromoneopentyl alcohol mixed curing agent are added and stirred uniformly. Then pouring the mixture into a tetrafluoroethylene mold in vacuum, and curing the mixture for 6 days at 90 ℃ to obtain the triazolium ion crosslinked polyethylene oxide tetrahydrofuran copolyether elastomer. The elastic body has a mechanical tensile strength of 1.05MPa at 20 ℃ and an elongation of 150%.
1g of the obtained elastomer was immersed in 5g of 1-bromopentane solvent, and after 5 days, the elastomer was completely dissolved and became liquid.
Example 4
20g of the triazole-terminated poly (azido) glycidyl ether prepolymer is put into a dry beaker, the equivalent weight of the mole number of triazole groups and the mole number of bromine atoms is ensured, 0.997g of corresponding tribromoneopentanol curing agent is added, and the mixture is stirred uniformly. Then pouring the mixture into a tetrafluoroethylene mold in vacuum, and curing the mixture for 6 days at 90 ℃ to obtain the triazolium ion crosslinked polyazide glycidyl ether elastomer. The elastic body has a mechanical tensile strength of 1.35MPa at 20 ℃ and an elongation of 120%.
1g of the obtained elastomer was immersed in 5g of 1-bromopentane solvent, and after 5 days, the elastomer was completely dissolved and became liquid.
Example 5
20g of triazole-terminated poly (3, 3-dioxazine methyloxetane tetrahydrofuran) copolyether prepolymer is put into a dry beaker, and mixed curing agent of 0.389g of 1, 6-diiodohexane and 0.748g of tribromoneopentyl alcohol is added and stirred uniformly. Then pouring the mixture into a tetrafluoroethylene mold in vacuum, and curing the mixture for 6 days at 90 ℃ to obtain the triazolium ion crosslinked poly 3, 3-diazacyclomethyloxetanyl tetrahydrofuran copolyether elastomer. The elastic body has a mechanical tensile strength of 1.15MPa at 20 ℃ and an elongation of 150%.
1g of this elastomer was immersed in 5g of 1-iodooctane solvent, and after 5 days the elastomer was completely dissolved and became liquid.
In summary, the above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (4)

1. A dissolvable three-dimensional crosslinked elastomer characterized by: the three-dimensional crosslinking elastomer is prepared by the reaction of a triazole-terminated prepolymer adhesive and a curing agent;
the triazole-terminated prepolymer adhesive is a macromolecule prepolymer with 2 or more triazole-terminated groups in a macromolecule chain structure, and is one or a mixture of triazole-terminated polybutadiene, triazole-terminated polyethylene glycol, triazole-terminated polyethylene oxide tetrahydrofuran copolyether, triazole-terminated polyazidine glycidyl ether and triazole-terminated poly 3, 3-diazacyclomethyloxybutylene tetrahydrofuran copolyether;
the curing agent is a compound containing 2 or 2 upper bromine atoms or iodine atoms in the molecular structure, and is selected from 1, 2-dibromopropane, 1, 3-dibromopropane, 1, 4-dibromobutane, 1, 5-dibromopentane, 1, 5-diiodobutane, 1, 6-diiodohexane, 1, 6-dibromohexane, 1, 7-dibromoheptane, 1, 7-diiodoheptane and 1, 8-diiodooctane, 1, 8-dibromooctane, 1, 6-diiododecafluorohexane, ethylene glycol dibromoisobutyrate, 1,2, 3-tribromopropane, tribromomethylpropane, triiodomethylpropane, tribromoneopentanol, 4 '-diiodo-1, 1' -biphenyl and 1, 4-dibromo naphthalene;
the ratio of the number of moles of triazole functional groups in the triazole-terminated prepolymer adhesive to the number of moles of halogen in the curing agent is 0.8-1.2: 1.
2. The dissolvable three-dimensional crosslinked elastomer according to claim 1, wherein: the molecular weight range of the triazole-terminated prepolymer adhesive is 3000-10000 g/mol.
3. A method of preparing the dissolvable three-dimensional crosslinked elastomer according to claim 1, comprising the steps of:
(1) adding a triazole-terminated prepolymer binder to a reactor;
(2) adding a curing agent into the reactor in the step (1), and uniformly stirring;
(3) vacuum casting the mixture obtained in the step (2) into a mould;
(4) and (3) putting the mould into an oven, heating to 80-100 ℃, and reacting triazole groups in the mould mixture with a halogenated compound to generate the triazolium crosslinked polymer elastomer, so as to obtain the three-dimensional crosslinked elastomer.
4. A process for the treatment of a dissolvable three-dimensional crosslinked elastomer according to claim 1, characterized by the steps of:
and soaking the three-dimensional crosslinked elastomer in a solvent, gradually dissolving the three-dimensional crosslinked elastomer into a solution for 5-6 days, wherein the solvent is specifically 1-bromopentane, 1-bromohexane, 1-bromooctane, 1-iodopentane, 1-iodohexane or 1-iodooctane.
CN201910700803.0A 2019-07-31 2019-07-31 Soluble three-dimensional crosslinked elastomer and preparation and treatment method thereof Active CN110591125B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910700803.0A CN110591125B (en) 2019-07-31 2019-07-31 Soluble three-dimensional crosslinked elastomer and preparation and treatment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910700803.0A CN110591125B (en) 2019-07-31 2019-07-31 Soluble three-dimensional crosslinked elastomer and preparation and treatment method thereof

Publications (2)

Publication Number Publication Date
CN110591125A CN110591125A (en) 2019-12-20
CN110591125B true CN110591125B (en) 2021-01-26

Family

ID=68853224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910700803.0A Active CN110591125B (en) 2019-07-31 2019-07-31 Soluble three-dimensional crosslinked elastomer and preparation and treatment method thereof

Country Status (1)

Country Link
CN (1) CN110591125B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521455B (en) * 2021-06-25 2023-06-30 北京理工大学 Preparation method of polytriazole polyether elastomer
CN114163666A (en) * 2021-10-26 2022-03-11 上海交通大学 Preparation method and application of polybutadiene elastomer capable of being recycled in closed loop mode for propellant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046033A (en) * 1996-08-07 1998-02-17 Shin Etsu Chem Co Ltd Fungicidal organopolysiloxane composition
CN1803855A (en) * 2005-12-20 2006-07-19 南开大学 Soluble cross-linked rubber polymer and synthesis method thereof
WO2010031956A1 (en) * 2008-09-18 2010-03-25 Arkema France Novel elastomer material, and method for obtaining same
CN106573015A (en) * 2014-06-11 2017-04-19 麻省理工学院 Enteric elastomers
CN109666130A (en) * 2017-10-17 2019-04-23 翁秋梅 A kind of energy-absorbing method based on dynamic aggregation object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046033A (en) * 1996-08-07 1998-02-17 Shin Etsu Chem Co Ltd Fungicidal organopolysiloxane composition
CN1803855A (en) * 2005-12-20 2006-07-19 南开大学 Soluble cross-linked rubber polymer and synthesis method thereof
WO2010031956A1 (en) * 2008-09-18 2010-03-25 Arkema France Novel elastomer material, and method for obtaining same
CN106573015A (en) * 2014-06-11 2017-04-19 麻省理工学院 Enteric elastomers
CN109666130A (en) * 2017-10-17 2019-04-23 翁秋梅 A kind of energy-absorbing method based on dynamic aggregation object

Also Published As

Publication number Publication date
CN110591125A (en) 2019-12-20

Similar Documents

Publication Publication Date Title
CN110591125B (en) Soluble three-dimensional crosslinked elastomer and preparation and treatment method thereof
Gaur et al. Azido polymers—energetic binders for solid rocket propellants
US2888439A (en) Polyurethane diamines
Ding et al. Structure and mechanical properties of novel composites based on glycidyl azide polymer and propargyl‐terminated polybutadiene as potential binder of solid propellant
CN110452371B (en) Preparation method of triazole-terminated polyether
CN109749049B (en) Reversible chain extender, preparation thereof and method for preparing crosslinked polyurethane by using reversible chain extender
CN109810210B (en) Alkynyl neutral polymer bonding agent, preparation method and propellant
CN110483220B (en) Composite solid propellant and preparation method and treatment method thereof
WO2023030317A1 (en) Low-viscosity reactive flame-retardant polyether polyol, and preparation method therefor and application thereof
CN110590484A (en) Non-isocyanate-cured azido polyether adhesive system and propellant
US9815933B2 (en) Curing method for polyether
US3098058A (en) Process for reacting a diolefinic polymer with hexachlorocyclopentadiene production of new polymeric compositions and products thereof
US3557181A (en) Oily polymer having polyether chain and nitroalkyl groups
Rahm et al. Design of an ammonium dinitramide compatible polymer matrix
Luo et al. Tailoring the properties of Diels-Alder reaction crosslinked high-performance thermosets by different bismaleimides
CN115232465A (en) Preparation method of tough self-repairing material capable of realizing self-repairing in seawater
CN110452358B (en) Preparation method of triazole-terminated azido polyether
CN110483665B (en) Preparation method of triazole-terminated polybutadiene
Zhang et al. Synthesis and Characterization of Novel Azido Polymers: Hyperbranched Poly‐3‐azidomethyl‐3‐hydroxymethyl Oxetane
Zhang et al. The preparation and physical properties of polysulfide-based elastomers through one-pot thiol-ene click reaction.
CN109486470B (en) Epoxy soybean oil adhesive with imidazole-terminated polyurethane function and preparation method thereof
EP0531591A1 (en) Tetrafunctional polyethers
US5614600A (en) Fiber-reinforced resin plate and process for producing the same
US3636132A (en) Block copolymers of tetrahydrofuran and 3 3-bis(chloromethyl) oxetane
CN114276517A (en) Preparation method of epoxy-terminated polybutadiene series liquid rubber

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant