CN110589890B - A method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles - Google Patents
A method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles Download PDFInfo
- Publication number
- CN110589890B CN110589890B CN201910997566.9A CN201910997566A CN110589890B CN 110589890 B CN110589890 B CN 110589890B CN 201910997566 A CN201910997566 A CN 201910997566A CN 110589890 B CN110589890 B CN 110589890B
- Authority
- CN
- China
- Prior art keywords
- type
- mno
- perovskite
- nanoparticles
- nanosheets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 70
- PHGMGTWRSNXLDV-UHFFFAOYSA-N diethyl furan-2,5-dicarboxylate Chemical compound CCOC(=O)C1=CC=C(C(=O)OCC)O1 PHGMGTWRSNXLDV-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000002135 nanosheet Substances 0.000 claims abstract description 65
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 64
- 238000001354 calcination Methods 0.000 claims abstract description 38
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 16
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012300 argon atmosphere Substances 0.000 claims abstract description 7
- 238000003746 solid phase reaction Methods 0.000 claims abstract description 7
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000000725 suspension Substances 0.000 claims description 20
- MECMQNITHCOSAF-UHFFFAOYSA-N manganese titanium Chemical compound [Ti].[Mn] MECMQNITHCOSAF-UHFFFAOYSA-N 0.000 claims description 13
- 239000011029 spinel Substances 0.000 claims description 9
- 229910052596 spinel Inorganic materials 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000012265 solid product Substances 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 12
- 239000003054 catalyst Substances 0.000 abstract description 9
- 239000013078 crystal Substances 0.000 abstract description 7
- 229910052786 argon Inorganic materials 0.000 abstract description 6
- 230000007062 hydrolysis Effects 0.000 abstract description 6
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 6
- 239000010936 titanium Substances 0.000 abstract description 4
- 229910010413 TiO 2 Inorganic materials 0.000 abstract description 3
- 150000002148 esters Chemical class 0.000 abstract description 3
- 239000012697 Mn precursor Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000013067 intermediate product Substances 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 239000011247 coating layer Substances 0.000 abstract 1
- 230000003301 hydrolyzing effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 20
- APQHKWPGGHMYKJ-UHFFFAOYSA-N Tributyltin oxide Chemical compound CCCC[Sn](CCCC)(CCCC)O[Sn](CCCC)(CCCC)CCCC APQHKWPGGHMYKJ-UHFFFAOYSA-N 0.000 description 11
- 238000010531 catalytic reduction reaction Methods 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000003917 TEM image Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 150000002696 manganese Chemical class 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- 150000003608 titanium Chemical class 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003518 caustics Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- UVGFYJGYWRGBJZ-UHFFFAOYSA-H manganese(2+) titanium(4+) hexahydroxide Chemical compound [OH-].[Ti+4].[Mn+2].[OH-].[OH-].[OH-].[OH-].[OH-] UVGFYJGYWRGBJZ-UHFFFAOYSA-H 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- -1 titanic acid Tetrabutyl ester Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/32—Three-dimensional structures spinel-type (AB2O4)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/34—Three-dimensional structures perovskite-type (ABO3)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
技术领域technical field
本发明涉及催化剂合成领域,具体涉及一种同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法及应用。The invention relates to the field of catalyst synthesis, in particular to a method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles.
背景技术Background technique
钙钛矿型和尖晶石型钛酸盐在光催化降解有机污染物、染料敏感太阳能电池、纳米传感器、锂离子电池等领域有着广阔的应用前景。近几年,一系列制备钛酸锰的技术相继被开发出来,例如固相反应法、水热制备法、溶胶-凝胶法、络合剂辅助沉淀以及共沉淀法等等。不过目前公开的钛酸锰制备方法中,尖晶石型和钙钛矿型钛酸锰只能通过不同的途径分别制备,尚没有一种方法能同时制备这两种结构的钛酸锰。Perovskite and spinel titanates have broad application prospects in photocatalytic degradation of organic pollutants, dye-sensitive solar cells, nanosensors, and lithium-ion batteries. In recent years, a series of technologies for preparing manganese titanate have been developed, such as solid-phase reaction method, hydrothermal preparation method, sol-gel method, complexing agent-assisted precipitation and co-precipitation method, etc. However, among the currently disclosed preparation methods of manganese titanate, spinel-type and perovskite-type manganese titanate can only be prepared separately through different ways, and there is no method that can simultaneously prepare manganese titanate with these two structures.
例如专利CN108423713A公开了一种制备纯钙钛矿型的钛酸锰纳米片材料的方法,及该钛酸锰纳米片作为催化剂在非均相类芬顿中降解污染物中的应用,解决现有方法制备的钛酸锰粒径大,表面活性位少的问题,方法包括如下步骤:一、将锰盐和钛盐均溶解于去离子水中,得到锰盐和钛盐溶液;二、将有机碱溶解于锰盐和钛盐溶液中;三、将苛性碱溶解于去离子水中形成苛性碱溶液,再将苛性碱溶液加入锰盐和钛盐溶液中,反应生成氢氧化锰钛前驱体;四、将氢氧化锰钛前驱体转移入水热釜中,加热得到不同形貌的钛酸锰纳米片材料;五、将钛酸锰纳米片材料洗涤、烘干后,即得成品;该方法提高了纯钙钛矿型的钛酸锰纳米片颗粒和粒径的均匀性,比表面积较大,表面活性中心丰富。又如专利CN102989446A公开的采用水热合成的方法,以钛酸盐纳米线为Ti源,MnCl2为Mn源,NaF为F源,在加入NaOH的条件下,制备出了形貌均一,直径均匀的,片状结构MnTiO3和F-MnTiO3的方法,并用这两种材料在可见光照射条件下,催化降解有机染料罗丹明B的应用。For example, patent CN108423713A discloses a method for preparing pure perovskite-type manganese titanate nanosheet materials, and the application of the manganese titanate nanosheets as catalysts in the degradation of pollutants in heterogeneous Fenton-like materials, which solves the problem of existing The manganese titanate prepared by the method has the problem of large particle size and few surface active sites. The method includes the following steps: first, dissolving both manganese salt and titanium salt in deionized water to obtain manganese salt and titanium salt solution; second, dissolving the organic base Dissolve in manganese salt and titanium salt solution; 3. Dissolve caustic alkali in deionized water to form caustic alkali solution, and then add caustic alkali solution into manganese salt and titanium salt solution to react to generate manganese and titanium hydroxide precursor; 4. The manganese hydroxide titanium precursor is transferred into a hydrothermal kettle, and heated to obtain manganese titanate nanosheet materials with different shapes; 5. After washing and drying the manganese titanate nanosheet materials, the finished product is obtained; the method improves the The pure perovskite-type manganese titanate nanosheets have uniform particle size and particle size, large specific surface area, and abundant surface active centers. Another example is the method of hydrothermal synthesis disclosed in patent CN102989446A, using titanate nanowires as Ti source, MnCl 2 as Mn source, and NaF as F source, under the condition of adding NaOH, prepared uniform morphology and diameter. The method of sheet-like structure MnTiO3 and F- MnTiO3 , and the application of these two materials for catalytic degradation of organic dye Rhodamine B under visible light irradiation conditions.
上述两篇专利公开的制备方法均是采用水热法直接制备出单一晶型的钙钛矿型钛酸锰,两种方法都无法应用于制备尖晶石型的钛酸锰,制备尖晶石型的钛酸锰还需要采用其他的方法,例如固相反应法、溶胶-凝胶法等,当需要两种晶型的钛酸锰进行对比试验时,需要采用不同的方法制备两种晶型的钛酸锰,过程步骤复杂。The preparation methods disclosed in the above two patents are to directly prepare a single crystal form of perovskite-type manganese titanate by hydrothermal method, and both methods cannot be applied to the preparation of spinel-type manganese titanate. Manganese titanate requires other methods, such as solid-phase reaction method, sol-gel method, etc. When two crystalline forms of manganese titanate are required for comparative tests, different methods need to be used to prepare the two crystalline forms. manganese titanate, the process steps are complicated.
发明内容SUMMARY OF THE INVENTION
本发明目的在于提供一种同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法及应用,利用钛酸四丁酯在纯乙醇的溶胶-凝胶体系中在MnO2纳米片表面选择性水解生成无定型氧化钛,然后通过在氩气气氛中加热促使氧化钛和二氧化锰发生固相反应来获取尖晶石型钛酸锰和钙钛矿型钛酸锰,无需采用两种方法分别制取不同晶型的钛酸锰纳米颗粒。The purpose of the present invention is to provide a method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles, using tetrabutyl titanate in the sol-gel system of pure ethanol on the surface of MnO 2 nanosheets Selectively hydrolyzed to generate amorphous titanium oxide, and then heated in an argon atmosphere to promote solid-phase reaction of titanium oxide and manganese dioxide to obtain spinel-type manganese titanate and perovskite-type manganese titanate, without using two Methods Manganese titanate nanoparticles with different crystal forms were prepared respectively.
为达成上述目的,本发明提出如下技术方案:一种同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法,包括如下步骤:In order to achieve the above purpose, the present invention proposes the following technical scheme: a method for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles, comprising the following steps:
S1、将MnO2纳米片分散在乙醇中,获得MnO2纳米片悬浮液;S1. Disperse the MnO 2 nanosheets in ethanol to obtain a MnO 2 nanosheet suspension;
S2、在搅拌条件下,调节S1的MnO2纳米片悬浮液的pH为碱性;S2, under stirring conditions, adjust the pH of the MnO nanosheet suspension of S1 to be alkaline;
S3、将钛酸四丁酯的乙醇溶液滴加到S2的碱性MnO2纳米片悬浮液中,持续搅拌至钛酸四丁酯在MnO2纳米片表面充分反应;S3, adding the ethanol solution of tetrabutyl titanate dropwise to the alkaline MnO nanosheet suspension of S2, and stirring continuously until tetrabutyl titanate fully reacts on the surface of the MnO nanosheet;
S4、将S3的反应液过滤后取固体产物,并分别采用乙醇、去离子水交替离心洗涤后干燥,得到钛锰复合物纳米片;S4, take the solid product after filtering the reaction solution of S3, and use ethanol and deionized water alternately to centrifugally wash and then dry to obtain titanium-manganese composite nanosheets;
S5、将S4得到钛锰复合物纳米片在氩气环境中于不同温度煅烧,分别获得尖晶石型钛酸锰纳米颗粒、钙钛矿型钛酸锰纳米颗粒。S5, calcining the titanium-manganese composite nanosheets obtained from S4 at different temperatures in an argon atmosphere to obtain spinel-type manganese titanate nanoparticles and perovskite-type manganese titanate nanoparticles, respectively.
进一步的,所述S2中向MnO2纳米片悬浮液中加入氨水调节MnO2纳米片悬浮液呈碱性;采用氨水调节MnO2纳米片悬浮液呈碱性的目的在于为S3的钛酸四丁酯的乙醇溶液预设碱性环境,减缓钛酸四丁酯在MnO2纳米片悬浮液中的水解。Further, in the S2, ammonia water is added to the MnO 2 nanosheet suspension to adjust the MnO 2 nanosheet suspension to be alkaline; the purpose of using ammonia water to adjust the MnO 2 nanosheet suspension to be alkaline is to be the tetrabutyl titanate of S3. The ethanolic solution of the ester presets an alkaline environment to slow down the hydrolysis of tetrabutyl titanate in the MnO nanosheet suspension.
进一步的,所述S5中制备得到尖晶石型钛酸锰纳米颗粒的煅烧温度为450℃,制备得到钙钛矿型钛酸锰纳米颗粒的煅烧温度为650℃。Further, the calcination temperature of the spinel-type manganese titanate nanoparticles prepared in the S5 is 450°C, and the calcination temperature of the perovskite-type manganese titanate nanoparticles is 650°C.
进一步的,所述制备得到钛酸锰纳米颗粒的煅烧工艺为:设定煅烧温度、升温速率为10℃/min、在设定煅烧温度下恒温煅烧2h。Further, the calcination process for preparing the manganese titanate nanoparticles is as follows: setting the calcination temperature, the heating rate of 10°C/min, and constant temperature calcination for 2 hours at the set calcination temperature.
进一步的,所述S1中采用超声粉碎法将MnO2纳米片均匀分散在乙醇中,确保钛酸四丁酯的乙醇溶液均匀吸附并水解在MnO2纳米片表面。Further, the ultrasonic pulverization method is used in the S1 to uniformly disperse the MnO 2 nanosheets in ethanol, to ensure that the ethanol solution of tetrabutyl titanate is uniformly adsorbed and hydrolyzed on the surface of the MnO 2 nanosheets.
进一步的,所述乙醇为纯乙醇溶剂。Further, the ethanol is pure ethanol solvent.
进一步的,所述S3中,钛酸四丁酯的乙醇溶液的浓度为10mL/L~100mL/L,钛酸四丁酯的乙醇溶液是为了避免钛酸四丁酯直接取用水解,溶液的溶度过大接触空气容易直接水解,溶度过小反应效率低。Further, in the S3, the concentration of the ethanolic solution of tetrabutyl titanate is 10mL/L~100mL/L, and the ethanolic solution of tetrabutyl titanate is to avoid hydrolysis of tetrabutyl titanate directly. If the solubility is too large, it is easy to directly hydrolyze in contact with air, and if the solubility is too small, the reaction efficiency is low.
本发明还公开了一种采用上述同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法制得的钛酸锰纳米颗粒作为催化剂在选择性催化还原NH3方向的应用。The invention also discloses the application of manganese titanate nanoparticles prepared by the above-mentioned method for simultaneously preparing spinel type and perovskite type manganese titanate nanoparticles as catalysts in the direction of selective catalytic reduction of NH 3 .
由以上技术方案可知,本发明的技术方案提供的同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法及应用,获得了如下有益效果:As can be seen from the above technical solutions, the method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles provided by the technical solution of the present invention have obtained the following beneficial effects:
本发明公开的同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法及应用,在纯乙醇的溶胶-凝胶体系中,使用MnO2超薄纳米片作为Mn前体,钛酸四丁酯(TBOT)作为Ti源选择性地水解在MnO2纳米片表面形成连续涂层,从而生成MnO2/TiO2复合纳米片,将得到的复合纳米片在流动的氩气中进行煅烧获得钛酸锰纳米颗粒。通过改变煅烧温度,依次制备尖晶石型的MnTi2O4纳米颗粒和钙钛矿型的MnTiO3纳米颗粒。本发明利用钛酸四丁酯在纯乙醇的溶胶-凝胶体系中在MnO2纳米片表面选择性水解生成无定型氧化钛,然后通过在氩气气氛中加热促使氧化钛和MnO2发生固相反应来获取MnTi2O4和MnTiO3纳米颗粒,无需采用两种不同的方法分别制取不同晶型的钛酸锰纳米颗粒,并且方法步骤少,溶剂选用乙醇,不产生对环境有害的中间产物。The method and application of preparing spinel type and perovskite type manganese titanate nanoparticles at the same time disclosed by the invention, in the sol-gel system of pure ethanol, use MnO2 ultra-thin nanosheets as Mn precursor, titanic acid Tetrabutyl ester (TBOT) was selectively hydrolyzed as a Ti source to form a continuous coating on the surface of MnO 2 nanosheets, thereby generating MnO 2 /TiO 2 composite nanosheets, which were obtained by calcining the obtained composite nanosheets in flowing argon gas. Manganese titanate nanoparticles. By changing the calcination temperature, spinel-type MnTi2O4 nanoparticles and perovskite -type MnTiO3 nanoparticles were sequentially prepared. The invention utilizes tetrabutyl titanate in the sol-gel system of pure ethanol to selectively hydrolyze the surface of MnO2 nanosheets to generate amorphous titanium oxide, and then promotes the solid phase of titanium oxide and MnO2 by heating in an argon atmosphere Reaction to obtain MnTi 2 O 4 and MnTiO 3 nanoparticles, there is no need to use two different methods to prepare manganese titanate nanoparticles of different crystal forms, and the method has few steps, the solvent is ethanol, and no intermediate products harmful to the environment are produced. .
本发明采用上述方法制备的MnTi2O4和MnTiO3纳米颗粒进行选择性催化还原NH3应用实验,结果表明具有低结晶度的尖晶石型MnTi2O4纳米颗粒在低于240℃的条件下对NH3的选择性催化还原有优异的性能,NO转化效率达到96%;钙钛矿型的MnTiO3纳米颗粒相较于尖晶石型MnTi2O4纳米颗粒,在低于160℃条件下,对NO转化效率相对较低。The present invention adopts the MnTi 2 O 4 and MnTiO 3 nanoparticles prepared by the above method to carry out the application experiment of selective catalytic reduction of NH 3 . It has excellent performance for the selective catalytic reduction of NH3 , and the NO conversion efficiency reaches 96%; compared with the spinel - type MnTi2O4 nanoparticles, the perovskite-type MnTiO3 nanoparticles have a lower temperature than 160 °C. The conversion efficiency to NO is relatively low.
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。It is to be understood that all combinations of the foregoing concepts, as well as additional concepts described in greater detail below, are considered to be part of the inventive subject matter of the present disclosure to the extent that such concepts are not contradictory.
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。The foregoing and other aspects, embodiments and features of the present teachings can be more fully understood from the following description when taken in conjunction with the accompanying drawings. Other additional aspects of the invention, such as the features and/or benefits of the exemplary embodiments, will be apparent from the description below, or learned by practice of specific embodiments in accordance with the teachings of this invention.
附图说明Description of drawings
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:The drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures may be represented by the same reference numeral. For clarity, not every component is labeled in every figure. Embodiments of various aspects of the present invention will now be described by way of example and with reference to the accompanying drawings, wherein:
图1为本发明在煅烧温度450℃下制备的尖晶石型钛酸锰纳米颗粒TEM图;1 is a TEM image of spinel-type manganese titanate nanoparticles prepared at a calcination temperature of 450° C. in accordance with the present invention;
图2为本发明在煅烧温度650℃下制备的钙钛矿型钛酸锰纳米颗粒TEM图;Figure 2 is a TEM image of perovskite-type manganese titanate nanoparticles prepared at a calcination temperature of 650°C in the present invention;
图3为本发明在煅烧温度350℃下制备的钛酸锰纳米颗粒TEM图;Figure 3 is a TEM image of the manganese titanate nanoparticles prepared at a calcination temperature of 350°C in the present invention;
图4为本发明在煅烧温度550℃下制备的钛酸锰纳米颗粒TEM图;Figure 4 is a TEM image of the manganese titanate nanoparticles prepared at a calcination temperature of 550°C in the present invention;
图5为本发明各煅烧温度下制备的钛酸锰纳米颗粒的XRD谱图;Fig. 5 is the XRD spectrum of the manganese titanate nanoparticles prepared under each calcination temperature of the present invention;
图6为本发明各煅烧温度下制备的钛酸锰纳米颗粒选择性催化NH3效率图。Fig. 6 is a graph showing the selective catalytic NH 3 efficiency of the manganese titanate nanoparticles prepared at each calcination temperature of the present invention.
具体实施方式Detailed ways
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。In order to better understand the technical content of the present invention, specific embodiments are given and described below in conjunction with the accompanying drawings.
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不定义包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。Aspects of the invention are described in this disclosure with reference to the accompanying drawings, in which a number of illustrative embodiments are shown. The embodiments of the present disclosure are not defined to include all aspects of the present invention. It should be understood that the various concepts and embodiments described above, as well as those described in greater detail below, can be implemented in any of a variety of ways, as the concepts and embodiments disclosed herein do not limited to any implementation. Additionally, some aspects of the present disclosure may be used alone or in any suitable combination with other aspects of the present disclosure.
基于现有技术中在制备不同晶型的钛酸锰纳米颗粒时需要采用不同的方法分别制备,反应步骤繁多,无法采用单一的方法同时获得尖晶石型的MnTi2O4纳米颗粒和钙钛矿型的MnTiO3纳米颗粒;本发明旨在提出一种同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法及应用,反应步骤少,对环境友好。Based on the prior art, when preparing manganese titanate nanoparticles of different crystal forms, different methods need to be used to prepare them respectively, and there are many reaction steps, and it is impossible to obtain spinel-type MnTi 2 O 4 nanoparticles and perovskite simultaneously by a single method. Ore-type MnTiO3 nanoparticles; the invention aims to provide a method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles, with few reaction steps and being environmentally friendly.
本发明公开的同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法包括如下步骤:S1、将MnO2纳米片分散在乙醇中,获得MnO2纳米片悬浮液;S2、在搅拌条件下,调节S1的MnO2纳米片悬浮液的pH为碱性;S3、将钛酸四丁酯的乙醇溶液滴加到S2的碱性MnO2纳米片悬浮液中,持续搅拌至钛酸四丁酯在MnO2纳米片表面充分反应;S4、将S3的反应液过滤后取固体产物,并分别采用乙醇、去离子水交替离心洗涤后干燥,得到钛锰复合物纳米片;S5、将S4得到钛锰复合物纳米片在氩气环境中于不同温度煅烧,分别获得尖晶石型钛酸锰纳米颗粒、钙钛矿型钛酸锰纳米颗粒。The method for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles disclosed in the present invention includes the following steps: S1, dispersing MnO2 nanosheets in ethanol to obtain a MnO2 nanosheet suspension; S2, stirring Under the conditions, adjust the pH of the MnO 2 nanosheet suspension of S1 to be alkaline; S3, add the ethanol solution of tetrabutyl titanate dropwise to the alkaline MnO 2 nanosheet suspension of S2, and continue to stir until the tetrabutyl titanate The butyl ester is fully reacted on the surface of the MnO 2 nanosheets; S4, filter the reaction solution of S3 to take the solid product, and use ethanol and deionized water to alternately centrifuge and wash, respectively, and then dry to obtain the titanium-manganese composite nanosheets; S5, the S4 The obtained titanium-manganese composite nanosheets are calcined at different temperatures in an argon atmosphere to obtain spinel-type manganese titanate nanoparticles and perovskite-type manganese titanate nanoparticles, respectively.
上述反应步骤的设计原理在于利用钛酸四丁酯在纯乙醇的溶胶-凝胶体系中在MnO2纳米片表面选择性水解生成无定型氧化钛,然后通过调节煅烧温度,在氩气气氛中加热促使氧化钛和二氧化锰发生固相反应来获取尖晶石型钛酸锰和钙钛矿型钛酸锰,即通过溶胶-凝胶法和固相反应法结合直接获得不同晶型的钛酸锰纳米颗粒。The design principle of the above reaction steps is to use tetrabutyl titanate in the sol-gel system of pure ethanol to selectively hydrolyze the surface of MnO nanosheets to generate amorphous titanium oxide, and then adjust the calcination temperature and heat it in an argon atmosphere. Promote the solid-phase reaction of titanium oxide and manganese dioxide to obtain spinel-type manganese titanate and perovskite-type manganese titanate, that is, directly obtain titanic acid of different crystal forms through the combination of sol-gel method and solid-phase reaction method Manganese nanoparticles.
下面结合附图所示的实施例,对本发明的同时制备尖晶石型和钙钛矿型钛酸锰纳米颗粒的方法及应用作进一步具体介绍。The method and application of the present invention for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles will be further described in detail below with reference to the embodiments shown in the accompanying drawings.
实施例1Example 1
制备尖晶石型的MnTi2O4纳米颗粒Preparation of spinel - type MnTi2O4 nanoparticles
采用超声粉碎法将MnO2纳米片均匀分散在纯乙醇溶剂中以形成稳定的MnO2纳米片悬浮液,浓度2mg/mL,超声功率为700w,超声30min;取MnO2纳米片悬浮液40mL,在磁力搅拌器搅拌条件下,向MnO2纳米片悬浮液中加入0.1mL氨水调节MnO2纳米片悬浮液pH显碱性;另取一干燥烧杯加入10mL乙醇,在搅拌条件下向其中加入0.5mL钛酸四丁酯(TBOT),制成浓度为50mL/L的钛酸四丁酯的乙醇溶液,将浓度为50mL/L的TBOT乙醇溶液滴加到碱性MnO2纳米片悬浮液中,过夜搅拌至TBOT在MnO2纳米片表面充分反应;将反应后的反应液过滤后取固体产物,再分别用去乙醇和离子水离心洗涤三次后干燥,干燥条件为在80℃下干燥12小时,得到钛锰复合物纳米片;将前述干燥后的钛锰复合物纳米片放在流动氩气管式炉中,设定煅烧温度450℃,程序升温速率10℃/min,煅烧2h,得到具有低结晶度的尖晶石型的MnTi2O4纳米颗粒,产物的透射电镜图如图1所示,产物晶型图如图5所示。The MnO2 nanosheets were uniformly dispersed in pure ethanol solvent by ultrasonic pulverization method to form a stable MnO2 nanosheet suspension, the concentration was 2 mg/mL, the ultrasonic power was 700w, and the ultrasonic wave was 30min; Under the stirring condition of the magnetic stirrer, add 0.1 mL of ammonia water to the MnO 2 nanosheet suspension to adjust the pH of the MnO 2 nanosheet suspension to be alkaline; take another dry beaker and add 10 mL of ethanol, and add 0.5 mL of titanium to it under stirring conditions. Tetrabutyl titanate (TBOT) was made into an ethanol solution of tetrabutyl titanate with a concentration of 50mL/L, and the TBOT ethanol solution with a concentration of 50mL/L was added dropwise to the alkaline MnO nanosheet suspension, and stirred overnight Until TBOT fully reacted on the surface of MnO 2 nanosheets; filter the reacted reaction solution and take the solid product, and then centrifuge and wash three times with deethanol and ionized water, respectively, and then dry. The drying conditions are drying at 80 °C for 12 hours to obtain titanium Manganese composite nanosheets; put the aforementioned dried titanium-manganese composite nanosheets in a flowing argon tube furnace, set a calcination temperature of 450°C, a programmed heating rate of 10°C/min, and calcined for 2 hours to obtain a calcination with low crystallinity. Spinel-type MnTi 2 O 4 nanoparticles, the transmission electron microscope image of the product is shown in Figure 1, and the crystal structure of the product is shown in Figure 5.
本发明中,选用氨水调节MnO2纳米片悬浮液的pH使得其呈碱性,目的在于碱性环境有利于减缓后续加入的钛酸四丁酯在MnO2纳米片表面的水解速度,当钛酸四丁酯水解过快,生成的无定型氧化钛无法均匀的附着在MnO2纳米片,氧化钛之间相互堆积,影响终产物中钛酸锰纳米颗粒的纯度。同理,将钛酸四丁酯先溶解在乙醇中,也是为了防止钛酸四丁酯水解直接在取用时在空气中水解。In the present invention, ammonia water is used to adjust the pH of the MnO nanosheet suspension to make it alkaline, and the purpose is that the alkaline environment is conducive to slowing down the hydrolysis rate of the subsequently added tetrabutyl titanate on the surface of the MnO nanosheets. The hydrolysis of tetrabutyl ester is too fast, and the formed amorphous titanium oxide cannot be uniformly attached to the MnO2 nanosheets, and the titanium oxides are stacked with each other, which affects the purity of the manganese titanate nanoparticles in the final product. In the same way, dissolving tetrabutyl titanate in ethanol first is also to prevent hydrolysis of tetrabutyl titanate from being directly hydrolyzed in the air when taking it.
实施例2Example 2
制备钙钛矿型的MnTiO3纳米颗粒Preparation of perovskite-type MnTiO3 nanoparticles
实施例2与实施例1的区别在于,干燥后的钛锰复合物纳米片放在流动氩气管式炉中,设定煅烧温度650℃,程序升温速率10℃/min,煅烧2h,得到具有高结晶度的钙钛矿型的MnTiO3纳米颗粒,产物的透射电镜图如图2所示。The difference between Example 2 and Example 1 is that the dried titanium-manganese composite nanosheets were placed in a flowing argon tube furnace, the calcination temperature was set to 650 °C, the temperature programmed rate was 10 °C/min, and the calcination was performed for 2 h. The crystallinity of the perovskite-type MnTiO3 nanoparticles, the TEM image of the product is shown in Figure 2.
实施例3Example 3
实施例3与实施例1的区别在于,干燥后的钛锰复合物纳米片放在流动氩气管式炉中,设定煅烧温度350℃,程序升温速率10℃/min,煅烧2h,得到的结晶度较差的尖晶石型钛酸锰纳米颗粒,产物的透射电镜图如图3所示。The difference between Example 3 and Example 1 is that the dried titanium-manganese composite nanosheets were placed in a flowing argon tube furnace, the calcination temperature was set to 350°C, the temperature-programmed rate was 10°C/min, and the calcination was performed for 2 hours. The spinel-type manganese titanate nanoparticles with poor degree of degree, the transmission electron microscope image of the product is shown in Figure 3.
实施例4Example 4
实施例4与实施例1的区别在于,干燥后的钛锰复合物纳米片放在流动氩气管式炉中,设定煅烧温度350℃,程序升温速率10℃/min,煅烧2h,得到的尖晶石型和钙钛矿型混合的钛酸锰纳米颗粒,产物的透射电镜图如图4所示。The difference between Example 4 and Example 1 is that the dried titanium-manganese composite nanosheets were placed in a flowing argon tube furnace, the calcination temperature was set to 350°C, the temperature-programmed heating rate was 10°C/min, and the calcination was performed for 2 hours. The spar-type and perovskite-type manganese titanate nanoparticles are mixed, and the transmission electron microscope image of the product is shown in Figure 4.
结合图5所示,在350℃的煅烧温度下,钛锰复合物纳米片开始产生具有非常差的结晶度的尖晶石型的MnTi2O4;在450℃煅烧温度下获得具有低结晶度的尖晶石型的MnTi2O4纳米颗粒;随着煅烧温度升高至550℃,终产物中小部分产品开始转变为结晶度较高的钙钛矿结构的MnTiO3;当煅烧温度升高至650℃时,终产物为高结晶度的钙钛矿型的MnTiO3纳米颗粒。As shown in Figure 5, at a calcination temperature of 350 °C, the titanium-manganese composite nanosheets start to produce spinel-type MnTi 2 O 4 with very poor crystallinity; at a calcination temperature of 450 °C, a spinel-type MnTi 2 O 4 nanoparticles; as the calcination temperature increased to 550 °C, a small part of the final product began to transform into perovskite-structured MnTiO 3 with higher crystallinity; when the calcination temperature increased to At 650 °C, the final product is highly crystalline perovskite-type MnTiO3 nanoparticles.
本发明还公开了采用上述制备方法制备的钛酸锰纳米颗粒在选择性催化(SCR)还原NH3的方向应用,以终产物钛酸锰纳米颗粒作为催化剂选择性催化还原NH3,具体过程如下实施例所示。实施例5中关于各反应温度下NO的数据均是在当前温度下取样测得的NO的浓度数据,单位均为ppm。The invention also discloses the application of the manganese titanate nanoparticles prepared by the above preparation method in the direction of selective catalytic (SCR) reduction of NH 3 , and the final product manganese titanate nanoparticles is used as a catalyst for selective catalytic reduction of NH 3 , and the specific process is as follows Examples are shown. The data about NO at each reaction temperature in Example 5 are the NO concentration data measured by sampling at the current temperature, and the unit is ppm.
实施例5Example 5
分别取实施例1至实施例4获得的钛酸锰纳米颗粒各50mg作为催化剂,对任一份催化剂分别经压片机在20MPa压片后过50~60目筛碾磨,得到固体小颗粒,将得到的颗粒装入固定床石英反应器中准备进行的SCR测试;测试前先进行40min的吹扫使固定床石英反应器达到稳定状态后再开始升温,当反应器温度达到80℃、120℃、160℃、200℃、240℃并稳定10min时分别取样,对样品进行分析检测。本实施例中以检测模拟烟气中催化后的NO浓度变化表征催化剂催化还原NH3的效率,即通过烟气分析仪在线测量样品中NO的气体浓度,具体结果如表1和图6所示。Take 50 mg of each of the manganese titanate nanoparticles obtained in Example 1 to Example 4 as a catalyst, respectively pass through a 50-60 mesh sieve and grind any part of the catalyst through a tablet press at 20 MPa to obtain solid small particles, Load the obtained particles into the fixed-bed quartz reactor for the SCR test; before the test, purging for 40 minutes is performed to make the fixed-bed quartz reactor reach a stable state, and then the temperature rises. When the temperature of the reactor reaches 80°C, 120°C , 160 ℃, 200 ℃, 240 ℃ and stable for 10min, take samples respectively, and analyze and detect the samples. In this example, the efficiency of catalytic reduction of NH 3 by the catalyst is characterized by the change of NO concentration after catalysis in the simulated flue gas, that is, the gas concentration of NO in the sample is measured online by a flue gas analyzer. The specific results are shown in Table 1 and Figure 6. .
不同温度下所获得的钛酸锰纳米颗粒作为催化剂进行选择性催化还原NH3,结果表明,具有低结晶度的尖晶石型MnTi2O4纳米颗粒在低温,即反应温度低于240℃的条件下对NH3的SCR有优异的性能,而在反应温度升至240℃时,NO转化效率达到96%。相较于尖晶石型MnTi2O4纳米颗粒,钙钛矿型的MnTiO3纳米颗粒对NO转化速率在反应温度低于160℃时相对较低,反应温度超过160℃时NO转化速率逐渐上升。The manganese titanate nanoparticles obtained at different temperatures were used as catalysts for selective catalytic reduction of NH3. The results showed that the spinel - type MnTi2O4 nanoparticles with low crystallinity were at low temperature, that is, the reaction temperature was lower than 240℃. The SCR of NH3 has excellent performance under low temperature, while the NO conversion efficiency reaches 96% when the reaction temperature rises to 240 °C. Compared with spinel-type MnTi2O4 nanoparticles, the NO conversion rate of perovskite -type MnTiO3 nanoparticles is relatively low when the reaction temperature is lower than 160 °C, and the NO conversion rate gradually increases when the reaction temperature exceeds 160 °C. .
表1不同煅烧温度制备的钛酸锰纳米颗粒选择性催化还原NH3效率表Table 1 Efficiency of selective catalytic reduction of NH3 by manganese titanate nanoparticles prepared at different calcination temperatures
在本发明的申请文件中还进一步研究了不同浓度的TBOT乙醇溶液制备得到的尖晶石型MnTi2O4纳米颗粒选择性催化(SCR)还原NH3的效果,具体结果如表2所示。In the application documents of the present invention, the effect of selective catalytic (SCR) reduction of NH 3 by spinel-type MnTi 2 O 4 nanoparticles prepared from TBOT ethanol solutions with different concentrations was further studied. The specific results are shown in Table 2.
表2不同反应物浓度制备的钛酸锰纳米颗粒选择性催化还原NH3效率表Table 2 Efficiency of selective catalytic reduction of NH with manganese titanate nanoparticles prepared with different reactant concentrations
结合表2,不同浓度的TBOT乙醇溶液对尖晶石型的MnTi2O4纳米颗粒催化还原NH3的影响较小,其中,当TBOT乙醇溶液浓度为50mL/L时,NO转化效率最高。当TBOT乙醇溶液浓度低于50mL/L时,TBOT的物质的量较小,未能将MnO2纳米片表面完全覆盖。TBOT乙醇溶液浓度高于50mL/L时,由于TBOT的物质的量过多,影响物相的纯度,存在多余的TiO2未能与MnO2纳米片反应,从而影响了钛酸锰纳米颗粒的催化效果。Combined with Table 2, different concentrations of TBOT ethanol solution have little effect on the catalytic reduction of NH 3 by spinel-type MnTi 2 O 4 nanoparticles, among which, when the concentration of TBOT ethanol solution is 50 mL/L, the NO conversion efficiency is the highest. When the concentration of TBOT ethanol solution was lower than 50 mL/L, the amount of TBOT substance was small, and the surface of MnO 2 nanosheets could not be completely covered. When the concentration of TBOT ethanol solution is higher than 50mL/L, due to the excessive amount of TBOT substances, which affects the purity of the phase, there is excess TiO 2 that fails to react with MnO 2 nanosheets, thus affecting the catalysis of manganese titanate nanoparticles. Effect.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined according to the claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910997566.9A CN110589890B (en) | 2019-10-17 | 2019-10-17 | A method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910997566.9A CN110589890B (en) | 2019-10-17 | 2019-10-17 | A method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110589890A CN110589890A (en) | 2019-12-20 |
CN110589890B true CN110589890B (en) | 2022-09-16 |
Family
ID=68851399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910997566.9A Active CN110589890B (en) | 2019-10-17 | 2019-10-17 | A method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110589890B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114452983B (en) * | 2021-11-18 | 2024-06-21 | 杭州同晨环保科技有限公司 | Perovskite and spinel composite type ozone decomposition catalyst |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104064377B (en) * | 2014-07-11 | 2017-02-15 | 武汉工程大学 | Method for preparing manganese titanate/graphene composite material used for capacitors |
JP5943041B2 (en) * | 2014-07-22 | 2016-06-29 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
-
2019
- 2019-10-17 CN CN201910997566.9A patent/CN110589890B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110589890A (en) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108927188B (en) | A kind of bismuth oxycarbonate photocatalyst and preparation method thereof | |
CN101811733A (en) | Visible light-responded basic bismuth bromide nanostructured microsphere material and preparation method thereof | |
CN103977829B (en) | Composite and preparation and the application of carbon-nitrogen coated magnetic oxide nano-particles | |
CN107983387A (en) | A kind of preparation method of carbonitride/selenic acid bismuth composite material and application | |
WO2021104087A1 (en) | Metal oxide nanoparticles, and preparation method therefor and application thereof | |
CN116832837B (en) | A flower ball-shaped TiO2/BiOBr core-shell structure heterojunction material and its preparation method and application | |
CN104310466B (en) | A kind of hollow titanium dioxide microballoon based on gel ball presoma and preparation method thereof | |
CN111604053A (en) | Ternary hydrotalcite photocatalyst and preparation method and application thereof | |
EP3617148B1 (en) | Preparation method of a hierarchically structured lithium titanate nanotube | |
CN109326790B (en) | One-dimensional nano linear sodium titanate and preparation method and application thereof | |
CN103663548B (en) | Preparation method for anatase titanium dioxide nanocrystalline mesoporous microsphere | |
CN115814782A (en) | BiVO 4 Preparation method of base-pressure electro-optic catalytic composite nano material | |
CN103387268A (en) | Preparation method of nano-nickel oxide for electrode material of supercapacitor, and nano-nickel oxide prepared by method | |
CN107803170B (en) | A kind of preparation method of titanium dioxide/nickel oxide double shell hollow sphere | |
CN116639729A (en) | Symbiotic bismuth layered ferroelectric Bi 7 Ti 4 NbO 21 Preparation method and application of semiconductor material | |
CN110589890B (en) | A method and application for simultaneously preparing spinel-type and perovskite-type manganese titanate nanoparticles | |
CN113441145B (en) | A kind of preparation method of barium titanate/iron oxyhydroxide photocatalyst | |
CN102491415A (en) | Preparation method of monodispersed anatase titanium dioxide nano porous microspheres | |
CN102583535A (en) | Method for synthesizing bismuth vanadate by phonochemistry | |
CN109517217B (en) | A kind of tungsten-doped vanadium dioxide/graphene composite and its preparation method and application | |
CN112047372A (en) | CuO porous nanosheet, preparation method thereof and application thereof in thermal catalysis and photo-thermal catalysis | |
CN107008482A (en) | A kind of photochemical catalyst without metallic element that can be used under no light condition and preparation method thereof | |
CN117046502A (en) | Mesoporous pomegranate-like Bi 4 Ti 3 O 12 Preparation method and application of @ MNC ferroelectric material | |
CN113559856B (en) | Preparation method of barium titanate/silver iodate heterojunction photocatalyst | |
CN112844375B (en) | MnO2/Bi2WO6 heterojunction photocatalyst for removing nitrogen oxides and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |