CN110585934A - Composite filter membrane of nano-pore surface layer/micron-pore supporting layer and preparation method and application thereof - Google Patents
Composite filter membrane of nano-pore surface layer/micron-pore supporting layer and preparation method and application thereof Download PDFInfo
- Publication number
- CN110585934A CN110585934A CN201910708937.7A CN201910708937A CN110585934A CN 110585934 A CN110585934 A CN 110585934A CN 201910708937 A CN201910708937 A CN 201910708937A CN 110585934 A CN110585934 A CN 110585934A
- Authority
- CN
- China
- Prior art keywords
- filter membrane
- composite filter
- cellulose
- support layer
- surface layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 46
- 239000002131 composite material Substances 0.000 title claims abstract description 40
- 239000010410 layer Substances 0.000 title claims abstract description 36
- 239000002344 surface layer Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000011148 porous material Substances 0.000 title description 6
- 238000000926 separation method Methods 0.000 claims abstract description 40
- 229920002678 cellulose Polymers 0.000 claims abstract description 34
- 239000001913 cellulose Substances 0.000 claims abstract description 34
- 239000000243 solution Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000007864 aqueous solution Substances 0.000 claims abstract description 11
- 239000006185 dispersion Substances 0.000 claims abstract description 11
- 239000011259 mixed solution Substances 0.000 claims abstract description 10
- 239000007970 homogeneous dispersion Substances 0.000 claims abstract description 8
- 239000000725 suspension Substances 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 39
- 235000010980 cellulose Nutrition 0.000 claims description 27
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 21
- 229920001046 Nanocellulose Polymers 0.000 claims description 21
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 14
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 6
- 239000002569 water oil cream Substances 0.000 claims description 6
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 5
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 5
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 5
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 229920000742 Cotton Polymers 0.000 claims description 3
- 229920001131 Pulp (paper) Polymers 0.000 claims description 3
- 239000010893 paper waste Substances 0.000 claims description 3
- GPKSRYBYOMDXQM-UHFFFAOYSA-M NC(=O)N.[OH-].[Li+] Chemical compound NC(=O)N.[OH-].[Li+] GPKSRYBYOMDXQM-UHFFFAOYSA-M 0.000 claims description 2
- 239000003513 alkali Substances 0.000 claims description 2
- -1 lithium hydroxide-urea thiourea Chemical compound 0.000 claims description 2
- FYQVMSYVOBSUKX-UHFFFAOYSA-M sodium;thiourea;hydroxide Chemical compound [OH-].[Na+].NC(N)=S FYQVMSYVOBSUKX-UHFFFAOYSA-M 0.000 claims description 2
- XGBOQPVRRBPDDF-UHFFFAOYSA-M sodium;urea;hydroxide Chemical compound [OH-].[Na+].NC(N)=O XGBOQPVRRBPDDF-UHFFFAOYSA-M 0.000 claims description 2
- 230000004907 flux Effects 0.000 abstract description 11
- 239000000839 emulsion Substances 0.000 abstract description 8
- 230000005484 gravity Effects 0.000 abstract description 4
- 238000001914 filtration Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000019476 oil-water mixture Nutrition 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/10—Cellulose; Modified cellulose
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明属于过滤膜材料技术领域,公开了一种纳米孔表层/微米孔支撑层的复合滤膜及其制备方法和应用,所述复合滤膜是将纤维素原料加入到‑5~‑15℃的碱性混合溶液中,形成纤维素悬浮液,然后在室温下搅拌溶解,得到纤维素溶液;在高速均质分散条件下,将纤维素溶液滴加到碱性水溶液中,得到纳米纤维素分散液,用水稀释后过滤制得。本发明制备工艺简单快速,所得纳米孔表层/微米孔支撑层的复合滤膜,其形成了纳米孔表层/微米孔支撑层的二级结构,该复合滤膜性能优良且过滤性能可控,能兼顾分离效率和分离通量,实现基于乳液液体自身重力的分离。
The invention belongs to the technical field of filter membrane materials, and discloses a composite filter membrane of nanopore surface layer/micropore support layer and its preparation method and application. In the alkaline mixed solution, a cellulose suspension is formed, and then stirred and dissolved at room temperature to obtain a cellulose solution; under the condition of high-speed homogeneous dispersion, the cellulose solution is added dropwise to an alkaline aqueous solution to obtain a nano-cellulose dispersion liquid, diluted with water and filtered. The preparation process of the present invention is simple and fast, and the composite filter membrane of the obtained nanopore surface layer/micropore support layer forms a secondary structure of nanopore surface layer/micropore support layer. The composite filter membrane has excellent performance and controllable filtration performance, and can Taking into account the separation efficiency and separation flux, the separation based on the gravity of the emulsion liquid itself is realized.
Description
技术领域technical field
本发明属于过滤膜材料技术领域,更具体地,涉及一种纳米孔表层/微米孔支撑层的复合滤膜及其制备方法和应用。The invention belongs to the technical field of filter membrane materials, and more specifically relates to a composite filter membrane of nanopore surface layer/micropore support layer and its preparation method and application.
背景技术Background technique
工业生产和日常生活产生的含油废水对自然环境和生态平衡危害极大,严重污染水体资源,激化我国水资源短缺的现实矛盾。此外,频发的原油泄漏事件更是对海洋和近海岸的生态环境造成不可估量的影响。因此,高效的油水分离技术显得尤为重要和迫切,是工业界和科学界关注的热点。油水混合物可通过重力、离心等传统方法实现分离,但这些方法用于分离油水乳液时效率低下,甚至不能达到分离的目的。相较于外加电场或化学剂等破乳方法,膜分离技术工艺简单,能够同时完成破乳和分离过程,是目前油水乳液分离的主要方法。但是分离通量低、膜表面孔道易被污染或堵塞、成本高昂等问题制约着膜分离技术在油水分离工业领域的应用。The oily wastewater produced by industrial production and daily life is extremely harmful to the natural environment and ecological balance, seriously pollutes water resources, and intensifies the reality of water shortage in my country. In addition, frequent oil spills have caused immeasurable impacts on the marine and coastal ecological environment. Therefore, high-efficiency oil-water separation technology is particularly important and urgent, and it is a hot spot in the industrial and scientific circles. Oil-water mixtures can be separated by traditional methods such as gravity and centrifugation, but these methods are inefficient when used to separate oil-water emulsions, and even cannot achieve the purpose of separation. Compared with demulsification methods such as external electric field or chemical agents, membrane separation technology has a simple process and can complete the demulsification and separation processes at the same time. It is currently the main method for oil-water emulsion separation. However, problems such as low separation flux, easy fouling or clogging of membrane surface pores, and high cost restrict the application of membrane separation technology in the field of oil-water separation industry.
分离油水乳液时,超滤膜的分离效率高,但存在分离通量低的问题,而微滤膜的分离通量高,但存在分离效率低的问题。因此,构建表层微纳孔-支撑层微米孔的多层级结构膜是解决油水乳液分离时存在的分离效率和分离通量矛盾的有效途径。CN107583472A公开了一种纳米纤维素/滤纸复合过滤膜材料的制备方法,主要通过纳米纤维素和基材滤纸进行层级复合或嵌入式复合方式,实现了高通量和高截留率的目的。然而,其获得纳米纤维素的方法是TEMPO氧化结合机械处理,纳米纤维素的制备工艺复杂,能耗高,制备成本高,不利于推广实际应用。When separating oil-water emulsions, ultrafiltration membranes have high separation efficiency, but have the problem of low separation flux, while microfiltration membranes have high separation flux, but have the problem of low separation efficiency. Therefore, constructing a multi-layer structure membrane with micro-nanopores on the surface and micro-pores on the support layer is an effective way to solve the contradiction between separation efficiency and separation flux in the separation of oil-water emulsions. CN107583472A discloses a preparation method of nanocellulose/filter paper composite filter membrane material, which mainly realizes the purpose of high flux and high retention rate through hierarchical composite or embedded composite method of nanocellulose and substrate filter paper. However, the method for obtaining nanocellulose is TEMPO oxidation combined with mechanical treatment. The preparation process of nanocellulose is complicated, energy consumption is high, and preparation cost is high, which is not conducive to the promotion of practical applications.
发明内容Contents of the invention
本发明的目的是为了克服现有技术的缺陷,本发明首要目的在于提供一种纳米孔表层/微米孔支撑层的复合滤膜。该复合滤膜性能优良,过滤性能可控。用于油水乳液的分离时可获得高分离效率和通量。The purpose of the present invention is to overcome the defects of the prior art, and the primary purpose of the present invention is to provide a composite filter membrane of nanoporous surface layer/microporous support layer. The composite filter membrane has excellent performance and controllable filtration performance. When used for the separation of oil-water emulsion, high separation efficiency and throughput can be obtained.
本发明的另一目的在于提供上述纳米孔表层/微米孔支撑层的复合滤膜的制备方法。该方法制备工艺简单快速。Another object of the present invention is to provide a method for preparing the composite filter membrane of the nanoporous surface layer/microporous support layer. The preparation process of the method is simple and fast.
本发明的再一目的在于提供上述纳米孔表层/微米孔支撑层的复合滤膜的应用。Another object of the present invention is to provide the application of the composite filter membrane of the nanoporous surface layer/microporous support layer.
本发明上述目的通过以下技术方案予以实现:The above-mentioned purpose of the present invention is achieved through the following technical solutions:
一种纳米孔表层/微米孔支撑层的复合滤膜,所述复合滤膜是将纤维素原料加入到-5~-15℃的碱性混合溶液中,形成纤维素悬浮液,然后在室温下搅拌溶解,得到纤维素溶液;在高速均质分散条件下,将纤维素溶液滴加到碱性水溶液中,得到纳米纤维素分散液,用水稀释后过滤制得。A composite filter membrane with a nanoporous surface layer/micropore support layer, the composite filter membrane is made by adding cellulose raw materials to an alkaline mixed solution at -5 to -15°C to form a cellulose suspension, and then Stir and dissolve to obtain a cellulose solution; under the condition of high-speed homogeneous dispersion, drop the cellulose solution into an alkaline aqueous solution to obtain a nano-cellulose dispersion, which is diluted with water and then filtered.
优选地,所述碱性水溶液中碱为氢氧化钠、氢氧化锂或氢氧化钾中的一种以上;所述纳米孔表层/微米孔支撑层的复合滤膜中纳米孔表层负载的纳米纤维素量为0.5~5g/m2。Preferably, the alkali in the alkaline aqueous solution is more than one of sodium hydroxide, lithium hydroxide or potassium hydroxide; the nanofibers loaded on the nanopore surface layer in the composite filter membrane of the nanopore surface layer/micropore support layer The element amount is 0.5-5g/m 2 .
优选地,所述碱性混合溶液为氢氧化钠-尿素、氢氧化钠-硫脲、氢氧化锂-尿素或氢氧化锂-尿素硫脲。Preferably, the alkaline mixed solution is sodium hydroxide-urea, sodium hydroxide-thiourea, lithium hydroxide-urea or lithium hydroxide-urea-thiourea.
更为优选地,所述碱性混合溶液中氢氧化钠或氢氧化锂的浓度为5~10wt%;尿素或硫脲的浓度为5~15wt%。More preferably, the concentration of sodium hydroxide or lithium hydroxide in the alkaline mixed solution is 5-10 wt %; the concentration of urea or thiourea is 5-15 wt %.
优选地,所述纤维素悬浮液的浓度为1~8wt%;所述碱性水溶液的浓度为0.5~7wt%。Preferably, the concentration of the cellulose suspension is 1-8 wt%; the concentration of the alkaline aqueous solution is 0.5-7 wt%.
优选地,所述纤维素原料为化学浆纤维、回收废纸纤维、微晶纤维素或棉花。Preferably, the cellulose raw material is chemical pulp fiber, recycled waste paper fiber, microcrystalline cellulose or cotton.
所述的纳米孔表层/微米孔支撑层的复合滤膜的制备方法,包括如下具体步骤:The preparation method of the composite filter membrane of described nanoporous surface layer/microporous support layer comprises the following specific steps:
S1.将纤维素原料加入到-5~-15℃的碱性混合溶液中,形成悬浮液,然后在室温下搅拌直至纤维素完全溶解,得到透明的纤维素溶液;S1. Add the cellulose raw material to the alkaline mixed solution at -5~-15°C to form a suspension, and then stir at room temperature until the cellulose is completely dissolved to obtain a transparent cellulose solution;
S2.在高速均质分散条件下,将纤维素溶液滴加到碱性水溶液中,得到纳米纤维素分散液;S2. Under the condition of high-speed homogeneous dispersion, drop the cellulose solution into the alkaline aqueous solution to obtain a nano-cellulose dispersion;
S3.将纳米纤维素分散液用水稀释,过滤,形成纳米孔表层/微米孔支撑层的复合滤膜。S3. Dilute the nanocellulose dispersion with water and filter to form a composite filter membrane of nanoporous surface layer/microporous support layer.
优选地,步骤S2中所述高速均质分散的转速为3000~25000rpm;所述分散的时间为1~30min。Preferably, the rotation speed of the high-speed homogeneous dispersion in step S2 is 3000-25000 rpm; the time of the dispersion is 1-30 min.
优选地,步骤S3中所述水和纳米纤维素分散液的体积比为(20~200):1。Preferably, the volume ratio of the water to the nanocellulose dispersion in step S3 is (20-200):1.
所述的纳米孔表层/微米孔支撑层的复合滤膜在油水乳液分离中的应用。The application of the composite filter membrane of the nano-pore surface layer/micro-pore support layer in the separation of oil-water emulsion.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明的纳米孔表层/微米孔支撑层的复合滤膜具有表层纳米孔-支撑层微米孔的二级结构,该复合滤膜性能优良且过滤性能可控,能兼顾分离效率和分离通量,实现基于乳液液体自身重力的分离。1. The composite filter membrane of the nanopore surface layer/micropore support layer of the present invention has a secondary structure of surface layer nanopores-support layer micropores, the composite filter membrane has excellent performance and controllable filtration performance, and can take into account separation efficiency and separation passage Quantity, realize the separation based on the gravity of the emulsion liquid itself.
2.本发明采用溶解-再生的工艺制备纳米纤维素,相比其他方法不需要复杂的设备,不需要化学改性,具有快速、高效、低成本的优点。2. The present invention adopts a dissolution-regeneration process to prepare nanocellulose, which does not require complicated equipment and chemical modification compared with other methods, and has the advantages of rapidity, high efficiency and low cost.
3.本发明制备的纳米纤维素尺寸可控,该复合滤膜的表层纳米孔径可调节,以适应不同粒径的乳液分离。3. The size of the nanocellulose prepared by the present invention is controllable, and the nanopore diameter of the surface layer of the composite filter membrane can be adjusted to adapt to the separation of emulsions with different particle sizes.
附图说明Description of drawings
图1为实施例1制备的纳米纤维素的水溶液的照片。Fig. 1 is the photo of the aqueous solution of nanocellulose prepared in Example 1.
图2为本发明采用的油水乳液分离装置照片。Fig. 2 is the photo of the oil-water emulsion separation device adopted in the present invention.
具体实施方式Detailed ways
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The content of the present invention will be further described below in conjunction with specific examples, but it should not be construed as a limitation of the present invention. Unless otherwise specified, the technical means used in the embodiments are conventional means well known to those skilled in the art. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
实施例1Example 1
1.将3g微晶纤维素分散在7wt%的氢氧化钠和12wt%的尿素混合溶液中,降温至-12℃,室温下300转/分钟机械搅拌直至微晶纤维素完全溶解,得纤维素溶液;1. Disperse 3g of microcrystalline cellulose in the mixed solution of 7wt% sodium hydroxide and 12wt% urea, cool to -12°C, and mechanically stir at 300 rpm at room temperature until the microcrystalline cellulose is completely dissolved to obtain cellulose solution;
2.取1mL纤维素溶液,在7000转/分钟的均质分散条件下滴加到2wt%的氢氧化钠溶液中,均质分散3分钟,得到纳米纤维素溶液。2. Take 1 mL of cellulose solution, add it dropwise into 2wt% sodium hydroxide solution under the condition of homogeneous dispersion at 7000 rpm, and homogeneously disperse for 3 minutes to obtain nanocellulose solution.
3.取2mL纳米纤维素溶液,用蒸馏水稀释到100mL,搅拌均匀;然后用中速定量滤纸过滤,直至纳米纤维素均匀地沉积在滤纸支撑层表面,形成具有纳米孔的表层,用蒸馏水洗涤至中性,制得复合滤膜。3. Take 2mL of nanocellulose solution, dilute it to 100mL with distilled water, and stir evenly; then filter with medium-speed quantitative filter paper until the nanocellulose is uniformly deposited on the surface of the filter paper support layer, forming a surface layer with nanopores, and wash with distilled water until Neutral, made composite membrane.
配置5wt%的甲苯乳液,倒入如图2所示的分离装置,在没有外加真空抽滤装置的条件下,仅是基于乳液自身重力来达到油水分离目的。经油水乳液分离测定,该复合滤膜的分离通量为95.5L/(m2·h),分离效率为99.88%。Configure a 5wt% toluene emulsion, pour it into the separation device shown in Figure 2, and achieve the purpose of oil-water separation only based on the gravity of the emulsion itself without an external vacuum filtration device. The separation flux of the composite filter membrane is 95.5L/(m 2 ·h) and the separation efficiency is 99.88% as measured by the separation of oil-water emulsion.
图1为实施例1制备的纳米纤维素的水溶液的照片。如图1所示,该纳米纤维素溶液有明显的丁达尔效应,说明生成的纳米纤维素尺寸在亚微米级。Fig. 1 is the photo of the aqueous solution of nanocellulose prepared in Example 1. As shown in Figure 1, the nanocellulose solution has an obvious Tyndall effect, indicating that the size of the generated nanocellulose is at the submicron level.
实施例2Example 2
与实施例1不同在于,步骤1中所述纤维素原料采用化学浆纤维、回收废纸纤维、微晶纤维素或棉花任一种替代。The difference from Example 1 is that the cellulose raw material in step 1 is replaced by any one of chemical pulp fiber, recycled waste paper fiber, microcrystalline cellulose or cotton.
实施例3Example 3
与实施例1不同在于,步骤1中所述纤维素溶液采用氢氧化钠/尿素、氢氧化钠/硫脲、氢氧化锂/尿素、氢氧化锂/硫脲任一种替代。The difference from Example 1 is that the cellulose solution in step 1 is replaced by any one of sodium hydroxide/urea, sodium hydroxide/thiourea, lithium hydroxide/urea, and lithium hydroxide/thiourea.
实施例4Example 4
与实施例1不同在于,步骤1中所述纤维素再生碱液采用氢氧化钠、氢氧化钾、氢氧化锂、氨水任一种替代。The difference from Example 1 is that the cellulose regenerated lye in step 1 is replaced by any one of sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia water.
实施例5Example 5
与实施例1不同在于,步骤1中所述纤维素再生碱液采用1%氢氧化钠。经测定,该复合滤膜的分离通量为103.2L/(m2·h),分离效率为98.9%。The difference from Example 1 is that 1% sodium hydroxide is used in the cellulose regeneration lye described in step 1. It is determined that the separation flux of the composite filter membrane is 103.2L/(m 2 ·h), and the separation efficiency is 98.9%.
实施例6Example 6
与实施例1不同在于,步骤1中纤维素再生碱液采用4%氢氧化钠。经测定,该复合滤膜的分离通量为88.4L/(m2·h),分离效率为99.2%。The difference from Example 1 is that in step 1, 4% sodium hydroxide is used for the cellulose regeneration lye. It has been determined that the separation flux of the composite filter membrane is 88.4L/(m 2 ·h), and the separation efficiency is 99.2%.
实施例7Example 7
与实施例1不同在于,步骤2中吸取1mL纳米纤维素溶液。经测定,该复合滤膜的分离通量为112.4L/(m2·h),分离效率为98.1%。The difference from Example 1 is that in Step 2, 1 mL of the nanocellulose solution is absorbed. It has been determined that the separation flux of the composite filter membrane is 112.4L/(m 2 ·h), and the separation efficiency is 98.1%.
实施例8Example 8
与实施例1不同在于,步骤2中吸取3mL纳米纤维素溶液。经测定,该复合滤膜的分离通量为90.1L/(m2·h),分离效率为99.4%。The difference from Example 1 is that in Step 2, 3 mL of the nanocellulose solution is absorbed. It is determined that the separation flux of the composite filter membrane is 90.1L/(m 2 ·h), and the separation efficiency is 99.4%.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations and modifications made without departing from the spirit and principles of the present invention Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910708937.7A CN110585934A (en) | 2019-08-01 | 2019-08-01 | Composite filter membrane of nano-pore surface layer/micron-pore supporting layer and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910708937.7A CN110585934A (en) | 2019-08-01 | 2019-08-01 | Composite filter membrane of nano-pore surface layer/micron-pore supporting layer and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110585934A true CN110585934A (en) | 2019-12-20 |
Family
ID=68853326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910708937.7A Pending CN110585934A (en) | 2019-08-01 | 2019-08-01 | Composite filter membrane of nano-pore surface layer/micron-pore supporting layer and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110585934A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114162779A (en) * | 2021-10-21 | 2022-03-11 | 北京大学 | A kind of micro-nano composite filter membrane and its preparation method and application |
CN114377471A (en) * | 2022-01-07 | 2022-04-22 | 中钢集团南京新材料研究院有限公司 | Suction filtration separation method of metal nanoparticles |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001008792A2 (en) * | 1999-07-30 | 2001-02-08 | Genentech, Inc. | Charged filtration membranes and uses therefor |
CN103450494A (en) * | 2013-08-21 | 2013-12-18 | 华南理工大学 | Preparation method of nanocellulose film precipitated by applying water solution |
CN105536567A (en) * | 2015-12-25 | 2016-05-04 | 武汉大学 | Sea squirt nano cellulose ultrafiltration membrane as well as preparation method and application of sea squirt nano cellulose ultrafiltration membrane |
CN106943886A (en) * | 2017-05-04 | 2017-07-14 | 湖北大学 | A kind of preparation method and applications of cellulose composite membrane |
CN107983179A (en) * | 2017-11-30 | 2018-05-04 | 武汉大学 | A kind of preparation method and applications of multifunctional nano cellulose compound-split filter membrane |
CN108421421A (en) * | 2018-02-12 | 2018-08-21 | 上海大学 | Fabric web and preparation method thereof with underwater superoleophobic property composite coating |
CN109569322A (en) * | 2018-12-01 | 2019-04-05 | 内蒙古科技大学 | A kind of super hydrophilic and underwater superoleophobic cellulose membrane and preparation method thereof |
-
2019
- 2019-08-01 CN CN201910708937.7A patent/CN110585934A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001008792A2 (en) * | 1999-07-30 | 2001-02-08 | Genentech, Inc. | Charged filtration membranes and uses therefor |
CN103450494A (en) * | 2013-08-21 | 2013-12-18 | 华南理工大学 | Preparation method of nanocellulose film precipitated by applying water solution |
CN105536567A (en) * | 2015-12-25 | 2016-05-04 | 武汉大学 | Sea squirt nano cellulose ultrafiltration membrane as well as preparation method and application of sea squirt nano cellulose ultrafiltration membrane |
CN106943886A (en) * | 2017-05-04 | 2017-07-14 | 湖北大学 | A kind of preparation method and applications of cellulose composite membrane |
CN107983179A (en) * | 2017-11-30 | 2018-05-04 | 武汉大学 | A kind of preparation method and applications of multifunctional nano cellulose compound-split filter membrane |
CN108421421A (en) * | 2018-02-12 | 2018-08-21 | 上海大学 | Fabric web and preparation method thereof with underwater superoleophobic property composite coating |
CN109569322A (en) * | 2018-12-01 | 2019-04-05 | 内蒙古科技大学 | A kind of super hydrophilic and underwater superoleophobic cellulose membrane and preparation method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114162779A (en) * | 2021-10-21 | 2022-03-11 | 北京大学 | A kind of micro-nano composite filter membrane and its preparation method and application |
CN114377471A (en) * | 2022-01-07 | 2022-04-22 | 中钢集团南京新材料研究院有限公司 | Suction filtration separation method of metal nanoparticles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105566659B (en) | A kind of graphene oxide/nano-cellulose aerogel and its preparation method and application | |
Xu et al. | Facile ZIF‐8 functionalized hierarchical micronanofiber membrane for high‐efficiency separation of water‐in‐oil emulsions | |
CN109304088A (en) | A kind of seawater desalination membrane resistant to strong acid and alkali and its preparation method and application | |
CN104275100B (en) | A kind of preparation method of high-dirt-resistance Graphene-cyclodextrin composite nanometer filtering film | |
CN103121732A (en) | Method for removing smelly substances in water | |
CN107999111A (en) | A kind of optic catalytic composite material and its method for preparing modified PVDF membrane | |
CN110252158B (en) | A kind of MoS2/GO/CA composite film and preparation method thereof | |
CN110585934A (en) | Composite filter membrane of nano-pore surface layer/micron-pore supporting layer and preparation method and application thereof | |
CN106283894B (en) | A kind of graphene oxide is modified filter paper and preparation method and application | |
CN102527261A (en) | Heavy metal ion adsorption type polyvinylidene fluoride (PVDF) hollow fiber membrane | |
CN107983179A (en) | A kind of preparation method and applications of multifunctional nano cellulose compound-split filter membrane | |
CN106283851A (en) | A kind of graphene oxide modification oil-water separation filter paper and preparation method thereof | |
CN105126647A (en) | Preparation method for efficient oil-water separation composite ultrafiltration membrane | |
CN113244793B (en) | Preparation and application of durable high-flux emulsion separation membrane material | |
CN105536567B (en) | A kind of ascidian nano-cellulose ultrafiltration membrane and its preparation method and application | |
CN102489180A (en) | Preparation method for composite porous filter membrane made of high polymer/nano material | |
CN102974236A (en) | Composite flat-sheet polysulfone membrane doped with active carbon and nanometer zinc oxide and preparation method thereof | |
CN108579683A (en) | A kind of sulfonates metal organic framework UIO-66@mSi-SO3The preparation method of H | |
CN112808024A (en) | MXene-CNT photo-thermal composite membrane for self-floating removal of organic dye and realization of clean water regeneration and preparation method thereof | |
CN114733367B (en) | Preparation method of attapulgite-based composite nanofiltration membrane | |
CN116943446A (en) | Composite nanofiltration membrane and preparation method thereof | |
CN112876713B (en) | Preparation method of cellulose aerogel-based efficient air filtering membrane | |
CN104772047A (en) | An inorganic-organic hybrid film based on Cu2O nanowires and its preparation method and application | |
CN107970794B (en) | Core-shell type hierarchical pore structure nano particle and modified reverse osmosis membrane prepared from same | |
CN104907057B (en) | Spinning immobilized carbonyl iron material and application thereof in water treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191220 |
|
WD01 | Invention patent application deemed withdrawn after publication |