CN110573068B - 用于房性心律失常检测的系统和方法 - Google Patents

用于房性心律失常检测的系统和方法 Download PDF

Info

Publication number
CN110573068B
CN110573068B CN201880028681.9A CN201880028681A CN110573068B CN 110573068 B CN110573068 B CN 110573068B CN 201880028681 A CN201880028681 A CN 201880028681A CN 110573068 B CN110573068 B CN 110573068B
Authority
CN
China
Prior art keywords
heart rate
ventricular
afl
rate
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880028681.9A
Other languages
English (en)
Other versions
CN110573068A (zh
Inventor
大卫·L·佩什巴赫
苏尼帕·萨哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiac Pacemakers Inc
Original Assignee
Cardiac Pacemakers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiac Pacemakers Inc filed Critical Cardiac Pacemakers Inc
Publication of CN110573068A publication Critical patent/CN110573068A/zh
Application granted granted Critical
Publication of CN110573068B publication Critical patent/CN110573068B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/363Detecting tachycardia or bradycardia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7232Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36592Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by the heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Abstract

本文描述了用于检测房性心律失常(诸如房性快速性心律失常(AT))的系统和方法。AT检测系统可以包括心率检测器电路,其被配置为从生理信号中检测心率分析窗口内的代表性心室心率。房性快速性心律失常检测器电路可以使用从代表性心室心率生成的第一心室心率统计量来执行初始速率检测,并且使用在特定持续时间期间在第二多个心率分析窗口内生成的一个或多个第二心室心率统计量来执行持续心律失常检测。如果第二心室心率统计量贯穿特定持续时间满足特定条件,则检测到AT事件。AT检测系统可以包括输出单元,该输出单元可以将检测到的AT输出到用户或过程。

Description

用于房性心律失常检测的系统和方法
相关申请
本申请要求于2017年3月7日提交的美国临时专利申请序列号62/468,165的35U.S.C§119(e)下的优先权的权益,其通过引用以其整体并入本文。
技术领域
本文档大致上涉及医疗装置,并且更特别地,涉及用于检测和管理心律失常的系统、装置和方法。
背景技术
可植入医疗装置(IMD)已用于监视患者健康状况或疾病状态并递送治疗。例如,可植入复律器-除颤器(ICD)可以用于监视某些异常心律并向心脏递送电能以校正异常的节律。一些IMD可以用于监视诸如由于充血性心力衰竭(CHF)而导致的心脏血液动力学性能的慢性恶化,并且提供心脏刺激治疗,包括心脏再同步治疗(CRT)以校正心室内或心室之间的心脏不同步。
一些IMD能够检测心律失常,诸如房性快速性心律失常(AT)。一种类型的AT是心房颤动(AF),其被认为是影响数百万人的最常见的临床心律失常。在AF期间,起源于心房内或心房附近的区域的紊乱电脉冲可能导致到心室的不规则传导,从而导致不适当地快速和不规则的心率。AF可能是阵发性的(在AF自行停止之前可能持续数分钟至数天)、持续性的(可能持续超过一周并典型地需要药物治疗或其它治疗来恢复正常的窦性节律)、或永久性的(其中利用治疗不能恢复正常心律)。
另一种类型的AT是心房扑动(AFL)。AFL通常伴有一定程度的房室(AV)结传导阻滞,并且可以与快速且通常规则的心率相关联。典型的或I型AFL可能涉及在三尖瓣环周围的右心房中的单个折返环路(reentrant circuit),并且心房率为每分钟240至340次搏动(bpm)。折返环路通常以逆时针方向行进。非典型的或II型AFL遵循不同的环路,其可能涉及右心房或左心房,并且通常具有约340-440bpm的更快的心房率。AFL可能与多种心脏疾病相关联,诸如冠状动脉疾病(CAD)或高血压性心脏病。AFL可能经常退化为AF。长时间快速AFL可能导致失代偿,失去正常的心脏功能。这可能表现为努力不耐受、夜间呼吸困难或腿部或腹部肿胀。AT诸如AF或AFL的及时检测,对于评估心脏功能可能是临床上重要的。
发明内容
一些IMD能够检测生理事件(诸如心律失常或慢性心脏病的进展),并且获得心电活动信号(诸如电描记图)的采样值。一些IMD还可以与可以测量各种生理信号的多个生理传感器通信。捕获在(诸如长期在定期安排的门诊办公室访问之间的)较长时间段内获得的精确电描记图或其它生理传感器信息可以帮助医生对装置重新编程(如果需要的话)、诊断心脏病、或评估患者的健康状态。
房性快速性心律失常诸如AF或AFL被表征为快速心房率。在一些患者中,利用定位于心房中的电极直接感测心房激活率是不可用的或不可行的,诸如未被指示用于心房引线植入的患者。医疗装置、诸如没有专用心房感测/起搏引线的单室IMD,可以基于心率来检测AT,而不是直接感测来自心房的心房活动。然而,诸如除AT之外的噪声、运动伪影或心脏节律的混杂因素可能被错误地检测为AT事件。例如,在AFL期间,来自心房的冲动通过房室结(AV结)传导到心室。主要由于其较长的不应期,AV结可通过阻断超过每分钟约180次搏动(bpm)的心房冲动对心室处的心率发挥保护作用。如果AFL率为300bpm,则可能产生二对一(2:1)心脏传导阻滞,使得仅一半的心房冲动可以被传导至心室,导致了心室率为150bpm。由于心率是心室而不是心房活动的度量,因此基于心室心率而不是心房活动检测AT的医疗装置可能会被在升高的速率下的生理窦性节律(诸如在可耐受的体力活动期间(例如,窦性心动过速))混淆。不适当的检测可能降低检测特异性,并导致不必要或不适当的医疗或装置治疗。向临床医生发出不适当检测到的心律失常的错误警示,或向临床医生呈现大量不适当检测到的心律失常事件以用于审查或判决,可能不利地影响装置功效并且无根据地增加与患者管理相关联的医疗保健成本。因此,这可能降低基于心率的AT检测的临床效用。至少出于这些原因,本发明人已经尤其认识到了实质上的挑战以及对用于AT检测的更高效的系统和方法的需求。
本文档尤其讨论了用于检测房性快速性心律失常的系统、装置和方法。AT检测系统可包括用于感测生理信号的传感器电路、以及用于检测心率分析窗口内的代表性心室心率的心率检测器电路。房性快速性心律失常检测器电路可以使用从第一多个心率分析窗口内的代表性心室心率生成的第一心室心率统计量来执行初始速率检测,并且使用从在特定持续时间期间在第二多个心率分析窗口内确定出的多个代表性心室心率生成的一个或多个第二心室心率统计量来执行持续心律失常检测。如果第二心室心率统计量贯穿特定持续时间满足特定条件,则检测到AT事件。AT检测系统可以包括输出单元,该输出单元可以将检测到的AT输出到用户或过程。
示例1是用于检测房性心律失常的系统。该系统包括房性快速性心律失常检测器电路,其可以使用在第一多个心率分析窗口内确定出的多个代表性心室心率来生成第一心室心率统计量,并且在特定持续时间期间生成一个或多个第二心室心率统计量,其中,一个或多个第二心室心率统计量每个可以从在第二多个心率分析窗口内确定出的多个代表性心室心率生成。房性快速性心律失常检测器电路可响应于第一心室心率统计量满足第一条件和一个或多个第二心室心率统计量贯穿特定持续时间满足第二条件而检测房性快速性心律失常(AT)事件。
在示例2中,示例1的主题可选地包括治疗电路,该治疗电路被配置为响应于检测到AT而生成并递送心脏治疗或神经治疗。
在示例3中,示例1-2中的任何一个或多个的主题可选地包括检测包括心房扑动事件或心房颤动事件的AT事件。
在示例4中,示例1-3中的任何一个或多个的主题可选地包括多个代表性心室心率,其中的每个可以包括指示相应心率分析窗口内的心室心率测量结果当中的最频繁心率的中心趋势。
在示例5中,示例1-4中的任何一个或多个的主题可选地包括第一心室心率统计量,其可以包括在第一多个心率分析窗口内的超过心率阈值的代表性心室心率的第一相对数量。
在示例6中,示例5的主题可选地包括房性快速性心律失常检测器电路,其可以被配置为响应于第一心室心率统计量满足第一条件而生成一个或多个第二心室心率统计量,所述第一条件指示从十个连续心率分析窗口确定出的至少十分之八的代表性心室心率超过心率阈值。
在示例7中,示例1-6中的任何一个或多个的主题可选地包括一个或多个第二心室心率统计量,其可以包括在第二多个心率分析窗口内的超过心率阈值的代表性心室心率的第二相对数量。
在示例8中,示例7的主题可选地包括房性快速性心律失常检测器电路,其可以被配置为响应于一个或多个第二心室心率统计量满足第二条件而检测AT事件,所述第二条件指示贯穿特定持续时间从任何十个连续心率分析窗口确定出的至少十分之六的代表性心室心率超过心率阈值。
在示例9中,示例7-8中的任何一个或多个的主题可选地包括AT事件,其可以包括心房扑动事件,并且心率阈值可编程为每分钟100至150次搏动之间。
在示例10中,示例7-9中的任何一个或多个的主题可选地包括检测包括心房扑动事件的AT事件,并且特定持续时间可编程为4到8小时之间。
在示例11中,示例7-10中的任何一个或多个的主题可选地包括一个或多个第二心室心率统计量中的至少一个,其可以包括从第二多个心率分析窗口计算出的代表性心室心率的心率稳定度。房性快速性心律失常检测器电路可以被配置为响应于心率稳定度超过稳定度阈值而进一步检测AT事件。
在示例12中,示例11的主题可选地包括房性快速性心律失常检测器电路,其可以被配置为使用从第二多个心率分析窗口计算出的代表性心室心率的直方图来生成心率稳定度。
在示例13中,示例1-12中的任何一个或多个的主题可选地包括参数调整器电路,该参数调整器电路被配置为响应于对AT事件的检测而减少特定持续时间。
在示例14中,示例1-13中的任何一个或多个的主题可选地包括房性快速性心律失常检测器电路,其可以被配置为检测AT事件,包括:响应于一个或多个第二心室心率统计量贯穿AFL持续时间满足包括AFL心率阈值的AFL检测条件而检测心房扑动(AFL)事件;并且响应于一个或多个第二心室心率统计量贯穿快速AFL持续时间满足包括快速AFL心率阈值的快速AFL检测条件而检测快速AFL事件;其中快速AFL心率阈值大于AFL心率阈值,并且快速AFL持续时间短于AFL持续时间。
在示例15中,示例1-14中的任何一个或多个的主题可选地包括流动式装置,其包括房性快速性心律失常检测器电路的至少一部分。
示例16是使用心律失常检测系统检测房性快速性心律失常的方法。该方法包括以下步骤:经由心律失常检测器系统,确定第一多个心率分析窗口内的多个代表性心室心率,并使用第一多个心率分析窗口内的多个代表性心室心率生成第一心室心率统计量;确定第二多个心率分析窗口内的多个代表性心室心率并在特定持续时间期间生成一个或多个第二心室心率统计量;响应于第一心室心率统计量满足第一条件和一个或多个第二心室心率统计量贯穿特定持续时间满足第二条件而检测房性快速性心律失常(AT)事件;并将检测到的AT输出到用户或过程。
在示例17中,示例16的主题可选地包括确定代表性心室心率,其中的每个包括指示相应心率分析窗口内的多个心率测量结果当中的最频繁心率的中心趋势。
在示例18中,示例16的主题可选地包括第一心室心率统计量,其可以包括在第一多个心率分析窗口内的超过心率阈值的代表性心室心率的第一相对数量。
在示例19中,示例16的主题可选地包括一个或多个第二心室心率统计量,其可以包括以下中的一个或多个:第二多个心率分析窗口内的超过心率阈值的代表性心室心率的第二相对数量;或者从第二多个心率分析窗口计算出的代表性心室心率的心率稳定度。
在示例20中,示例19的主题可选地包括检测AT事件,其包括检测心房扑动(AFL)事件。心率阈值可以可编程为每分钟100至150次搏动之间;并且特定持续时间可编程为4到8小时之间。
在示例21中,示例16的主题可选地包括响应于对AT事件的检测而减少特定持续时间。
示例22是用于检测房性心律失常的系统。该系统包括房性快速性心律失常检测器电路。该房性快速性心律失常检测器电路可以配置为接收多个代表性心室心率;在第一时间段内使用多个代表性心室心率的至少一部分检测心房颤动(AF)事件;并且在第二时间段内使用多个代表性心室心率的至少一部分检测心房扑动(AFL)事件。第一时间段可以是大约数秒或数分钟。第二时间段可以是大约数小时。
在示例23中,示例22的主题可选地包括房性快速性心律失常检测器电路,其可以被配置为:使用第一多个心率分析窗口内的多个代表性心室心率来生成第一心室心率统计量;在第一时间段内的AF持续时间期间生成一个或多个第二心室心率统计量,所述一个或多个第二心室心率统计量每个使用第二多个心率分析窗口内的多个代表性心室心率生成;在第二时间段内的AFL持续时间期间生成一个或多个第三心室心率统计量,所述一个或多个第三心室心率统计量每个使用第三多个心率分析窗口内的多个代表性心室心率生成;使用第一心室心率统计量和在AF持续时间期间生成的一个或多个第二心室心率统计量来检测AF事件;并且使用第一心室心率统计量和在AFL持续时间期间生成的一个或多个第三心室心率统计量来检测AFL事件。
在示例24中,示例22的主题可选地包括房性快速性心律失常检测器电路,其可以被配置为在第三时间段内使用多个代表性心室心率的至少一部分来检测快速AFL事件。第三时间段可以是大约数小时并且短于第二时间段。
本文档中讨论的系统、装置和方法可以改进自动心脏节律管理(CRM)的医疗技术并预防心脏功能的恶化。基于心率的心律失常检测还可以增强可植入CRM装置的性能和功能,在某些示例中,增加了现有AF或AFL检测的特异性(例如,减少误报),使得可以在几乎没有额外成本的情况下改善系统性能,同时降低与错误AF或AFL检测相关联的成本、或由这样的错误确定所需的人工检查。在其它示例中,可以使用较低成本或较不突出的系统、设备和方法来维持现有系统性能(例如,高AF或AFL灵敏度和特异性等)。例如,因为系统或装置不需要直接心房活动感测来进行房性快速性心律失常检测,所以可以降低系统复杂性和实施成本。对于心房活动感测或心房起搏未指示用于心房引线植入的患者可能特别有益。基于心率的心律失常检测还允许更高效地使用装置存储器,诸如通过存储与心律失常识别临床相关的心室心率统计量,以及较少数量的潜在AF或AFL事件。由于提供的警报更少,所以可以延长电池寿命,可以安排、规定或提供更少的不必要的药物和程序,并且可以实现整体系统成本节省。
本概述是本申请的一些教导的概述并且不旨在是对本主题的排他性或穷举性治疗。关于本主题的进一步细节在详细描述和所附权利要求中找到。在阅读并理解以下详细描述并查看形成其一部分的附图(其每个都不会被视为限制性意义)时,本公开的其它方面对于本领域技术人员将是显而易见的。本公开的范围由所附权利要求及其合法等同物来限定。
附图说明
在附图的图中借由示例示出了各种实施例。这种实施例是说明性的并且不旨在是本主题的穷举性或排他性实施例。
图1示出了心脏节律管理(CRM)系统的示例以及CRM系统可以在其中操作的环境的部分。
图2大致上示出了可以被配置为检测来自患者的心律失常诸如AT事件的心律失常检测系统的示例。
图3大致上示出了在心律失常检测期间的操作状态的状态机以及这些状态当中的转变的图。
图4示出了用于持续AT检测的移动窗口集的示例的图。
图5示出了多区域房性快速性心律失常检测的示例的图。
图6大致上示出了用于检测来自患者的心律失常的方法的示例。
图7大致上示出了用于两种或更多种房性快速性心律失常的多区域检测的方法的示例。
图8大致上示出了在其上可以执行本文所讨论的任何一种或多种技术(例如,方法)的示例机器的框图。
具体实施方式
本文公开了用于检测心律失常、诸如房性快速性心律失常(AT)的系统、装置和方法。可以从心率分析窗口内的生理信号检测代表性心室心率。房性快速性心律失常检测器电路可以从在第一多个心率分析窗口内确定出的代表性心室心率生成第一心室心率统计量,并且从在特定持续时间期间的第二多个心率分析窗口内确定出的多个代表性心室心率生成一个或多个第二心室心率统计量。响应于第二心室心率统计量贯穿特定持续时间满足特定条件,可以检测一种或多种类型的持续AT事件。
图1大致上示出了心脏节律管理(CRM)系统100的示例以及系统100可以在其中操作的环境的部分。CRM系统100可以包括与患者102相关联的流动式系统105、外部系统125、以及提供流动式系统105和外部系统125之间的通信的遥测链路115。
流动式系统105可以包括流动式医疗装置(ambulatory medical device(AMD))110。在示例中,AMD 110可以是皮下植入患者102的胸部、腹部或其它部分中的可植入装置。可植入装置的示例可包括但不限于起搏器、起搏器/除颤器、心脏再同步治疗(CRT)装置、心脏重塑控制治疗(RCT)装置、神经调节器、药物递送装置、生物治疗装置、诸如心脏监视器或循环记录器的诊断装置、或患者监视器等。AMD 110可以可替选地或另外地包括皮下植入式装置、可穿戴医疗装置或其它外部监视或治疗医疗装置或设备。
AMD 110可以耦接到引线系统108。引线系统108可以包括一个或多个经静脉、皮下或非侵入性放置的引线或导管。每个引线或导管可包括一个或多个电极。引线系统108和相关联的电极的布置和使用可以基于患者需要和AMD 110的能力来确定。引线系统108上的相关联的电极可以定位在患者的胸部或腹部处以感测指示心脏活动的生理信号、或对靶组织的诊断或治疗刺激的生理反应。借由示例而非限制,并且如图1中示出的,引线系统108可以被配置为通过外科手术插入或定位在心脏101的表面上。引线系统108上的电极可以定位在心脏101的部分诸如右心房(RA)、右心室(RV)、左心房(LA)或左心室(LV)、或心脏部分之间或附近的任何组织上。在一些示例中,引线系统108和相关联的电极可以可替选地定位在身体的其它部分上以感测包含关于患者心率或脉搏率的信息的生理信号。在示例中,流动式系统105可以包括一个或多个无引线传感器,其不经由引线系统108系到AMD 110。无引线流动式传感器可以被配置为感测生理信号并与AMD 110无线通信。
AMD 110可以配置为监视和诊断装置。AMD 110可以包括气密密封的罐,其容纳感测电路、控制电路、通信电路、电池及其他组件中的一个或多个。感测电路可以诸如通过使用生理传感器或与引线系统108相关联的电极来感测生理信号。生理信号的示例可以包括以下中的一个或多个:心电图、心内电描记图、心律失常、心率、心率变异性、胸内阻抗、心内阻抗、动脉压、肺动脉压、左心房压、RV压、LV冠状动脉压、冠状动脉血温、血氧饱和度、一个或多个心音、心内加速度、体力活动或劳力等级、对活动的生理反应、姿势、呼吸速率、潮气量、呼吸音、体重或体温。
在示例中,AMD 110可以包括心律失常检测电路160,其被配置为从患者102检测房性快速性心律失常。感测到的生理信号可以包含关于患者心率或脉搏率的信息。心律失常检测电路160可以从感测到的生理信号生成心室心率统计量。心室心率统计量可以指示贯穿特定持续时间段的持续过度心率。心律失常检测电路160可以响应于心室心率统计量满足特定条件而检测房性快速性心律失常(AT)事件,诸如心房扑动(AFL)或心房颤动(AF)事件中的一个或多个。AMD 110可以将检测到的AT事件输出到诸如患者或临床医生的用户,或者输出到包括例如在微处理器中可执行的计算机程序的实例的过程。在示例中,该过程可以包括自动生成用于抗心律失常治疗的建议,或者用于进一步诊断测试或治疗的建议。
AMD 110可以可替选地配置为治疗装置,该治疗装置配置为治疗心律失常或其它心脏病。AMD 110可另外包括可生成和递送一种或多种治疗的治疗单元。可以经由引线系统108和相关联的电极将治疗递送给患者102。治疗可包括电疗、磁疗或其它类型的治疗。该治疗可包括抗心律失常治疗以治疗心律失常或者治疗或控制心律失常引起的一种或多种并发症,诸如晕厥、充血性心力衰竭或中风等。抗心律失常治疗的示例可包括起搏、心脏复律、除颤、神经调节、药物治疗、生物治疗或其它类型的治疗。在示例中,治疗可以包括用于纠正不同步和改善CHF患者的心脏功能的心脏再同步治疗(CRT)。在一些示例中,AMD 110可以包括药物递送系统、诸如药物输注泵,用于向患者递送药物以管理心律失常或心律失常引起的并发症。
尽管本文关于AMD 110的讨论集中在可植入系统上,但这仅仅意味着借由示例而非限制。在发明人的设想并且在本文档的范围内,本文所讨论的系统、装置和方法也可以在皮下医疗装置(诸如皮下监视器或诊断装置)、可穿戴医疗装置(例如,类似手表的装置、基于补丁的装置或其它配件)、或其它流动式医疗装置中实施并由其执行。
外部系统125可以经由通信链路115与AMD 110通信。外部系统125可以包括专用硬件/软件系统,诸如编程器、基于远程服务器的患者管理系统、或者可替选地主要由在标准个人计算机上运行的软件定义的系统。外部系统125可以用于控制AMD 110的操作。外部系统125可以另外经由通信链路115接收由AMD 110获取的信息,诸如一个或多个生理信号。
借由示例而非限制,外部系统125可以包括AMD 110附近的外部装置120、位于相对远离AMD 110的位置的远程装置124、以及链接外部装置120和远程装置124的电信网络122。遥测链路115可以是感应遥测链路、电容遥测链路或射频(RF)遥测链路。遥测链路115可以提供从AMD 110到外部系统125的数据传输。这可以包括,例如,发送由AMD 110获取的实时生理数据、提取由AMD 110获取并存储在AMD 110中的生理数据、提取患者历史数据诸如指示AMD 110中记录的心律失常发生、失代偿发生和治疗递送的数据、并提取指示AMD 110的操作状态的数据(例如,电池状态和引线阻抗)。遥测链路115还可以提供从外部系统125到AMD 110的数据传输。这可以包括,例如,对AMD 110进行编程以执行以下中的一个或多个:获取生理数据、执行至少一个自我诊断测试(诸如针对装置操作状态)、分析生理数据以检测心律失常、或者可选地向患者102递送或调整治疗。
外部装置120或远程装置124中的一个或多个可以包括显示器,用于显示生理或功能信号、或者用于发出检测到心律失常的信号的警示、警报、紧急呼叫或其它形式的警告。在一些示例中,外部系统125可以包括外部数据处理器,其被配置为分析由AMD 110接收到的生理或功能信号,并确认或拒绝检测到心律失常。计算密集型算法、诸如机器学习算法可以在外部数据处理器中实施,以回顾性地处理数据以检测心律失常。
可以使用硬件、软件、固件或其组合来实施AMD 110或外部系统125的部分。AMD110或外部系统125的部分可以使用可以被构造为或配置为执行一个或多个特定功能的专用电路来实施,或者可以使用可以被编程为或另外配置为执行一个或多个特定功能的通用电路来实施。这种通用电路可以包括微处理器或其一部分、微控制器或其一部分、或者可编程逻辑电路或其一部分。例如,除了其它之外,“比较器”还可以包括可以被构造为执行两个信号之间的特定比较功能的电子电路比较器,或者该比较器可以被实施为通用电路的一部分,其可以由对通用电路的一部分下指令以执行两个信号之间的比较的代码来驱动。
图2大致上示出了心律失常检测系统200的示例,其可以被配置为检测来自患者的房性快速性心律失常,诸如AT事件。心律失常检测200的部分可以被包括在AMD 110的心律失常检测电路160中。心律失常检测系统200可以包括传感器电路210、心率检测器电路220、心律失常检测器电路230、控制器电路240和用户界面单元250中的一个或多个。心律失常检测系统200可以被配置为用于监视患者健康状态的心脏监视器或诊断装置或者被配置为另外包括可选的治疗电路260的治疗装置。
传感器电路210可以包括感测放大器(sense amplifier)电路,其用于感测经由与患者相关联的一个或多个可植入的、可穿戴的或以其它方式的流动式传感器或电极从患者感测到的生理信号。感测到的生理信号可以包含关于脉动的心脏活动的信息,诸如心率或脉搏率。生理信号的示例可以包括:诸如从身体表面上的电极感测到的表面心电图(ECG)、诸如从放置在皮肤下的电极感测到的皮下ECG、从引线系统108上的一个或多个电极感测到的心内电描记图(EGM)、胸部或心脏阻抗信号、动脉压信号、肺动脉压信号、左心房压信号、RV压信号、LV冠状动脉压信号、冠状动脉血温信号、血氧饱和度信号、诸如由流动式加速度计或声学传感器感测到的心音信号、对活动的生理反应、呼吸暂停低通气指数、一个或多个呼吸信号(诸如呼吸率信号或潮气量信号)、脑利钠肽(BNP)、血液面板、钠和钾水平、葡萄糖水平和其它生物标志物和生化标志物等。传感器电路210可以包括一个或多个其它子电路,以对接收到的生理信号进行数字化、滤波或执行其它信号调节操作。
在一些示例中,生理信号可以存储在诸如电子病历(EMR)系统的存储装置中。传感器电路210可以被配置为响应于由系统用户提供或者响应于特定事件的发生而自动生成的命令信号而从存储装置检索生理信号。
心率检测器电路220可以耦接到传感器电路210以检测代表性心室心率。心率检测器电路220可以包括心跳感测电路222和代表性HR计算器电路224。心跳感测电路222可以被配置为从感测到的生理信号感测心跳。在示例中,传感器电路210可以感测心电信号,诸如ECG、皮下ECG或心内EGM,并且心跳感测电路222可以从心电信号中检测指示出心脏去极化或复极化的电生理事件。感测到的电生理事件的示例可以包括表面或皮下ECG或心内EGM中的P波、Q波、R波、QRS波群或T波。传感器电路210可以另外地或可替选地包括一个或多个传感器,其被配置为感测指示出心脏收缩的心脏机械活动,并且心跳感测电路222可以从感测到的心脏机械活动中感测指示出在心脏收缩周期期间心房收缩、心室收缩、充盈结束、排空结束或其它指定阶段中的一个或多个的机械生理事件。用于感测心脏机械活动的传感器的示例可以包括:加速度计或麦克风,其被配置为感测来自心脏的心音信号或心内膜加速度信号;阻抗传感器,其被配置为感测由于心脏收缩而引起的心脏阻抗的周期性变化;或者血压传感器或血流传感器,其用于感测由于周期性心脏收缩和心脏瓣膜的打开/关闭而引起的脉动动脉压或流;以及其它传感器。机械生理事件的示例可以包括:来自感测到的心音信号的S1、S2、S3或S4心音、来自心脏阻抗信号的峰阻抗或谷阻抗、或来自血压信号的峰血压或谷血压等。
代表性HR计算器电路224可以被配置为使用心率分析窗口内的感测到的心跳来确定代表性心室心率(rHR)。可以使用检测到的电生理事件或机械生理事件来确定心率或周期长度(CL)。在示例中,CL可以被测量为:两个相邻R波(R-R间隔)或P波(P-P间隔)之间的时间间隔(诸如以秒或毫秒为单位)、或来自心脏阻抗信号的相邻阻抗峰值之间或相邻阻抗谷值之间的时间间隔、或来自血压信号的两个相邻血压峰值(即,收缩压)之间或相邻血压谷值(即,舒张压)之间的间隔等。以每分钟搏动(bpm)为单位的HR可以使用CL来计算,诸如根据HR=60秒/CL来计算。
代表性HR计算器电路224可以使用心率分析窗口内的多个HR测量结果的均值、中值、模式或其它中心趋势来计算rHR。例如,HR测量结果的模式可以指示多个HR测量结果中最频繁出现的HR值。可以可替选地将rHR计算为HR测量结果的特定百分位数,指示出频率分布中的不大于它的HR测量结果的特定百分比(X%)。在示例中,频率分布包括从心率分析窗口内的HR测量结果计算出的HR直方图,并且X%大约在25-75%之间。心率分析窗口的大小可以由多个心跳或CL或时间段表示。在示例中,心率分析窗口具有大约2-5分钟的大小。心率分析窗口可以是可编程的。用户可以诸如经由用户界面单元250调整心率分析窗口。
统计测量结果(诸如HR分布的中心趋势或百分位数)可以减少噪声、干扰、过度感测或欠感测对心跳感测的影响。它还可以减少心房冲动间歇传导到心室对HR检测的影响。像这样计算出的rHR是房性快速性心律失常期间HR的更稳健估计。
心律失常检测器电路230可以耦接到代表性HR计算器电路224,以基于从代表性HR确定出的心室心率统计量来检测房性快速性心律失常(AT)。AT的示例可包括心房颤动(AF)、心房扑动(AFL)、房性心动过速、阵发性室上性心动过速(PSVT)、Wolff-Parkinson-White(WPW)综合征等。心律失常检测器电路230可以包括初始AT检测器232、计时器/计数器电路234和持续AT检测器236。初始AT检测器232被配置为使用在第一多个心率分析窗口内确定出的多个rHR生成第一心室心率统计量。第一心室心率统计量可以包括第一多个心率分析窗口内超过心率阈值HRT1的rHR的第一相对数量,诸如分数或百分比。这样的第一心室心率统计量可以由“Y分之X”(X/Y)统计量表示,指示出从对应的Y个心率分析窗口计算出的Y个代表性心室心率{rHR1、rHR2、...、rHRY}当中,总计X个rHR是超过阈值HRT1的“快速”心率。Y和HRT1的值可以是预先确定的或用户可编程的。在示例中,Y可以取10到20之间的值,并且HRT1可以取150和180bpm之间的值。
计时器/计数器电路234可以被预设或编程为AT持续时间DAT,其可以由指定数量的心跳或CL或特定时间段表示。当第一心室心率统计量满足指示出心率增加的第一条件时,计时器/计数器电路234可以计数从初始速率检测开始流逝的时间或检测到的心跳或CL。第一条件在下文中也称为“进入条件(entry condition)”,指示出进入持续AT检测的条件。在示例中,响应于十个rHR中的至少八个(8/10)被确定为“快速”,诸如超过心率阈值HRT1,可以启动计时器/计数器电路234。也就是说,进入条件是X/Y≥8/10。一旦启动,计时器/计数器电路234就可以向着DAT的结束流逝或倒计时。当持续时间DAT到期并且检测到持续AT事件时,或者当在DAT到期之前满足“退出条件”并且没有检测到持续AT事件时,计时器/计数器电路234可以被重置。
耦接到初始AT检测器232和计时器/计数器电路234的持续AT检测器236可以被配置为在AT持续时间DAT期间监视rHR,并且生成一个或多个第二心室心率统计量。一个或多个第二心室心率统计量可以每个从在第二多个心率分析窗口内确定出的多个代表性心室心率(rHR)生成。第二心室心率统计量可以包括第二多个心率分析窗口内超过心率阈值HRT2的rHR的第二相对数量,诸如分数或百分比。由此确定出的第二心室心率统计量被表示为“N分之M”(M/N)统计量,指示出从对应的N个心率分析窗口中计算出的N个代表性心室心率{rHR1、rHR2、...、rHRN}当中,总计M个rHR是超过阈值HRT2的“快速”心率。N和HRT2的值可以每个是预先确定的或用户可编程的。在示例中,N可以取10到20之间的值,并且HRT2可以取100到160bpm之间的值。
可以独立地对用于初始速率检测的检测参数(诸如Y和HRT1)和用于持续AT检测的检测参数(诸如N和HRT2)进行编程。在示例中,根据分别从十个连续心率分析窗口计算出的十个rHR来计算第一心室心率统计量和第二心室心率统计量,即,Y=N=10。心率阈值HRT2可以与HRT1相同。在特定示例中,HRT1=HRT2=150bpm。可替选地,HRT2和HRT1可以被编程为不同的值。在示例中,HRT1=180bpm,并且HRT2=150bpm。
持续AT检测器236可以被配置为响应于贯穿持续时间DAT满足第二条件的一个或多个第二心室心率统计量来检测持续AT发作(episode)。在示例中,第二心室心率统计量是如上面描述的“N分之M”(M/N)统计量,并且第二条件可以是贯穿DAT从任何十个连续心率分析窗口确定出的至少十分之六(6/10)rHR超过心率阈值HRT2,即M/N≥6/10。在示例中,可以贯穿持续时间DAT检查十个连续心率分析窗口的移动集合,下文中称为“窗口集”。得到的多个窗口集可以彼此重叠或不重叠。可以从每个窗口集确定M/N统计量,并且在DAT期间趋势化。如果对应于DAT期间的所有窗口集的M/N统计量满足M/N≥6/10的第二条件,则检测到持续AT发作。如果对应于在DAT期间的至少一个窗口集的M/N统计量不满足M/N≥6/10的第二条件,则没有检测到持续AT;并且计时器/计数器电路234可以重置持续时间计时器。与定义了触发持续AT检测器236以开始持续AT检测的会期的“进入条件”的X/Y≥8/10相比而言,M/N<6/10定义了触发持续AT检测器236以退出持续AT检测的会期的“退出条件”。下面讨论用于持续AT检测的移动窗口集的示例,诸如参考图4。
在一些示例中,第二心室心率统计量可以另外地或可替选地包括rHR的心率稳定度。心率稳定度指示出心室对AT的反应的变化性或规则性的程度,并且可以使用从第二多个心率分析窗口计算出的rHR来确定。心率稳定度的示例可以包括表征周期长度或心率的变化性的差、方差、标准偏差或其它高阶统计量。在示例中,可以使用从心率分析窗口计算出的多个rHR的直方图来计算心率稳定度。在另一个示例中,心率稳定度可以从rHR的洛伦兹图(LP)导出。LP是作为前一个或多个CL或HR的函数的当前HR或周期长度(CL)的散点图。基于LP的稳定度可以包括从CL或HR的LP生成的几何指数,诸如LP形状的最大长度、LP形状的最大宽度、LP散点图的密度或扩展度量等。
在AT持续时间DAT期间可以趋势化心率稳定度。心率稳定度可以从多个窗口集计算出,每个窗口集由用于计算M/N统计量的N个代表性心室心率{rHR1、rHR2、...、rHRN}组成。持续AT检测器236可以被配置为使用心率稳定度的趋势来检测AT事件,诸如当从在DAT期间的所有窗口集计算出的心率稳定度超过稳定度阈值或落入指定范围内时。持续AT检测器236可以可替选地使用M/N统计量和心率稳定度测量结果来检测AT事件。在示例中,如果(1)对应于DAT期间的所有窗口集的M/N统计量满足M/N≥6/10并且(2)从DAT期间的所有窗口集计算出的心率稳定度超过稳定度阈值或落入指定范围内,则检测到AT事件。如果M/N统计量或心率稳定度未能满足它们相应的条件,则没有检测到持续AT;并且计时器/计数器电路234可以重置持续时间计时器。
可以根据要检测的AT事件的类型独立地对一个或多个检测参数进行编程,诸如用于初始速率检测的心率阈值HRT1、用于持续AT检测的心率阈值HRT2、心率稳定度阈值或AT持续时间DAT等。例如,AF可以具有不同的心室反应模式,包括与典型AFL中的心率和心率稳定度不同的平均心率和心率稳定度。具有更快和更不规则心率的AF或快速AFL可降低心输出量并且更显着地恶化患者血液动力学稳定度,因此可能需要及早检测并警示临床医生立即治疗。相反,具有较慢和/或更规则心率的AFL可能不太可能引起大量的血液动力学紊乱;并且较长的监视会期可能有益于避免非AT事件诸如窦性节律或窦性心动过速的假阳性检测。像这样,用于检测AFL事件的持续时间(由DAFL表示)可以基本上长于用于检测AF事件的持续时间(由DAF表示)。用于检测AF的时间段(诸如DAF)可以是大约数秒或数分钟。用于检测AFL的时间段(诸如DAFL)可以是大约数小时。在示例中,借由示例而非限制,DAFL在4-8小时之间可编程,并且DAF在2-10分钟之间可编程。
还可以根据房性快速性心律失常期间的房室(AV)阻滞程度对检测参数进行编程。例如,在AFL期间可能发生2:1的AV阻滞,导致大约一半的心房率的规则心室率。也可以存在其它固定比例,诸如3:1、4:1或5:1的AV阻滞。除了固定比例AV阻滞之外,AV阻滞还可能随着搏动而变化,导致了不规则的心室节律。像这样,AV阻滞的程度可能影响心室反应,包括心率和心率稳定度。典型(I型)AFL和非典型(II型)AFL之间的心率和心率稳定度也可能不同。检测参数(诸如检测持续时间)可以被编程为不同的值以检测不同类型的AFL事件。
在一些示例中,心律失常检测器电路230可以被配置为检测两种或更多种类型的AT事件,诸如AF、快速AFL、慢速AFL、I型AFL、II型AFL或房性心动过速等。可以在它们相应的检测区域中同时且独立地检测两种或更多种类型的AT事件。每个区域可以由心率阈值或心率范围来定义。例如,多区域AT检测可以包括可以由100-160bpm之间的心率范围定义的慢速AFL区域、以及可以由高于160bpm的心率定义的快速AFL(fAFL)区域。可替选地,可以通过阈值或心率稳定度范围来定义区域。每个区域可以包括用于检测特定类型的AT事件的相应检测标准。下面讨论对多区域AT检测进行编程以检测两种或更多种类型的AT事件的示例,诸如参考图5。
如图2中示出的,心率检测器电路220或心律失常检测器电路230可以分别包括电路组,该电路组包括一个或多个其它电路或子电路。该电路或子电路可以单独或组合地执行本文描述的功能、方法或技术。在示例中,电路组的硬件可以不变地被设计为执行特定操作(例如,硬连线)。在示例中,电路组的硬件可以包括可变连接的物理组件(例如,执行单元、晶体管、简单电路等),其包括物理上被修改(例如,磁性地、电性地、不变聚集粒子的可移动放置等)以编码特定操作的指令的计算机可读介质。在连接物理组件时,硬件构成的底层电气特性例如从绝缘体变为导体,反之亦然。指令使能嵌入式硬件(例如,执行单元或加载机构)经由可变连接在硬件中创建电路组的成员,以在操作时执行特定操作的部分。因此,当装置操作时,计算机可读介质可通信地耦接到电路组成员的其它组件。在示例中,任何物理组件可以用在多于一个电路组的多于一个的成员中。例如,在操作中,执行单元可以在一个时间点处在第一电路组的第一电路中使用并且由第一电路组中的第二电路再用,或者在不同时间处由第二电路组中的第三电路再用。
在各种示例中,心率检测器电路220或心律失常检测器电路230可以被实施为微处理器电路的一部分。微处理器电路可以是专用处理器诸如数字信号处理器、专用集成电路(ASIC)、微处理器或用于处理包括从传感器电路210接收到的生理信号的信息的其它类型的处理器。可替选地,微处理器电路可以是通用处理器,其可以接收并执行指令集,该指令集执行本文描述的功能、方法或技术。
控制器电路240控制传感器电路210、心率检测器电路220、心律失常检测器电路230、用户界面单元250以及这些组件之间的数据和指令流的操作。例如,控制器电路240可以控制rHR的确定、初始速率检测和持续心律失常检测。用户界面单元250可以包括输入单元251和输出单元252。在示例中,用户界面单元250的至少一部分可以在外部系统130中实施。输入单元251可以接收用户的编程输入,诸如用于初始和持续心律失常检测的参数,包括心率阈值HRT1和HRT2、心率稳定度的阈值和AT持续时间DAT等。在一些示例中,输入单元251可以允许用户对多个检测区域进行编程,诸如AF区域、快速AFL(fAFL)区域、慢速AFL区域、房性心动过速区域等。输入单元251可以包括输入装置,诸如键盘、屏幕键盘、鼠标、轨迹球、触摸板、触摸屏或其它指向或导航装置。输入装置可以使能系统用户对用于感测生理信号、检测心律失常和生成警示等的参数进行编程。
输出单元252可以生成人类可感知的信息呈现,包括一种或多种房性快速性心律失常的检测。输出单元252可以包括显示器,用于显示感测到的生理信号、中间测量结果或计算,诸如第一心室心率统计量和第二心室心率统计量(例如,在AT持续时间DAT期间的X/Y统计量、M/N统计量、M/N统计量的趋势或心率稳定度趋势)、检测到的AT类型(诸如快速AT、慢速AT、AF或房性心动过速等)、指示持续AT的时间的AT负担等。输出单元252可以包括用于打印检测信息的硬拷贝的打印机。该信息可以以表格、图表、图或任何其它类型的文本、列表或图形呈现格式呈现。输出信息的呈现可以包括音频或其它媒体格式,以警示系统用户检测到的心律失常事件。在示例中,输出单元252可以生成警示、警报、紧急呼叫或其它形式的警告,以向系统用户发出检测到的心律失常事件的信号。
输出单元252可输出用于调整一个或多个心律失常检测参数、诸如检测持续时间DAT的编程建议。在示例中,持续AT检测器236可以使用大约5-8小时的检测持续时间DAFL来检测持续AFL事件。典型的AFL事件可以基本上在时间上更持久于其它混杂节律,诸如在可容忍的体力活动期间具有升高的心率(例如,窦性心动过速)的窦性节律。AFL事件可以持续至少与DAFL一样长或甚至比DAFL更长,而混杂的高速窦性节律通常贯穿持续时间DAFL不持续。因此,较长的初始检测持续时间DAFL可以帮助降低AFL检测中的误报率,并且因此实现更高的检测特异性。然而,长持续时间DAFL可能导致具有较短持续时间(例如,短于DAFL)的一些AFL事件的误检测,并且潜在地损害对AFL检测的检测灵敏度。为了减轻对灵敏度的这种影响,当心律失常检测器电路230在持续时间计时器到期时检测到持续AT事件时,输出单元252可以产生并向用户呈现减少检测持续时间DAFL的建议,诸如建议将DAFL调整到较短的持续时间,诸如2-5小时之间的值,或者将DAFL减少指定的量。输出单元252可以被配置为使能系统用户(诸如临床医生)审查或判决检测到的AFL事件并且重新编程,或从预先确定的列表中选择持续时间DAFL,可选地连同一个或多个其它参数。较短持续时间DAFL可以改善AFL检测灵敏度和房性快速性心律失常负担的估计(例如,在心律失常中花费的时间),并且可以维持或基本上不包括检测特异性。
可选的治疗电路260可以被配置为响应于AT事件的检测向患者递送治疗。治疗的示例可包括递送至心脏、神经组织、其它靶组织的电刺激治疗、心脏复律治疗、除颤治疗或包括将药物递送至组织或器官的药物治疗。在一些示例中,治疗电路260可以修改现有治疗,诸如调整刺激参数或药物剂量。
图3大致上示出了在心律失常检测期间的操作状态的状态机300以及这些状态当中的转变的图。状态机300可以在系统200的部分、诸如心率检测器电路220和心律失常检测器电路230中实施并由其执行。可替选地,状态机300可以实施为存储在存储器中的计算机程序,并且由处理感测到的生理信号并生成心律失常检测的输出的微处理器执行。借由示例而非限制,状态机300可以包括窦性节律监视状态310和房性快速性心律失常(AT)监视状态320,该AT监视状态320可以包括高速率监视状态322和持续心律失常状态324。
窦性节律监视状态310表示在非升高的心率下的心脏监视状态,诸如正常窦性节律的状态。状态310的心脏监视可以经由传感器电路210执行,其用于感测包含关于心率或脉搏率的信息的生理信号,并且可以经由心率检测器电路220执行,其用于感测代表性心室心率(rHR),并且生成第一心室心率统计量诸如X/Y统计量。当第一心室心率统计量满足指示出快速性心律失常的心率升高的第一条件时,发生到高速率监视状态322的转变331。在示例中,当X/Y统计量满足指示出rHR的很大一部分超过心率阈值HRT1的“进入条件”时,诸如X/Y≥8/10,触发状态转变331。
高速率监视状态322表示心率升高时的心脏监视的状态。状态322处的心脏监视可以经由心律失常检测器电路230执行,其中贯穿特定持续时间DAT监视rHR。可以在持续时间DAT期间生成和趋势化一个或多个第二心室心率统计量,诸如M/N统计量或心率稳定度测量结果中的一个或多个。当一个或多个第二心室心率统计量贯穿持续时间DAT满足相应的第二条件时,发生到持续心律失常状态324的过渡332。在示例中,当对应于持续时间DAT期间的所有窗口集的M/N统计量满足M/N≥6/10并且从持续时间DAT期间的所有窗口集计算出的心率稳定度测量结果超过稳定度阈值或落入特定范围内时,触发状态转变332。如果在高速率监视状态322处,一个或多个第二心室心率统计量贯穿持续时间DAT未能满足它们相应的第二条件,则发生返回到窦性节律监视状态310的转变333,并且不认为检测到持续AT。在示例中,如果M/N统计量满足“退出条件”,则触发状态转换333,该退出条件指示出在DAT到期之前窗口集中的rHR的不足部分超过心率阈值HRT2,诸如X/Y<6/10。
持续心律失常状态324表示持续房性快速性心律失常的状态。检测结果可以输出到诸如临床医生的用户、或者诸如微处理器中可执行的计算机程序的实例的过程。在示例中,该过程可以包括用于抗心律失常治疗的建议、或者用于进一步诊断测试或治疗的建议的计算机实施的生成。
图4示出了用于持续AT检测的移动窗口集的示例的图400。生理信号401可以包含关于脉动心脏电活动或机械活动的信息。可以经由例如心跳感测电路222检测心率。可以将由多个心率分析窗口410A、410B、...组成的窗口集410应用于生理信号401,并且可以在每个心率分析窗口内计算代表性心室心率(rHR)。在示例中,窗口集410可以由Y个连续心率分析窗口组成。每个心率分析窗口可以具有特定大小,由特定数量的心跳或CL或特定时间段表示。在示例中,心率分析窗口具有大约2-5分钟的大小。可以将rHR每个计算为其相应心率分析窗口内的心率测量结果的模式或另一中心趋势。第一心室心率统计量、诸如先前参考图2-图3所讨论的X/Y统计量可以从与窗口集410中的Y个连续心率分析窗口相对应的rHR生成。
当X/Y统计量满足指示从窗口集410计算出的rHR的很大一部分(例如,8/10)超过心率阈值HRT1的“进入条件”时,声明初始速率检测,并且可以在时间431处启动AT持续时间计时器。可以将AT持续时间(DAT)430编程为特定值。可以建立窗口集421,其包括多个心率分析窗口421A、421B、...。在每个心率分析窗口内,可以计算相应的代表性心室心率rHR,诸如使用对应心率分析窗口内的心率测量结果的模式或另一中心趋势来计算。可以从对应于窗口集421的rHR确定出第二心室心率统计量。在示例中,窗口集421可以由N个连续心率分析窗口组成,并且第二心室心率统计量可以包括使用来自窗口集421中的N个连续心率分析窗口的rHR计算出的M/N统计量或心率稳定度。当第二心室心率统计量满足第二条件时,诸如M/N≥6/10和/或心率稳定度超过稳定度阈值或落入特定范围内,窗口集421可以被移位特定时间或特定数量的心跳以形成另一个窗口集422。窗口集421和422可以重叠特定时间段、特定数量的心跳、或特定数量的心率分析窗口。在如图4中示出的示例中,窗口集421可以被移位一个心率分析窗口以形成窗口集422。可以从对应于窗口集422中的N个连续心率分析窗口的rHR类似地确定出第二心室心率统计量。可以像这样建立移动窗口集,直到它在432处达到持续时间DAT的结束为止。如果在DAT内从所有得到的窗口集421、422、423、......计算出的第二心室心率统计量满足第二条件,诸如当(1)对应于DAT期间的所有窗口集的M/N统计量满足M/N≥6/10并且(2)从DAT期间的所有窗口集计算出的心率稳定度超过稳定度阈值或落入特定范围内时,则可以在432处检测到持续AT事件。然而,如果对应于窗口集421、422、423、...中的任何一个的第二心室心率统计量不能满足相应的第二条件,诸如当M/N统计量或心率稳定度不能满足它们相应的条件时,则没有检测到持续AT。
图5示出了多区域房性快速性心律失常检测的示例的图500。借由示例而非限制,示出了双区域检测,包括快速AFL(fAFL)区域和AFL区域。每个区域定义用于检测特定类型的AT事件的标准。在如图5中示出的示例中,AFL区域和fAFL区域中的心律失常检测使用窗口集410共享初始速率检测,如参考图4所讨论的。当第一统计量指示从窗口集410计算出的rHR的很大一部分超过心率阈值HRT1时,AFL区域和fAFL区域下的持续节律检测可以在511处启动,并且同时且独立地进行。在一些示例(未示出)中,一个区域(例如,fAFL区域)中的初始速率检测可以与另一个区域(例如,AFL区域)中的初始速率检测分离并且独立于该另一个区域中的初始速率检测。例如,每个区域可以涉及使用区域特定窗口集410、区域特定心率阈值HRT1或区域特定“进入条件”的初始速率检测。
多个区域中的每个可以定义用于检测特定类型的AT事件的相应检测标准。可以针对每个区域独立地对诸如HRT2和持续时间DAT的检测参数进行编程。fAFL区域可具有比AFL区域更高的经编程的心率阈值(HRfAFL)和更短的持续时间510(DfAFL),该AFL区域具有更低的心率阈值(HRAFL)和更长的持续时间520(DAFL)。在示例中,fAFL区域可以被编程为HRfAFL=160bpm并且DfAFL=2小时,并且AFL区域可以被编程为HRAFL=100bpm并且DAFL=8小时。如图4中示出的移动窗口集可用于每个区域中的心律失常检测。在示例中,诸如在DAFL内的一个或多个窗口集处的一个或多个窗口集可以用于AFL检测和fAFL检测。可以将从来自每个窗口集的心率分析窗口生成的代表性心室心率与心率阈值HRAFL进行比较,以确定AFL区域的M/N统计量(M/NAFL)。可以将相同的代表性心室心率与心率阈值HRfAFL进行比较,以确定fAFL区域的M/N统计量(M/NfAFL)。由于心率阈值HRfAFL大于心率阈值HRAFL,因此满足fAFL区域中的条件M/NfAFL≥6/10的M/NfAFL统计量也可以满足AFL区域中的条件M/NAFL≥6/10。像这样,在较高速率的fAFL区域中花费的时间可以计入较低速率AFL区域中花费的时间。如果M/NfAFL统计量贯穿持续时间510满足指定条件(例如,M/NfAFL≥6/10),则在512处检测到fAFL事件。AFL持续时间计时器在512处未到期,并且AFL区域中的持续心律失常的检测可以继续超过时间512,直到522处的AFL持续时间计时器到期为止。也就是说,fAFL的检测不会自动停止在较低速率AFL区域处正在进行的检测。可替选地,AFL区域处的检测可以响应于512处的fAFL的检测而终止。
另外地或可替选地,如果M/NfAFL统计量在512处fAFL持续时间计时器到期之前满足诸如M/NfAFL<6/10的“退出条件”,则心率评估和心律失常检测可以在低速率AFL区域中继续,直到在522处AFL持续时间计时器到期为止。即,fAFL的不检测将不会自动停止在较低速率AFL区域处正在进行的检测。fAFL区域和AFL区域中的每个处的检测或不检测可以独立地输出到用户或过程,诸如经由输出单元252,以警示用户AFL或fAFL的检测。可以将检测到的AFL或fAFL发作转发到诸如远程患者管理系统的外部系统以进行进一步处理。在示例中,检测到的心律失常可以被标记为AFL、fAFL或者AFL和fAFL两者,并且在心律失常报告的显示器或硬拷贝中呈现。
如本文档中所讨论的每个区域的多区域检测和检测报告可以提供改进的心律失常诊断,包括心律失常率、心律失常负担和心律失常进展的时间分布的表征。在一个示例中,fAFL区域中的不检测连同AFL区域中的检测可以指示平均的心律失常率可以位于HRAFL和HRfAFL(AFL区域和fAFL区域的心率阈值)之间。在另一个示例中,fAFL区域中的检测连同AFL区域中的不检测可以指示AT发作以等于或高于HRfAFL的较高速率开始并且持续贯穿持续时间DfAFL,并且然后减速并且在522处AFL持续时间计时器到期之前的某个时间点处最终降至HRAFL以下。临床医生可以使用改进的心律失常表征来确定个体化的诊断测试和适当的治疗方案。
多区域检测可以另外包括第三AF区域。AF区域中的AF事件的检测可以包括使用如图4中示出的移动窗口集的初始速率检测和持续AF检测。因为AF典型地伴有快速和不规则的心率,这可能损害患者的血液动力学稳定度,所以AF区域可以利用比AFL区域检测DAFL更短的持续时间DAF进行编程。在示例中,DAF=2分钟。在一些示例中,代替诸如如前面讨论的M/N统计量的心率或者除了其之外,还可以基于心率稳定度来检测AF事件。
图6大致上示出了用于检测来自患者的心律失常的方法600的示例。心律失常的示例可包括心房颤动(AF)、心房扑动(AFL)、房性心动过速、阵发性室上性心动过速(PSVT)、Wolff-Parkinson-White(WPW)综合征、室性心动过速、心室颤动、心动过缓或窦性停顿等。方法600可以在诸如可植入或可穿戴医疗装置的流动式医疗装置中或在远程患者管理系统中实施和执行。在示例中,方法600可以在AMD 110中的心律失常检测电路160、外部系统130或心律失常检测系统200中实施并由其执行。
方法600在610处开始,其中可以从患者感测生理信号。生理信号可以包括心电信号,诸如心电图(ECG)或心内电描记图(EGM)。生理信号可以另外地或可替选地包括指示心脏机械活动的信号,包括胸部或心脏阻抗信号、动脉压信号、肺动脉压信号、左心房压信号、RV压信号、LV冠状动脉压信号、心音或心内膜加速度信号、对活动的生理反应、呼吸暂停低通气指数、一个或多个呼吸信号(诸如呼吸率信号或潮气量信号)等。感测到的生理信号可以被预处理,包括信号放大、数字化、滤波或其它信号调节操作中的一个或多个。可以从预处理的生理信号中检测指示出心跳的多个电生理事件或机械生理事件。在一些示例中,可以从感测到的生理信号中检测诸如与搏动相关联的统计或形态参数或计时参数的信号度量。
在620处,可以执行心律失常的初始速率检测,诸如经由初始AT检测器232。可以从感测到的生理信号中感测心跳,诸如通过经由心跳感测电路222测量心动周期长度(CL)。可以从测量出的CL计算心率(HR)。620处的初始AT检测可以包括在622处确定感测到的电生理信号或机械生理信号的第一多个心率分析窗口内的代表性心室心率(rHR)。rHR可以被计算为相应心率分析窗口内的多个HR测量结果的平均值、中值、模式或其它中心趋势。在示例中,对应于心率分析窗口的rHR可以被计算为HR测量结果的模式,指示出多个HR测量结果中最频繁出现的HR值。rHR可以可替选地被计算为HR测量结果的特定百分位数,其指示出在不大于该百分位数的频率分布(诸如HR直方图)中的多个HR测量结果的百分比。心率分析窗口可以具有特定大小,诸如由多个心跳或CL或时间段表示。在示例中,心率分析窗口大约是2-5分钟。心率分析窗口可以是可编程的。
可以使用在第一多个心率分析窗口内确定出的多个rHR在624处生成第一心室心率统计量。第一心室心率统计量可以包括第一多个心率分析窗口内的超过心率阈值HRT1的rHR的第一相对数量,诸如分数或百分比。在示例中,第一心室心率统计量可以包括“Y分之X”(X/Y)统计量,指示出从对应的Y个心率分析窗口计算出的Y个代表性心室心率{rHR1、rHR2、...、rHRY}当中,X个rHR是超过阈值HRT1的“快速”心率。举例来说,Y可以是10到20之间的值,并且HRT1可以取150到180bpm之间的值。
如果在初始速率检测期间第一心室心率统计量满足第一“进入条件”,则可以在630处开始持续AT检测。“进入条件”指示出进入持续AT检测过程必须满足的标准。在示例中,“进入条件”可以包括来自十个连续心率分析窗口的十个rHR中的至少八个超过心率阈值HRT1。也就是说,X/Y≥8/10。进入条件还可以触发具有特定持续时间DAT的持续时间计时器的倒计时或流逝,诸如经由计时器/计数器电路234。
在630处的持续AT检测可以包括在632处确定第二多个心率分析窗口内的rHR,并且在634处从多个rHR生成一个或多个第二心室心率统计量。在示例中,第二心室心率统计量可以包括第二多个心率分析窗口内的超过心率阈值HRT2的rHR的第二相对数量,诸如分数或百分比。在示例中,第二心室心率统计量可以包括“N分之M”(M/N)统计量,指示出在从对应的N个心率分析窗口中计算出的N个代表性心室心率{rHR1、rHR2、...、rHRN}当中,M个rHR是超过阈值HRT2的“快速”心率。类似于初始速率检测期间的“X/Y”统计量,在“M/N”统计量中,N和HRT2的值可以是预先确定的或用户可编程的。举例来说,N可以是10-20之间的值,并且HRT2可以取100-160bpm之间的值。用于持续AT检测的心率阈值HRT2可以与用于初始速率检测的心率阈值HRT1相同。可替选地,HRT2和HRT1可以独立地编程为彼此不同的值。在示例中,HRT1=HRT2=150bpm。在另一个示例中,HRT1=180bpm,并且HRT2=150bpm。
在640处,可以响应于一个或多个第二心室心率统计量贯穿持续时间DAT满足第二条件来检测AT事件。在示例中,第二条件可以是从贯穿DAT的任何十个连续心率分析窗口确定出的至少十分之六(6/10)rHR超过心率阈值HRT2。在示例中,可以贯穿持续时间DAT检查十个连续心率分析窗口的移动窗口集。窗口集可以彼此重叠或不重叠。可以从每个窗口集确定M/N统计量,并且在DAT期间趋势化。如果对应于DAT期间的所有窗口集的M/N统计量满足M/N≥6/10的第二条件,则检测到持续AT发作。如果对应于在DAT期间的至少一个窗口集的M/N统计量不满足M/N≥6/10的第二条件,或者满足M/N<6/10的“退出条件”,则没有检测到持续AT,并且计时器/计数器电路234可以被重置。
在一些示例中,在634处第二心室心率统计量可以另外地或可替选地包括诸如从第二多个心率分析窗口计算出的rHR的心率稳定度。心率稳定度的示例可以包括指示出周期长度或心率的变化性或规则性的程度的差、方差、标准偏差或其它高阶统计量。心率稳定度可以从多个窗口集计算出,每个窗口集由用于计算M/N统计量的N个代表性心室心率{rHR1、rHR2、...、rHRN}组成。在DAT期间可以趋势化所得到的心率稳定度测量结果。可以使用心率稳定度的趋势、或者使用M/N统计量和心率稳定度测量结果,而在640处检测持续AT事件。如果M/N统计量或心率稳定度未能满足它们相应的条件,则没有检测到持续AT。
检测到的AT事件可以在过程652、654或656中的一个或多个中使用。在652处,AT事件可以输出到用户或过程,诸如经由如图2中示出的输出单元252。在示例中,可以在显示器上显示信息,包括感测到的生理信号、中间测量结果或计算,诸如第一心室心率统计量和第二心室心率统计量、检测到的AT的类型、或指示在持续AT中花费的时间的AT负担等。另外地或可替选地,可以生成检测信息的硬拷贝。
在654处,可以生成建议并将其提供给用户。该建议可以包括一个或多个要进行的进一步诊断测试、用于治疗检测到的心律失常或减轻心律失常并发症的抗心律失常治疗。该建议可以包括调整一个或多个心律失常检测参数,诸如检测持续时间DAT。在示例中,在检测典型的AFL事件时,可以最初对大约5-8小时的持续时间DAFL进行编程。这样长的持续时间可以帮助降低AFL检测的误报率,并且允许更高的检测特异性。在持续AT事件的检测时,可以向用户呈现调整持续时间DAFL的建议,诸如将DAFL降低到2-5小时之间的值。系统用户(诸如临床医生)可以审查或裁定检测到的AFL事件,并且可选地连同一个或多个其它参数对持续时间DAFL重新编程,以改善AFL检测灵敏度和房性快速性心律失常负担估计的准确性(例如,在心律失常下的时间),同时维持或基本上不包含AFL检测特异性。
方法600可以包括响应于检测到心律失常而向患者递送治疗的可选步骤656,诸如经由如图2中示出的可选治疗电路260。治疗的示例可以包括递送到心脏、神经组织、其它靶组织的电刺激治疗、心脏复律治疗、除颤治疗或包括将药物递送到组织或器官的药物治疗。在一些示例中,可以修改现有的治疗或治疗计划以治疗检测到的心律失常,诸如修改患者跟进时间表、或调整刺激参数或药物剂量。
图7大致上示出了用于两种或更多种房性快速性心律失常(诸如心房颤动(AF)、快速心房扑动(AFL)、慢性AFL、I型AFL、II型AFL、或房性心动过速等)的多区域检测的方法700的示例。方法700可以是方法600的至少一部分的实施例,包括步骤630和640。在示例中,方法700可以在图2中的心律失常检测系统200中实施并由其执行。
借由示例而非限制,方法700示出了两个区域AT检测,包括检测AFL区域中的AFL事件和检测fAFL区域中的快速AFL(fAFL)事件。AFL区域和fAFL区域可以共享初始速率检测620,如参考图6所讨论的。当第一心室心率统计量指示从窗口集410计算出的rHR的很大一部分超过心率阈值HRT1时,AFL区域和fAFL区域处的持续节律检测可以同时且独立地进行。可替选地,AFL区域和fAFL区域检测可以包括具有其相应“进入条件”的单独且独立的初始速率检测。
在710处,响应于第一心室心率统计量满足第一条件,诸如十个连续rHR中的至少八个超过心率阈值HRT1,可以启动AFL持续时间计时器和fAFL持续时间计时器。fAFL区域的持续时间可能短于AFL区域。在示例中,fAFL区域的持续时间是DfAFL=2小时,并且AFL区域的持续时间是DAFL=8小时。
在720处,可以在心率分析窗口集、诸如N个连续心率分析窗口的集合内确定代表性心室心率(rHR)。在示例中,N=10。从心率分析窗口集生成的rHR可以由AFL区域检测730和fAFL区域检测740使用。AFL区域检测730和fAFL区域检测740可以同时且独立地进行。每个区域定义用于检测指定类型的AT事件的相应检测标准,包括一个或多个第二心室心率统计量和心率阈值HRT2
在731处,可以通过将在720处生成的多个rHR与AFL区域的心率阈值(HRAFL)进行比较来生成第二心室心率统计量,诸如M/N统计量。在示例中,HRAFL=100bpm。在732处,可以将第二心室心率统计量与特定的第二条件进行比较。如果第二心室心率统计量满足AFL检测条件,诸如在来自十个连续心率分析窗口的720处生成的至少十分之六(6/10)rHR超过HRAFL,则在733处可以更新AFL持续时间计时器。在示例中,可以经由如图5中示出的移动窗口集来实现AFL持续时间计时器的更新。沿着时间轴向右移位窗口集对应于持续时间DAFL的时间流逝或倒计时。在734处,检查AFL持续时间计时器是否到期。如果AFL持续时间计时器尚未到期,则AFL区域中的心律失常检测可以在720处继续,在那里可以从新的心率分析窗口集生成rHR,并且可以从新的时移窗口集评估第二心室心率统计量(例如,M/N统计量)。如果在734处AFL持续时间计时器已经到期,则认为AFL贯穿持续时间DAFL被持续;并且可以在750处检测到持续AFL。如果在DAFL期间的任何时间处,第二心室心率统计量在732处不满足AFL检测条件,则认为满足“退出条件”;并且在760处做出没有检测到持续AFL的决定。
fAFL检测740可以与AFL区域检测730同时进行。fAFL检测740可以包括与AFL检测730类似的步骤。在741处,可以将在720处生成的相同多个rHR与fAFL区域(HRfAFL)的心率阈值进行比较,以确定第二心室心率统计量。在示例中,心率阈值HRfAFL=160bpm。如果第二心室心率统计量满足fAFL检测条件,诸如当至少十分之六(6/10)rHR超过HRfAFL时,则在743处可以更新AFL持续时间计时器。然后在744处检查fAFL持续时间计时器是否到期。如果fAFL持续时间计时器尚未到期,则fAFL区域中的心律失常检测可以在720处继续,在那里可以确定来自新的心率分析窗口集的rHR,并且可以从新的时移窗口集评估第二心室心率统计量(例如,M/N统计量)。如果在744处fAFL持续时间计时器已经到期,则认为fAFL贯穿持续时间DfAFL被持续;并且在750处检测到持续fAFL。如果在持续时间DfAFL期间的任何时间处,第二心室心率统计量在742处不满足fAFL检测条件,则认为满足“退出条件”;并且在760处做出没有检测到持续fAFL的决定。然后可以通过如图6中示出的过程652、654或656中的一个或多个来使用检测到或没有检测到AFL或fAFL的决定。
图8大致上示出了在其上可以执行本文所讨论的任何一种或多种技术(例如,方法)的示例机器800的框图。该描述的部分可以应用于LCP装置、IMD或外部编程器的各个部分的计算框架。
在可替选的实施例中,机器800可以作为独立装置进行操作,或者可以连接(例如,联网)到其它机器。在联网部署中,机器800可以在服务器-客户网络环境中以服务器机器、客户机器或两者的能力进行操作。在示例中,机器800可以充当对等(P2P)(或其它分布式)网络环境中的对等机器。机器800可以是个人计算机(PC)、平板电脑PC、机顶盒(STB)、个人数字助理(PDA)、移动电话、网络电器、网络路由器、交换机或网桥、或者能够执行指定该机器要采取的动作的指令(顺序或以其它方式)的任何机器。此外,虽然仅示出了单个机器,但术语“机器”还应被视为包括以下机器的任何收集,其单独或联合执行一个(或多个)指令集以实施本文所讨论的任何一种或多种方法,诸如云计算、软件即服务(SaaS)、其它计算机集群配置。
如本文描述的,示例可以包括逻辑或多个组件或机构,或者可以由其操作。电路组是在包括硬件(例如,简单电路、门、逻辑等)的有形实体中实施的电路的收集。电路组成员可以是随时间推移而灵活的和潜在的硬件可变性。电路组包括可以单独或组合地在操作时执行指定操作的成员。在示例中,电路组的硬件可以不变地被设计为执行特定操作(例如,硬连线)。在示例中,电路组的硬件可以包括可变连接的物理组件(例如,执行单元、晶体管、简单电路等),其包括物理上被修改(例如,不变聚集粒子的磁性地、电地、可移动放置等)以编码特定操作的指令的计算机可读介质。在连接物理组件时,硬件构成的底层电气特性例如从绝缘体变为导体,反之亦然。指令使能嵌入式硬件(例如,执行单元或加载机构)经由可变连接在硬件中创建电路组的成员,以在操作时执行特定操作的部分。因此,当装置操作时,计算机可读介质可通信地耦接到电路组成员的其它组件。在示例中,任何物理组件可以用在多于一个电路组的多于一个的成员中。例如,在操作中,执行单元可以在一个时间点处在第一电路组的第一电路中使用并且由第一电路组中的第二电路再用,或者在不同时间处由第二电路组中的第三电路再用。
机器(例如,计算机系统)800可以包括硬件处理器802(例如,中央处理单元(CPU)、图形处理单元(GPU)、硬件处理器核心或其任何组合)、主存储器804和静态存储器806,其中的一些或全部可以经由互连链路(例如,总线)808彼此通信。机器800还可以包括显示单元810(例如,光栅显示器、矢量显示器、全息显示器等)、字母数字输入装置812(例如,键盘)以及用户界面(UI)导航装置814(例如,鼠标)。在示例中,显示单元810、输入装置812和UI导航装置814可以是触摸屏显示器。机器800可以另外包括存储装置(例如,驱动单元)816;信号生成装置818(例如,扬声器);网络接口装置820;以及一个或多个传感器821,诸如全球定位系统(GPS)传感器、指南针、加速度计或其它传感器。机器800可以包括输出控制器828,诸如串行(例如,通用串行总线(USB))、并行或其它有线或无线(例如,红外(IR)、近场通信(NFC)等)连接,以通信或控制一个或多个外围装置(例如,打印机、读卡器等)。
存储装置816可以包括机器可读介质822,其上存储有一个或多个数据结构集或指令集824(例如,软件),其体现了由本文描述的任何一个或多个技术或功能或由其使用。指令824还可以在机器800对其执行期间完全或至少部分地驻留在主存储器804内、静态存储器806内或硬件处理器802内。在示例中,硬件处理器802、主存储器804、静态存储器806或存储装置816的一个或任何组合可以构成机器可读介质。
虽然机器可读介质822被示为单个介质,但是术语“机器可读介质”可以包括被配置为存储一个或多个指令824的单个介质或多个介质(例如,集中式或分布式数据库,和/或相关联的高速缓存和服务器)。
术语“机器可读介质”可以包括能够存储、编码或携带用于由机器800执行并且使机器800执行本公开的任何一种或多种技术的指令或者能够存储、编码或携带由这种指令使用或与这种指令相关联的数据结构的任何介质。非限制性机器可读介质示例可以包括固态存储器以及光学和磁性介质。在示例中,大容量机器可读介质包括具有多个粒子(其具有不变(例如,静止)质量)的机器可读介质。因此,大容量机器可读介质是非暂时传播信号。大容量机器可读介质的具体示例可以包括:非易失性存储器,诸如半导体存储器装置(例如,电可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM))和闪存装置;磁盘,诸如内部硬盘和可移动磁盘;磁光盘;以及CD-ROM和DVD-ROM磁盘。
还可以经由利用多种传输协议(例如,帧中继、互联网协议(IP)、传输控制协议(TCP)、用户数据报协议(UDP)、超文本传输协议(HTTP)等)中的任何一种的网络接口装置820使用传输介质在通信网络826上发送或接收指令824。示例通信网络可以包括局域网(LAN)、广域网(WAN)、分组数据网络(例如,因特网)、移动电话网络(例如,蜂窝网络)、普通老式电话(POTS)网络、以及无线数据网络(例如,称为
Figure BDA0002253991830000331
的电气和电子工程师协会(IEEE)802.11标准系列、称为
Figure BDA0002253991830000332
的IEEE 802.16标准系列)、IEEE 802.15.4标准系列、对等(P2P)网络等。在示例中,网络接口装置820可以包括一个或多个物理插孔(例如,以太网、同轴或电话插孔)或一个或多个天线以连接到通信网络826。在示例中,网络接口装置820可以包括多个天线以使用单输入多输出(SIMO)、多输入多输出(MIMO)或多输入单输出(MISO)技术中的至少一个来进行无线通信。术语“传输介质”应被视为包括能够存储、编码或携带用于由机器800执行的指令的任何无形介质,并且包括数字或模拟通信信号或其它无形介质以促进这种软件的通信。
在以上附图中示出了各种实施例。可以组合来自这些实施例中的一个或多个的一个或多个特征以形成其它实施例。
本文描述的方法示例可以至少部分地是机器或计算机实施的。一些示例可以包括编码有指令的计算机可读介质或机器可读介质,所述指令可操作以配置电子装置或系统执行如以上示例中描述的方法。这样的方法的实施方式可以包括代码,诸如微代码、汇编语言代码或高级语言代码等。这样的代码可包括用于执行各种方法的计算机可读指令。代码可以形成计算机程序产品的部分。此外,代码可以在执行期间或在其它时间有形地存储在一个或多个易失性或非易失性计算机可读介质上。
以上详细描述旨在是说明性的而非限制性的。因此,本公开的范围应该参考所附权利要求连同这样的权利要求所赋予的等同物的全部范围来确定。

Claims (14)

1.一种用于检测房性快速性心律失常的系统,包括:
房性快速性心律失常检测器电路,其配置为:
使用在第一多个心率分析窗口内确定出的多个代表性心室心率来生成第一心室心率统计量;
在特定持续时间期间生成一个或多个第二心室心率统计量,所述一个或多个第二心室心率统计量是由在第二多个心率分析窗口内确定出的多个代表性心室心率生成;并且
响应于第一心室心率统计量满足指示出随时间流逝心率增加的第一条件、和一个或多个第二心室心率统计量贯穿所述特定持续时间满足第二条件,而检测房性快速性心律失常AT事件,所述AT事件包括持续所述特定持续时间的持续心房扑动AFL事件,其中,所述第二条件指示出贯穿所述特定持续时间从任何十个连续心率分析窗口确定出的至少十分之六的代表性心室心率超过心率阈值。
2.根据权利要求1所述的系统,包括治疗电路,所述治疗电路被配置为响应于检测到所述持续AFL事件而生成并递送心脏治疗或神经治疗。
3.根据权利要求1-2中任一项所述的系统,其中所述特定持续时间能编程为2到8小时之间。
4.根据权利要求1-2中任一项所述的系统,其中所述多个代表性心室心率中的每个包括指示出相应心率分析窗口内的心室心率测量结果当中的最频繁心率的中心趋势。
5.根据权利要求1-2中任一项所述的系统,其中所述第一心室心率统计量包括在所述第一多个心率分析窗口内的超过心率阈值的代表性心室心率的第一相对数量。
6.根据权利要求5所述的系统,其中所述房性快速性心律失常检测器电路被配置为,响应于第一心室心率统计量满足所述第一条件而生成一个或多个第二心室心率统计量,所述第一条件指示出从十个连续心率分析窗口确定出的至少十分之八的代表性心室心率超过所述心率阈值。
7.根据权利要求1-2中任一项所述的系统,其中所述一个或多个第二心室心率统计量包括在所述第二多个心率分析窗口内的超过心率阈值的代表性心室心率的第二相对数量。
8.根据权利要求7所述的系统,其中,所述心率阈值能编程为每分钟100至150次搏动之间。
9.根据权利要求7所述的系统,其中,所述特定持续时间能编程为4到8小时之间。
10.根据权利要求7所述的系统,其中所述一个或多个第二心室心率统计量中的至少一个还包括从所述第二多个心率分析窗口计算出的代表性心室心率的心率稳定度,并且
其中,所述房性快速性心律失常检测器电路被配置为响应于所述心率稳定度超过稳定度阈值而进一步检测所述持续AFL事件。
11.根据权利要求10所述的系统,其中所述房性快速性心律失常检测器电路被配置为,使用从所述第二多个心率分析窗口计算出的代表性心室心率的直方图来生成所述心率稳定度。
12.根据权利要求1-2中任一项所述的系统,还包括参数调整器电路,所述参数调整器电路被配置为响应于对所述持续AFL事件的检测而减少所述特定持续时间。
13.根据权利要求1-2中任一项所述的系统,其中所述房性快速性心律失常检测器电路被配置为:
响应于一个或多个第二心室心率统计量贯穿AFL持续时间满足包括AFL心率阈值的AFL检测条件而检测所述持续AFL事件;并且
响应于一个或多个第二心室心率统计量贯穿快速AFL持续时间满足包括快速AFL心率阈值的快速AFL检测条件而检测持续快速AFL事件;
其中所述快速AFL心率阈值大于所述AFL心率阈值,并且所述快速AFL持续时间短于所述AFL持续时间。
14.根据权利要求1-2中任一项所述的系统,还包括流动式装置,所述流动式装置包括所述房性快速性心律失常检测器电路的至少一部分。
CN201880028681.9A 2017-03-07 2018-03-07 用于房性心律失常检测的系统和方法 Active CN110573068B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762468165P 2017-03-07 2017-03-07
US62/468,165 2017-03-07
PCT/US2018/021330 WO2018165289A1 (en) 2017-03-07 2018-03-07 Systems and methods for atrial arrhythmia detection

Publications (2)

Publication Number Publication Date
CN110573068A CN110573068A (zh) 2019-12-13
CN110573068B true CN110573068B (zh) 2023-01-03

Family

ID=61692144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880028681.9A Active CN110573068B (zh) 2017-03-07 2018-03-07 用于房性心律失常检测的系统和方法

Country Status (5)

Country Link
US (1) US10786172B2 (zh)
EP (1) EP3592220B1 (zh)
JP (1) JP7118991B2 (zh)
CN (1) CN110573068B (zh)
WO (1) WO2018165289A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10368769B2 (en) * 2016-07-27 2019-08-06 Medtronic, Inc. Automatic thresholds for atrial tachyarrhythmia detection in an implantable medical device
CN110573068B (zh) 2017-03-07 2023-01-03 心脏起搏器股份公司 用于房性心律失常检测的系统和方法
US11123005B2 (en) * 2018-11-12 2021-09-21 Medtronic, Inc Method and apparatus for atrial tachyarrhythmia detection
EP3880062A1 (en) * 2018-11-15 2021-09-22 Medtronic, Inc. Method of estimating heart rate and detecting tachyarrhythmia
WO2020118154A1 (en) * 2018-12-06 2020-06-11 Cardiac Pacemakers, Inc. Systems and methods for detecting arrhythmias
US11850433B2 (en) 2018-12-06 2023-12-26 Medtronic, Inc. Method and apparatus for establishing parameters for cardiac event detection
WO2020118150A1 (en) * 2018-12-06 2020-06-11 Cardiac Pacemakers, Inc. Systems for detecting arrhythmias
EP3890824A2 (en) * 2018-12-06 2021-10-13 Medtronic, Inc. Method and apparatus for establishing parameters for cardiac event detection
CN113891677A (zh) * 2019-03-18 2022-01-04 心脏起搏器股份公司 用于预测房性心律失常的系统和方法
CN111053551B (zh) * 2019-12-27 2021-09-03 深圳邦健生物医疗设备股份有限公司 Rr间期心电数据分布显示方法、装置、计算机设备和介质
US11819697B2 (en) 2020-01-30 2023-11-21 Medtronic, Inc. Method and apparatus for adjusting control parameters for cardiac event sensing
WO2023222348A1 (en) * 2022-05-19 2023-11-23 Biotronik Se & Co. Kg Implantable medical device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60102836T2 (de) 2000-11-28 2005-04-21 Medtronic Inc Vorrichtung zur erkennung einer vorhoffibrillation mittels herzkammerdetektion
US6490479B2 (en) 2000-12-28 2002-12-03 Ge Medical Systems Information Technologies, Inc. Atrial fibrillation detection method and apparatus
US7330757B2 (en) * 2001-11-21 2008-02-12 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US7103404B2 (en) * 2003-02-27 2006-09-05 Medtronic,Inc. Detection of tachyarrhythmia termination
US7076290B2 (en) * 2003-10-10 2006-07-11 Medtronic, Inc. Method and apparatus for detecting and discriminating arrhythmias
US20070293775A1 (en) * 2004-05-26 2007-12-20 Fischell David R Means and method for the detection of cardiac events
US7680532B2 (en) * 2005-02-25 2010-03-16 Joseph Wiesel Detecting atrial fibrillation, method of and apparatus for
US7537569B2 (en) * 2005-04-29 2009-05-26 Medtronic, Inc. Method and apparatus for detection of tachyarrhythmia using cycle lengths
US7580740B2 (en) * 2005-05-11 2009-08-25 Cardiac Pacemakers, Inc. Atrial tachyarrhythmia detection using selected atrial intervals
US7702384B2 (en) * 2005-12-13 2010-04-20 Cardiac Pacemakers, Inc. Zoneless tachyarrhythmia detection with real-time rhythm monitoring
US7689282B2 (en) * 2006-06-16 2010-03-30 Cardiac Pacemakers, Inc. Method and apparatus for detecting non-sustaining ventricular tachyarrhythmia
US8437849B2 (en) * 2007-01-30 2013-05-07 Cardiac Pacemakers, Inc. Method and apparatus for atrial pacing during tachyarrhythmia
CN101965150B (zh) * 2008-03-10 2017-04-12 皇家飞利浦电子股份有限公司 具有充电座站的ecg监测系统
US10449361B2 (en) * 2014-01-10 2019-10-22 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US9820666B2 (en) * 2014-02-04 2017-11-21 Cardioinsight Technologies, Inc. Integrated analysis of electrophysiological data
CN106132286B (zh) 2014-03-07 2020-04-21 心脏起搏器股份公司 多级心力衰竭事件检测
US10154794B2 (en) * 2014-04-25 2018-12-18 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) tachyarrhythmia detection modifications responsive to detected pacing
US9999359B2 (en) 2014-05-29 2018-06-19 Cardiac Pacemakers, Inc. System and methods for detecting atrial tachyarrhythmia using hemodynamic sensors
US10194820B2 (en) * 2014-06-02 2019-02-05 Cardiac Pacemakers, Inc. Method and apparatus for detecting atrial tachyarrhythmia using heart sounds
US11172832B2 (en) * 2014-06-02 2021-11-16 Cardiac Pacemakers, Inc. Systems and methods for evaluating hemodynamic response to atrial fibrillation
JP2017042386A (ja) * 2015-08-27 2017-03-02 セイコーエプソン株式会社 生体情報処理システム及びプログラム
US10039469B2 (en) * 2016-03-30 2018-08-07 Medtronic, Inc. Atrial arrhythmia episode detection in a cardiac medical device
CN110573068B (zh) 2017-03-07 2023-01-03 心脏起搏器股份公司 用于房性心律失常检测的系统和方法

Also Published As

Publication number Publication date
EP3592220B1 (en) 2021-09-22
US10786172B2 (en) 2020-09-29
EP3592220A1 (en) 2020-01-15
WO2018165289A1 (en) 2018-09-13
JP7118991B2 (ja) 2022-08-16
JP2020511216A (ja) 2020-04-16
US20180256059A1 (en) 2018-09-13
CN110573068A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN110573068B (zh) 用于房性心律失常检测的系统和方法
US11304646B2 (en) Systems and methods for detecting atrial tachyarrhythmia using heart sounds
US11202599B2 (en) Systems and methods for detecting arrhythmias
US11534107B2 (en) Systems and methods for therapy titration in heart failure
JP6454729B2 (ja) 心不全悪化の自動鑑別診断のための医療デバイスシステム
US11583196B2 (en) Systems and methods for detecting atrial tachyarrhythmia
US11213242B2 (en) Morphology-based atrial tachyarrhythmia detector
US11116439B2 (en) Systems and methods for detecting slow and persistent cardiac rhythms
US11298068B2 (en) Systems and methods for detecting arrhythmias
US20200178826A1 (en) Systems and methods for detecting arrhythmias
US11504537B2 (en) Systems and methods for detecting chronic cardiac over-pacing
US20230173282A1 (en) Systems and methods for detecting arrhythmias
US20230107996A1 (en) Ambulatory detection of qt prolongation
CN112739413A (zh) 用于呈现生理数据的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant