CN110571290B - 钛酸钡无机钙钛矿太阳能电池材料 - Google Patents

钛酸钡无机钙钛矿太阳能电池材料 Download PDF

Info

Publication number
CN110571290B
CN110571290B CN201810484424.8A CN201810484424A CN110571290B CN 110571290 B CN110571290 B CN 110571290B CN 201810484424 A CN201810484424 A CN 201810484424A CN 110571290 B CN110571290 B CN 110571290B
Authority
CN
China
Prior art keywords
solar cell
cell material
barium titanate
band gap
inorganic perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810484424.8A
Other languages
English (en)
Other versions
CN110571290A (zh
Inventor
马春兰
朱冯
张叶
陈高远
张加永
葛丽娟
蒯家靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN201810484424.8A priority Critical patent/CN110571290B/zh
Publication of CN110571290A publication Critical patent/CN110571290A/zh
Application granted granted Critical
Publication of CN110571290B publication Critical patent/CN110571290B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种钛酸钡无机钙钛矿太阳能电池材料,所述太阳能电池材料的化学式为BaTi1‑x‑y Co x Pd y O3‑δ,其中,x=4.17%,y=4.17%,δ=4.17%;所述太阳能电池材料基于BaTiO3结构单元,构建为
Figure 848139DEST_PATH_IMAGE002
超晶胞,此超晶胞为四方结构,晶格常数为a=b=11.15Å,c=11.95Å,体积为1485.90Å3,超晶胞含24个Ba原子、22个Ti原子、1个Co原子、1个Pd原子和71个氧原子,所述太阳能电池材料的带隙为1.4eV~2.0 eV。本发明钛酸钡无机钙钛矿太阳能电池材料无机稳定、无毒,具有较好的极化特性及较高的载流子迁移率,光电转换效率高。

Description

钛酸钡无机钙钛矿太阳能电池材料
技术领域
本发明涉及太阳能电池材料技术领域,尤其涉及一种钛酸钡无机钙钛矿太阳能电池材料。
背景技术
目前世界能源80%来源于煤炭、石油、天然气等不可再生的化石能源,清洁能源中6%来源于具有安全隐患的核能,而可再生能源(包括太阳能)仅占0.2%。化石能源日益枯竭,核电站事故引发人们对核能安全性的担忧,高效地利用太阳能是解决能源危机和环境问题的最佳途径。太阳能电池将太阳能直接转变为电能,是最有发展前景的可再生能源技术,而如何有效地提高太阳能电池效率是目前面临的最重要的挑战。
传统单结太阳能电池效率受S-Q效率极限(Shockley-Queisser Limit)制约。按单结太阳能电池活性层所使用材料的不同,可将太阳能电池分为硅基太阳能电池、化合物太阳能电池和有机-无机杂化钙钛矿太阳能电池。单晶硅太阳能电池效率可达25%,但生产成本较高;多晶硅太阳能电池最高转换效率约15%。化合物太阳能电池的典型代表GaAs,单结效率达28.8%。有机–无机杂化卤化物钙钛矿材料ABX 3 (A=CH3NH3, HC(NH2)2; B=Pb; X=I,Br, Cl),只用了三、四年时间,能量转换效率就达到了22.7%,且制备容易、成本低。但一般的有机-无机杂化卤化物钙钛矿太阳能电池材料有两个致命的问题:一是其中的有机成分导致其稳定性差,二是材料中含有毒的Pb。解决稳定性问题的一个根本办法是研制无机钙钛矿太阳能电池。暨南大学麦耀华教授带领团队成功制备了基于FTO/NiOx/CsPbI2Br/ZnO@C60/Ag结构的全无机钙钛矿太阳能电池材料,可见有机组分并不是高效钙钛矿太阳能电池材料所必需的。Riming Nie等人成功制备了不含铅的高效钙钛矿太阳能电池材料甲基铵锑硫二碘化物 (MASbSI2),可见Pb也不是高效钙钛矿太阳能电池材料所必需的。L. Debbichi等人发现一种无机非铅混合价态钙钛矿Cs2Au2I6,其带隙值为1.31eV,接近光伏材料的理想带隙值,表明有机组分和铅都不是高效钙钛矿光伏材料所必需的。Ming-Gang Ju等人发现不含卤素的SrSnSe3和SrSnS3是非常好的光伏材料,表明卤素也不是高效钙钛矿太阳能电池材料所必需的。Haimin Li等人发现基于 PbTiO3掺杂的钙钛矿氧化物具有很好的光伏性质,表明钙钛矿氧化物也可以具有非常好的光伏性质。
综合上述研究成果,有机成分(CH3NH3;HC(NH2)2)、Pb和卤族元素(I, Br, Cl)都不是材料具有高光电转换效率的必要因素。本发明专利目的是设计不含有机成分,不含Pb的无机无毒钙钛矿太阳能电池材料。
影响太阳能电池材料光电转换效率的关键因素包括材料对太阳能的吸收能力(与材料带隙有关)、对光生电荷的存储能力(与材料极化特性有关)和载流子迁移率(与电子-空穴有效质量有关)。带隙为1.4 eV~2.0 eV的材料吸收太阳能效率高,能够产生更多的光生载流子;极化特性好的材料能够有效分离光生载流子;载流子迁移率高意味着可以将这些光生载流子高效率地导出来。因此,设计光电转换效率高的太阳能电池材料,关键是要设计一个带隙大小合适、极化特性较好、载流子迁移率高的材料。
最初,人们研制的光电转换效率高的光伏材料往往含铅。出于环保的考虑,人们开始研制无铅铁电钙钛矿光伏材料。目前大多数无机固态氧化物铁电体带隙大于3 eV,主要吸收紫外区域的太阳光谱,由于紫外光只含8%的太阳光谱,因此太阳能转换效率太低。为了提高转换效率,必须降低这些铁电钙钛矿材料的带隙。典型的钙钛矿材料钛酸钡具有较好的极化特性,但带隙太大(3.25 eV),不能很好地吸收太阳能。研究发现掺杂可以改变无铅BaTiO3的带隙:用Sr替代Ba(掺杂浓度0.1~0.5),BaTiO3的带隙随掺杂浓度的增大而增大;用Zn替代Ti(掺杂浓度0.01~0.05),BaTiO3的带隙也随掺杂浓度的增大而增大;Y.W. Li等人实验发现用Co替代Ti(掺杂浓度0.01~0.1),薄膜的带隙随掺杂浓度的增大而减小,但是在他们研究的掺杂浓度范围内化合物带隙依然大于3.0 eV,不能高效吸收太阳能。因此如何研究一种无机稳定、无毒,具有较好光电转换效率高的钛酸钡无机钙钛矿太阳能电池材料,成为本领域技术人员努力的方向。
发明内容
本发明的目的是提供一种钛酸钡无机钙钛矿太阳能电池材料,该钛酸钡无机钙钛矿太阳能电池材料无机稳定、无毒,具有较好的极化特性及较高的载流子迁移率,光电转换效率高。
为达到上述目的,本发明采用的技术方案是:一种钛酸钡无机钙钛矿太阳能电池 材料,所述太阳能电池材料的化学式为BaTi1-x-yCoxPdyO3-δ,其中,x =4.17%,y = 4.17%, δ = 4.17%;所述太阳能电池材料基于BaTiO3结构单元,构建为
Figure 813835DEST_PATH_IMAGE002
超晶胞,此超 晶胞为四方结构,晶格常数为a=b=11.15 Å,c=11.95 Å,体积为1485.90 Å3,超晶胞含24个 Ba原子、22个Ti原子、1个Co原子、1个Pd原子和71个氧原子。
上述技术方案中进一步改进的方案如下:
1. 上述方案中,所述太阳能电池材料的带隙为1.4eV~2.0 eV。
2. 上述方案中,所述太阳能电池材料的带隙为1.55 eV。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
本发明钛酸钡无机钙钛矿太阳能电池材料,其因在钛酸钡中掺入Co元素,Co_3d能带稍稍跨过费米面,产生部分空穴,当氧空位存在,氧空位提供的电子填满这些空穴,产生新的能级较高的价带顶,使带隙减小;由于掺入Co元素的同时,共掺入了Pd元素,Pd掺杂引入的Pd_4d态提供新的导带底,比原来Ti_3d导带底更靠近费米面,从而降低带隙。对于(Co,Pd)共掺杂情形,价带顶升高的同时,导带底降低,使得带隙减小,稳定、无毒,具有较好的极化特性及较高的载流子迁移率,光电转换效率高。
附图说明
附图1为本发明钛酸钡无机钙钛矿太阳能电池材料的晶体结构图一;
附图2为本发明钛酸钡无机钙钛矿太阳能电池材料的晶体结构图二;
附图3为本发明钛酸钡无机钙钛矿太阳能电池材料的的态密度图。
具体实施方式
实施例:一种钛酸钡无机钙钛矿太阳能电池材料,所述太阳能电池材料的化学式 为BaTi1-x-y Co x Pd y O3-δ,其中,x =4.17%,y = 4.17%, δ = 4.17%;所述太阳能电池材料基于 BaTiO3结构单元,构建为
Figure 308401DEST_PATH_IMAGE004
超晶胞,此超晶胞为四方结构,晶格常数为a=b =11.15 Å,c=11.95 Å,体积为1485.90 Å3,超晶胞含24个Ba原子、22个Ti原子、1个Co原子、1 个Pd原子和71个氧原子。
上述太阳能电池材料的带隙为1.4eV~2.0 eV。
上述所述太阳能电池材料的带隙为1.55 eV。
构建BaTiO3的2*2*3超原胞,用部分Co替代Ti,模拟不同的掺杂浓度(浓度x取值为0、0.125、0.25、0.33、0.375、0.5、0.625、0.67、0.75、0.875、1),针对不同掺杂浓度给出不同的方案。例如对于x=0.25,用2个Co替代Ti,这两个Co按照(100)、(101)、(111)这3种方向进行排列,分别对构建的3种BaTi1-xCoxO3晶体结构进行优化。采用GGA+U方法进行结构优化,结合密度泛函理论与动力学平均场理论计算材料的电学、光学性质(包括带隙、能带结构和透光性等)。
用过渡金属Pd部分替代上述各种掺杂浓度的BaTi1-xCoxO3薄膜中的部分Co,结合氧空位,稳定BaTi1-xCoxO3薄膜的结构。氧空位浓度分别取1.39 %、1.67 %、2.08 %、2.78%、4.17 %,分别将氧空位置于Pd与Co中间以及延长线上,改变氧空位的位置,对各种磁相的薄膜结构分别进行弛豫,计算总能,研究氧空位对稳定掺Pd体系的作用。研究掺杂体系带隙的大小和性质(即直接带隙还是间接带隙)随Co掺杂浓度、Pd的排列方式、氧空位的位置和浓度的变化而产生的改变。并计算薄膜极性、透光性能,对最佳制备条件给出理论预测。
上述钛酸钡无机钙钛矿太阳能电池材料,其因在钛酸钡中掺入Co元素,Co_3d能带稍稍跨过费米面,产生部分空穴,当氧空位存在,氧空位提供的电子填满这些空穴,产生新的能级较高的价带顶,使带隙减小;由于掺入Co元素的同时,共掺入了Pd元素,Pd掺杂引入的Pd_4d态提供新的导带底,比原来Ti_3d导带底更靠近费米面,从而降低带隙。对于(Co,Pd)共掺杂情形,价带顶升高的同时,导带底降低,使得带隙减小,稳定、无毒,具有较好的极化特性及较高的载流子迁移率,光电转换效率高。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种钛酸钡无机钙钛矿太阳能电池材料,其特征在于:所述太阳能电池材料的化学 式为BaTi1-x-y Co x Pd y O3-δ,其中,x =4.17%,y = 4.17%, δ = 4.17%;所述太阳能电池材料基 于BaTiO3结构单元,构建为
Figure 206600DEST_PATH_IMAGE002
超晶胞,此超晶胞为四方结构,晶格常数为a=b= 11.15 Å,c=11.95 Å,体积为1485.90 Å3,超晶胞含24个Ba原子、22个Ti原子、1个Co原子、1 个Pd原子和71个氧原子。
2.根据权利要求1所述的钛酸钡无机钙钛矿太阳能电池材料,其特征在于:所述太阳能电池材料的带隙为1.4eV~2.0 eV。
3.根据权利要求2所述的钛酸钡无机钙钛矿太阳能电池材料,其特征在于:所述太阳能电池材料的带隙为1.55 eV。
CN201810484424.8A 2018-05-20 2018-05-20 钛酸钡无机钙钛矿太阳能电池材料 Active CN110571290B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810484424.8A CN110571290B (zh) 2018-05-20 2018-05-20 钛酸钡无机钙钛矿太阳能电池材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810484424.8A CN110571290B (zh) 2018-05-20 2018-05-20 钛酸钡无机钙钛矿太阳能电池材料

Publications (2)

Publication Number Publication Date
CN110571290A CN110571290A (zh) 2019-12-13
CN110571290B true CN110571290B (zh) 2021-06-11

Family

ID=68772064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810484424.8A Active CN110571290B (zh) 2018-05-20 2018-05-20 钛酸钡无机钙钛矿太阳能电池材料

Country Status (1)

Country Link
CN (1) CN110571290B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113053467B (zh) * 2019-12-26 2024-06-07 有研工程技术研究院有限公司 一种有机-无机钙钛矿材料带隙调控方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107408631A (zh) * 2015-03-16 2017-11-28 积水化学工业株式会社 太阳能电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107408631A (zh) * 2015-03-16 2017-11-28 积水化学工业株式会社 太阳能电池

Also Published As

Publication number Publication date
CN110571290A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
Ranabhat et al. An introduction to solar cell technology
Wang et al. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family
Jeyakumar et al. Interface studies by simulation on methylammonium lead iodide based planar perovskite solar cells for high efficiency
Li et al. Bi13S18 X 2-Based Solar Cells (X= Cl, Br, I): Photoelectric Behavior and Photovoltaic Performance
CN110571290B (zh) 钛酸钡无机钙钛矿太阳能电池材料
Jiang et al. Recent advances of monolithic all‐perovskite tandem solar cells: from materials to devices
Hu et al. Functional 2D Phases in Mixed Dimensional Perovskite Photovoltaics
Dang Nanostructured Semiconductor Device Design in Solar Cells
Ghosh et al. Stable and efficient perovskite solar cell with metal oxide transport layers
Islam et al. Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency.
Prasanna et al. Compositional engineering of tin-lead halide perovskites for efficient and stable low band gap solar cells
CN102760580A (zh) 一种Co掺杂CdSe量子点敏化TiO2纳米棒光电极及其制备方法
Hayase Sn‐Based Halide Perovskite Solar Cells
Ullah et al. Challenges and Solutions in Solar Photovoltaic Technology Life Cycle
Islam et al. A Lead-Free All-Inorganic CS 2 SnI 6 Based Ultra-Thin Perovskite Solar Cell Optimized using SCAPS-1D Simulator
Ahmed et al. Design and Simulation of Perovskite Inserted Thin Film Solar Cells for Efficiency Improvement
Ferdoush et al. Optimization and performance improvement of CsSnGeI3 all-inorganic lead-free thin-film perovskite solar cell through numerical simulation
Kumar et al. A diverse outlook on the performance of perovskite solar cells to meet the energy demand
Sun Recent Progress and state-of art applications of Perovskite Solar Cells
Mehrabian et al. Improving the efficiency of solar cells based on CsSn 0.5 Ge 0.5 I 3 perovskite by using ZnO nanorods
Jha et al. Comparative Study of Ge-doped CH 3 NH 3 Ge x Pb (1-x) I 3 Perovskite Solar Cell By SCAPS-1D Software
Hira et al. Organometallic Halides-Based Perovskite Solar Cells
Jayaneththi et al. Enhancing the Perovskite Solar Cell Performance Through a Cu 2 O Buffer Layer at Perovskite/Hole Transport Layer Interface: A Numerical Study
Tong The Exploration and Outlook of Two-Dimensional Perovskites
Zhang et al. Recent Advances in Interface Engineering for Enhanced Open‐Circuit Voltage Regulation in Perovskite Solar Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Ma Chunlan

Inventor after: Zhu Feng

Inventor after: Zhang Ye

Inventor after: Chen Gaoyuan

Inventor after: Zhang Jiayong

Inventor after: Ge Lijuan

Inventor after: Kuai Jiajing

Inventor before: Zhang Ye

Inventor before: Ma Chunlan

Inventor before: Chen Gaoyuan

Inventor before: Zhang Jiayong

Inventor before: Ge Lijuan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant