CN110569809A - A coal mine dynamic face recognition attendance method and system based on deep learning - Google Patents
A coal mine dynamic face recognition attendance method and system based on deep learning Download PDFInfo
- Publication number
- CN110569809A CN110569809A CN201910859933.9A CN201910859933A CN110569809A CN 110569809 A CN110569809 A CN 110569809A CN 201910859933 A CN201910859933 A CN 201910859933A CN 110569809 A CN110569809 A CN 110569809A
- Authority
- CN
- China
- Prior art keywords
- face
- picture
- deep learning
- coal mine
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000013135 deep learning Methods 0.000 title claims abstract description 38
- 239000003245 coal Substances 0.000 title claims abstract description 35
- 238000001514 detection method Methods 0.000 claims abstract description 45
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000012544 monitoring process Methods 0.000 claims abstract description 8
- 230000006870 function Effects 0.000 claims description 31
- 238000013527 convolutional neural network Methods 0.000 claims description 17
- 238000012549 training Methods 0.000 claims description 12
- 238000011176 pooling Methods 0.000 claims description 9
- 238000013528 artificial neural network Methods 0.000 claims description 7
- 238000000605 extraction Methods 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims 4
- 230000006399 behavior Effects 0.000 abstract 1
- 238000007726 management method Methods 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000001815 facial effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000011273 social behavior Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 239000010883 coal ash Substances 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C1/00—Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people
- G07C1/10—Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people together with the recording, indicating or registering of other data, e.g. of signs of identity
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Evolutionary Computation (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Image Analysis (AREA)
- Collating Specific Patterns (AREA)
Abstract
本发明公开了一种基于深度学习的煤矿动态人脸识别考勤方法及系统,该方法如下:步骤1:获取煤矿入井口处的监控视频,并提取监控视频每一帧图片;步骤2:对图片进行模糊度检测,当检测出的模糊度低于设定的阈值,图片不作处理,高于设定的阈值,执行步骤3;步骤3:利用基于深度学习的人脸检测算法对预处理后的图片中的人脸区域进行检测,若存在人脸,输出人脸位于图片中的坐标;步骤4:定位人脸区域中的人脸关键点;步骤5:采用基于深度学习的方法进行人脸识别,利用相似度比较算出与人脸数据库中距离最近的图像,即完成了人脸识别。采用该方法提高了煤矿下井人员考勤的效率,避免煤矿考勤存在的捎卡、漏卡、人员身份认证、考勤造假行为。
The present invention discloses a dynamic face recognition attendance method and system in a coal mine based on deep learning. The method is as follows: Step 1: Obtain the monitoring video at the entrance of the coal mine, and extract each frame of the monitoring video; Step 2: Comparing the pictures Perform blur detection. When the detected blur is lower than the set threshold, the picture will not be processed. If it is higher than the set threshold, go to Step 3; Step 3: Use the face detection algorithm based on deep learning to process the preprocessed image. Detect the face area in the picture, if there is a face, output the coordinates of the face in the picture; Step 4: Locate the key points of the face in the face area; Step 5: Use a method based on deep learning for face recognition , using the similarity comparison to calculate the image with the closest distance in the face database, that is, the face recognition is completed. By adopting the method, the attendance checking efficiency of the personnel in the coal mine is improved, and the behaviors of passing cards, missing cards, personnel identity authentication, and checking attendance in the coal mine checking attendance are avoided.
Description
技术领域technical field
本发明属于人脸识别技术领域,具体涉及一种基于深度学习的煤矿动态人脸识别考勤方法及系统。The invention belongs to the technical field of face recognition, and in particular relates to a dynamic face recognition attendance method and system for coal mines based on deep learning.
背景技术Background technique
目前,煤矿常用的下井人员管理考勤主要有3类方式:1.传统考勤打卡、刷卡;2.指纹识别;3.虹膜识别。但是,传统考勤打卡在入井口安装刷卡器,通过检测标识卡信息来完成考勤,会出现人员代刷卡、存在替工的现象。指纹识别在入井口通过验证下井人员的指纹信息来完成考勤,但是煤矿一线矿井工人指纹易损坏,指纹覆盖尘土、煤灰等导致识别率率,在煤矿行业中效果较不理想。虹膜识别利用虹膜终身不变性和差异性的特点来识别身份的,性能稳定、识别精度高,无法伪造,无接触性适用于煤矿这种特殊行业,目前越来越多的矿山矿井开始使用虹膜识别技术作为矿山安全考勤的身份识别手段,东北三省、陕西、山西、山东等省煤矿都已使用。但虹膜考勤仍然存在一些不足:需要下井人员做出配合性行为,考勤效率较差,会造成入井口排队拥挤的情况,如图1所示;部分人员在虹膜考勤机上认证后并未下井;部分人员下井时不考勤,待出井口返回入井口再行考勤等不合理的情况。At present, there are mainly three types of attendance management methods commonly used in coal mines: 1. Traditional attendance punching and card swiping; 2. Fingerprint recognition; 3. Iris recognition. However, in the traditional attendance check-in, a card reader is installed at the entrance of the well, and the attendance is completed by detecting the information of the identification card. Fingerprint recognition checks attendance at the entrance of the mine by verifying the fingerprint information of the personnel who go down the mine. However, the fingerprints of front-line mine workers in coal mines are easily damaged, and the fingerprints are covered with dust and coal ash, which leads to a high recognition rate. The effect in the coal mining industry is not ideal. Iris recognition uses the characteristics of lifelong invariance and difference of iris to identify identities. It has stable performance, high recognition accuracy, and cannot be forged. It is non-contact and suitable for special industries such as coal mines. At present, more and more mines are beginning to use iris recognition. As an identification method for mine safety attendance, the technology has been used in coal mines in the three northeastern provinces, Shaanxi, Shanxi, Shandong and other provinces. However, there are still some deficiencies in iris time attendance: it is necessary for the personnel who go into the well to make cooperative behaviors, and the attendance efficiency is poor, which will cause crowded queues at the entrance of the well, as shown in Figure 1; some personnel did not go down the well after being authenticated on the iris time attendance machine; some Unreasonable situations such as not checking attendance when personnel go down the well, and checking attendance after returning to the wellhead after exiting the wellhead.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种基于深度学习的煤矿动态人脸识别考勤方法及系统,提高了煤矿下井人员考勤的效率,避免煤矿考勤存在的捎卡、漏卡、人员身份认证、考勤造假等行为。The technical problem to be solved by the present invention is to provide a method and system based on deep learning for dynamic face recognition attendance in coal mines, which improves the efficiency of attendance checks for personnel in coal mines, and avoids the problems of checking in coal mines. Missing cards, personnel identity authentication, attendance falsification, etc.
为解决上述技术问题,本发明采用的技术方案是,一种基于深度学习的煤矿动态人脸识别考勤方法,该方法包括如下:In order to solve the above-mentioned technical problems, the technical solution adopted by the present invention is a method for dynamic face recognition attendance checking in coal mines based on deep learning, which method includes as follows:
步骤1:获取煤矿入井口处的监控视频,将监控视频转换为一帧帧的图片,并提取每一帧图片;Step 1: Obtain the surveillance video at the entrance of the coal mine, convert the surveillance video into a frame-by-frame picture, and extract each frame of picture;
步骤2:对步骤1中的图片进行预处理:对图片进行模糊度检测,当检测出的模糊度低于设定的阈值,图片不作处理,当高于设定的阈值,执行步骤3;阈值设定为0.7;Step 2: Preprocess the picture in step 1: perform blur detection on the picture. When the detected blur is lower than the set threshold, the picture will not be processed. If it is higher than the set threshold, perform step 3; threshold set to 0.7;
步骤3:检测图片中的人脸区域:利用基于深度学习的人脸检测算法对预处理后的图片中的人脸区域进行检测,若存在人脸,输出人脸位于图片中的坐标;Step 3: Detect the face area in the picture: use the face detection algorithm based on deep learning to detect the face area in the preprocessed picture, if there is a face, output the coordinates of the face in the picture;
步骤4:定位人脸区域中的人脸关键点,采用基于深度学习的方法对人脸区域做对齐处理,得到对齐的人脸图片;Step 4: Locate the key points of the face in the face area, use the method based on deep learning to align the face area, and obtain the aligned face picture;
步骤5:采用基于深度学习的方法进行人脸识别,对齐的人脸图(片)像经神经网络输出每一个人脸的特征向量,利用相似度比较算出与人脸数据库中距离最近的图像,即完成了人脸识别。当存在距离最近的图像,则表明到岗,如果没有距离最近的图像,则表明缺勤。Step 5: Use the method based on deep learning to carry out face recognition, and the aligned face image (picture) will output the feature vector of each face through the neural network, and use the similarity comparison to calculate the closest image with the face database. That is, face recognition is completed. When there is the closest image, it indicates arrival, and if there is no nearest image, it indicates absence.
进一步地,该步骤3的具体过程如下:将预处理后的图片输入特征提取网络中,生成特征映射图,在输出的特征映射图上,在输出的特征图上利用候选区域生成网络生成图片中候选的人脸区域;再使用人脸检测网络,对人脸区域进行分类,输出最终的人脸目标位置和概率;人脸区域分类分为人脸目标和背景;特征提取网络采用50层的残差网络Res50。Further, the specific process of step 3 is as follows: input the preprocessed picture into the feature extraction network to generate a feature map, on the output feature map, use the candidate region generation network to generate the image in the output feature map Candidate face area; then use the face detection network to classify the face area, and output the final face target position and probability; the face area classification is divided into face target and background; the feature extraction network uses 50 layers of residual Network Res50.
候选区域生成网络采用锚点窗口确定图片中候选的人脸区域,所述候选区域生成网络中的锚点窗口采用了8种尺度,3种比例,8种尺度为[1,2,3,4,6,8,16,32,64],3种比例为[2:1,1:1,1:2];人脸检测网络包括依次相连接的一个1*1的卷积层、一个2k2维的卷积层和一个池化层;其中:k≥3,且k的最大值需要的检测速度决定。The candidate area generation network uses the anchor point window to determine the candidate face area in the picture. The anchor point window in the candidate area generation network adopts 8 scales, 3 kinds of ratios, and the 8 scales are [1, 2, 3, 4 , 6, 8, 16, 32, 64], the three ratios are [2:1, 1:1, 1:2]; the face detection network includes a 1*1 convolutional layer, a 2k A 2 -dimensional convolutional layer and a pooling layer; where: k≥3, and the maximum value of k needs to be determined by the detection speed.
进一步地,该人脸检测网络对人脸进行分类的过程如下:人脸检测网络在生成的特征映射图上首先利用一个1*1的卷积层进行降维,再经过特定的卷积层生成位置敏感得分图;所述位置敏感得分图和候选区域生成网络生成的候选人脸区域共同送入位置敏感池化层,生成类别得分图和范围框预测图,在类别得分图和范围框预测图上分别利用一个平均池化操作,将特征映射图聚合为一个向量,最终输出每个候选区域包含人脸的概率以及坐标位置。Further, the process of classifying faces by the face detection network is as follows: the face detection network first uses a 1*1 convolutional layer to reduce the dimension on the generated feature map, and then generates Position-sensitive score map; the position-sensitive score map and the candidate face area generated by the candidate region generation network are sent to the position-sensitive pooling layer to generate a category score map and a range box prediction map, and the category score map and the range box prediction map An average pooling operation is used to aggregate the feature map into a vector, and finally output the probability and coordinate position of each candidate area containing a face.
进一步地,该步骤4的具体过程如下:将预处理后的图片和人脸区域位置的坐标送入第一卷积神经网络中,在人脸区域坐标范围框中放入平均人脸形状,以此来初始化人脸关键点坐标,经第一神经网络输出人脸关键点坐标的偏移量,即获得人脸关键点,通过相似变换将人脸区域几何归一化到标准姿态,即实现了人脸对齐,得到对齐的人脸图像。Further, the specific process of step 4 is as follows: send the preprocessed picture and the coordinates of the human face area position into the first convolutional neural network, put the average human face shape in the human face area coordinate range frame, and This is to initialize the coordinates of the key points of the face, and output the offset of the coordinates of the key points of the face through the first neural network, that is, to obtain the key points of the face, and normalize the geometry of the face area to the standard pose through similar transformation, that is, to achieve Faces are aligned to obtain aligned face images.
进一步地,该步骤5的具体过程为:采用卷积神经网络加损失函数的框架,利用损失函数有监督的训练整个卷积神经网络;所述卷积神经网络采用了20层残差网络;Further, the specific process of step 5 is: using the framework of convolutional neural network plus loss function, using the loss function to supervise the training of the entire convolutional neural network; the convolutional neural network uses a 20-layer residual network;
所述损失函数的公式如下:The formula of the loss function is as follows:
其中:LA表示A-softmax损失函数,LC表示中心损失函数,λ用来平衡中心损失函数与A-softmax损失函数的权重大小,N表示训练集样本的数目,xi代表第i个训练集样本的特征,m为超参数用来量化决策边界,j代表类别,代表第yi个类别的特征中心,是权重向量和xi之间的夹角,θj,i表示Wj和特征向量xi之间的夹角,和Wj分别表示网络全连接层对应于类别yi和j的权重。Among them: L A represents the A-softmax loss function, LC represents the center loss function, λ is used to balance the weight of the center loss function and the A-softmax loss function, N represents the number of training set samples, and xi represents the i-th training The characteristics of the set sample, m is the hyperparameter used to quantify the decision boundary, j represents the category, represents the feature center of the y i -th category, is the weight vector and x i , θ j,i represents the angle between W j and eigenvector x i , and W j represent the weights of the fully connected layer of the network corresponding to categories y i and j, respectively.
本发明还公开了一种基于深度学习的煤矿动态人脸识别考勤系统,包括图像采集模块,数据库,视频预处理模块,深度学习服务器,检测识别管理模块;图像采集模块:布设于煤矿入井口,用于煤矿下井作业人员人脸信息的采集,并生成对应的人脸特征信息存储到数据库中;The invention also discloses a coal mine dynamic face recognition attendance system based on deep learning, including an image acquisition module, a database, a video preprocessing module, a deep learning server, and a detection and identification management module; the image acquisition module: arranged at the coal mine entrance, It is used to collect face information of coal mine workers, and generate corresponding face feature information and store it in the database;
数据库:用于接收并存储人脸特征信息和身份信息;Database: used to receive and store facial feature information and identity information;
视频预处理模块:从监控摄像头获取实时的监控视频,将视频转换为一帧帧的图片,并对每一帧图片进行模糊度检测,当模糊度高于设定的阈值,图片不作处理,当低于设定的阈值,送入到深度学习服务器中;Video preprocessing module: Obtain real-time surveillance video from the surveillance camera, convert the video into a frame-by-frame picture, and perform blur detection on each frame of picture. When the blur degree is higher than the set threshold, the picture will not be processed. If it is lower than the set threshold, it will be sent to the deep learning server;
深度学习服务器:包括依次相连接的人脸检测模块、人脸对齐模块和人脸识别模块;Deep learning server: including face detection module, face alignment module and face recognition module connected in sequence;
预处理后的图片首先送入到人脸检测模块,利用基于深度学习的人脸检测算法对预处理后的图片中的人脸区域进行检测,若存在人脸,输出人脸位于图片中的坐标;然后将整幅图片(预处理后的图片)和检测到的人脸区域坐标一同送入到人脸对齐模块,检测出人脸关键点特征信息,并对人脸做对齐处理;最后将对齐后的人脸图片送入到人脸识别模块提取人脸的特征,与人脸特征数据库中的信息相比对,识别出每一个待检测人脸的身份信息;The preprocessed picture is first sent to the face detection module, and the face area in the preprocessed picture is detected by using the face detection algorithm based on deep learning. If there is a face, the coordinates of the face in the picture are output ; Then the whole picture (preprocessed picture) and the detected face area coordinates are sent to the face alignment module to detect the key point feature information of the face, and the face is aligned; finally the alignment The final face picture is sent to the face recognition module to extract the features of the face, compared with the information in the face feature database, to identify the identity information of each face to be detected;
检测识别管理模块:用于管理检测识别出的人脸身份信息,实现人员考勤信息的查询与记录。Detection and recognition management module: used to manage the face identity information detected and recognized, and realize the query and recording of personnel attendance information.
本发明具有如下优点:较传统的考勤方法,本发明识别速度快,整个识别过程不需要做出配合性行为,全程无感。使用深度学习框架TensorFlow完成算法的实现和模型的训练,使用这种方法实现人脸识别可以快速的将模型部署至生产环境之中,不需要撰写额外的代码,训练好的模型可以快速部署至深度学习服务器中,向深度学习服务器发送一张图片,即可返回检测到人脸的坐标,人脸的关键坐标,人脸部的特征等信息。The present invention has the following advantages: Compared with the traditional attendance checking method, the present invention has a faster recognition speed, and the whole recognition process does not require cooperative actions, and the whole process is senseless. Use the deep learning framework TensorFlow to complete the implementation of the algorithm and the training of the model. Using this method to realize face recognition can quickly deploy the model to the production environment without writing additional code, and the trained model can be quickly deployed to the depth In the learning server, sending a picture to the deep learning server can return the coordinates of the detected face, the key coordinates of the face, the features of the face and other information.
附图说明Description of drawings
图1是本发明一种基于深度学习的煤矿动态人脸识别考勤方法的架构图。Fig. 1 is a structure diagram of a coal mine dynamic face recognition attendance method based on deep learning according to the present invention.
具体实施方式Detailed ways
本发明一种基于深度学习的煤矿动态人脸识别考勤方法,该方法包括如下,如图1所示:A kind of coal mine dynamic face recognition attendance checking method based on deep learning of the present invention, this method comprises as follows, as shown in Figure 1:
步骤1:获取煤矿入井口处的监控视频,将监控视频转换为一帧帧的图片,并提取监控视频的每一帧图片;具体为,在入井口不同角度安装4~6个高清摄像头,捕获下井人员在经过入井口时人脸的照片,通过多个摄像头的实时监控,可以100%保证。Step 1: Obtain the surveillance video at the mine entrance, convert the surveillance video into frame-by-frame pictures, and extract each frame of the surveillance video; specifically, install 4 to 6 high-definition cameras at different angles at the mine entrance to capture The photos of the faces of the personnel who go down the well when they pass through the mouth of the well can be 100% guaranteed through the real-time monitoring of multiple cameras.
步骤2:对图片进行预处理:对图片进行模糊度检测,当检测出的模糊度高于设定的阈值,图片不作处理,当高于设定的阈值,执行步骤3;阈值设定为0.7;Step 2: Preprocess the picture: perform blur detection on the picture. When the detected blur is higher than the set threshold, the picture will not be processed. If it is higher than the set threshold, perform step 3; the threshold is set to 0.7 ;
步骤3:检测图片中的人脸区域:利用基于深度学习的人脸检测算法对预处理后的图片中的人脸区域进行检测,若存在人脸,输出人脸位于图片中的坐标;Step 3: Detect the face area in the picture: use the face detection algorithm based on deep learning to detect the face area in the preprocessed picture, if there is a face, output the coordinates of the face in the picture;
具体过程如下:将预处理后的整副图片作为输入,输入特征提取网络中,生成特征映射图,在输出的特征映射图上,在输出的特征图上利用候选区域生成网络生成图片中候选的人脸区域;再使用人脸检测网络,对人脸区域进行分类,输出最终的人脸目标位置和概率;人脸区域分类分为人脸目标和背景;特征提取网络采用50层的残差网络Res50。The specific process is as follows: take the preprocessed whole picture as input, input it into the feature extraction network, generate a feature map, on the output feature map, use the candidate area generation network to generate the candidate in the picture on the output feature map Face area; then use the face detection network to classify the face area, and output the final face target position and probability; the face area classification is divided into face target and background; the feature extraction network uses a 50-layer residual network Res50 .
所述候选区域生成网络采用锚点窗口确定图片中候选的人脸区域,所述候选区域生成网络中的锚点窗口采用了8种尺度,3种比例,8种尺度为[1,2,3,4,6,8,16,32,64],3种比例为[2:1,1:1,1:2];人脸检测网络包括依次相连接的一个1*1的卷积层、一个2k2维的卷积层和一个池化层;其中:k≥3,且k的最大值需要的检测速度决定。如果k越大,那么空间划分就会越精细,定位更加准确,但是,由于增加了k,增大了要处理的空间位置网格,会增大内存占用和降低处理速度。通常k选定为3。The candidate region generation network uses an anchor point window to determine the candidate face region in the picture, and the anchor point window in the candidate region generation network adopts 8 scales and 3 ratios, and the 8 scales are [1, 2, 3 , 4, 6, 8, 16, 32, 64], the three ratios are [2:1, 1:1, 1:2]; the face detection network includes a 1*1 convolutional layer connected in sequence, A 2k 2 -dimensional convolutional layer and a pooling layer; where: k≥3, and the maximum value of k is determined by the detection speed. If k is larger, the spatial division will be finer and the positioning will be more accurate. However, due to the increase of k, the spatial position grid to be processed will be increased, which will increase the memory usage and reduce the processing speed. Usually k is selected as 3.
人脸检测网络对人脸进行分类的过程如下:所述的人脸检测网络在生成的特征映射图上首先利用一个1*1的卷积层进行降维,再经过特定的卷积层生成位置敏感得分图;所述位置敏感得分图和候选区域生成网络生成的候选人脸区域共同送入位置敏感池化层,生成类别得分图和范围框预测图,在类别得分图和范围框预测图上分别利用一个平均池化操作,将特征映射图聚合为一个向量,最终输出每个候选区域包含人脸的概率以及坐标位置。The process of classifying faces by the face detection network is as follows: the face detection network first uses a 1*1 convolutional layer to reduce the dimension on the generated feature map, and then generates a position through a specific convolutional layer. Sensitive score map; the position-sensitive score map and the candidate face area generated by the candidate region generation network are sent to the position-sensitive pooling layer to generate a category score map and a range box prediction map, and on the category score map and the range box prediction map Use an average pooling operation to aggregate the feature map into a vector, and finally output the probability and coordinate position of each candidate area containing a face.
此处的位置敏感得分图主要目的是提高人脸检测的性能,因为经过卷积神经网络输出的特征映射图具有平移不换性,而人脸检测任务需要定位出人脸的位置,要求网络具有良好的平移变化性,本发明中在人脸检测网络通过引入位置敏感得分图把人脸的位置信息融合到特征中,以此来提高检测的性能。具体的做法如下,首先在特征提取网络生成的特征图上利用一个1*1的卷积层进行降维,降维后的特征图经过一个2k2维的卷积操作(conv)输出维数为2k2的位置敏感得分图,即为每一个人脸生成k×k个位置敏感得分图。其中:2表示类别:人脸+背景,所以共有2个类别;k×k表示k×k个相对空间位置;因此每个类别生成了k2个位置敏感得分图,因此共2k2个位置敏感的图;k2个位置敏感得分图编码了用来描述空间位置信息的k2个位置。以k=3为例,9个位置敏感得分图编码了一个人脸的9种空间位置信息{左上角,顶部中心,右上...,右下}。The main purpose of the position-sensitive score map here is to improve the performance of face detection, because the feature map output by the convolutional neural network has translation invariance, and the face detection task needs to locate the position of the face, which requires the network to have Good translation variability. In the present invention, the face detection network integrates the position information of the face into the feature by introducing a position-sensitive score map, so as to improve the detection performance. The specific method is as follows. First, a 1*1 convolutional layer is used for dimensionality reduction on the feature map generated by the feature extraction network. The feature map after dimensionality reduction undergoes a 2k 2 -dimensional convolution operation (conv) and the output dimension is 2k 2 position-sensitive score maps, that is, k×k position-sensitive score maps are generated for each face. Among them: 2 means category: face + background, so there are 2 categories in total; k×k means k×k relative spatial positions; therefore, k 2 position-sensitive score maps are generated for each category, so a total of 2k 2 position-sensitive map; k 2 position-sensitive score maps encode k 2 positions used to describe spatial position information. Taking k=3 as an example, 9 position-sensitive score maps encode 9 kinds of spatial position information of a face {top left corner, top center, top right..., bottom right}.
步骤4:定位人脸区域中的人脸关键点,对人脸区域作对齐处理,得到对齐的人脸图片;人脸对齐的方法具体实现如下所述:人脸的姿态、方向、大小等状态在图像中呈现各异,脸部姿态各异会给识别造成困难,将图像中的人脸对齐到统一的模板可以提高人脸识别的准确率,因此在本发明中在人脸识别过程中对人脸做了对齐处理。Step 4: Locate the key points of the face in the face area, perform alignment processing on the face area, and obtain the aligned face picture; the specific implementation of the face alignment method is as follows: the state of the posture, direction, and size of the face In the image, it is different, and the face poses are different, which will cause difficulties in recognition. Aligning the faces in the image to a unified template can improve the accuracy of face recognition. Therefore, in the present invention, in the process of face recognition Faces are aligned.
所用的人脸对齐方法采用的基于深度学习的人脸对齐方法,将原始图片和人脸检测算法检测出的人脸区域的坐标送入到卷积神经网络中,利用人脸检测算法返回的人脸区域坐标范围框中放入平均人脸形状来初始化人脸关键点坐标,经神经网络输出人脸关键点坐标的偏移量,即获得人脸关键点,利用检测到的人脸关键点通过相似变换将人脸区域几何归一化到标准姿态,即实现了人脸对齐。在本发明中,利用整个人脸图像作为输入能够对齐脸部姿态范围变化较大的人脸图像,从而进一步提升人脸识别的性能。The face alignment method used is a face alignment method based on deep learning. The original picture and the coordinates of the face area detected by the face detection algorithm are sent to the convolutional neural network, and the face returned by the face detection algorithm is Put the average face shape in the frame of the coordinate range of the face area to initialize the coordinates of the key points of the face, output the offset of the coordinates of the key points of the face through the neural network, that is, obtain the key points of the face, and use the detected key points of the face to pass The similarity transformation normalizes the geometry of the face area to the standard pose, which realizes face alignment. In the present invention, using the entire face image as input can align face images with a large range of facial poses, thereby further improving the performance of face recognition.
步骤5:采用基于深度学习的方法进行人脸识别,对齐的人脸图像经神经网络输出每一个人脸的特征向量,利用相似度比较算出与人脸数据库中距离最近的图像,即完成了人脸识别。当存在距离最近的图像,则表明到岗,如果没有距离最近的图像,则表明缺勤。Step 5: Use the method based on deep learning for face recognition, and the aligned face images will output the feature vector of each face through the neural network, and use the similarity comparison to calculate the image with the closest distance to the face database, that is, complete the face recognition process. face recognition. When there is the closest image, it indicates arrival, and if there is no nearest image, it indicates absence.
该步骤5的具体过程为:采用卷积神经网络加损失函数的框架,利用损失函数有监督的训练整个卷积神经网络;所述卷积神经网络采用了20层残差网络;采用卷积神经网络+损失函数的框架,利用损失函数有监督的训练整个卷积神经网络,使网络学习到判别力很强的人脸特征。出于识别速度的考虑本发明中卷积神经网络采用了20层残差网络,损失函数本发明中提出了一种改进的损失函数,通过联合中心损失函数和A-softmax损失函数来共同有监督的训练卷积神经网络,以获得类内距离更加紧凑的人脸特征,从而最终提升人脸识别的性能。中心损失函数仅能压缩类内的特征,需要与softmax函数共同有监督的训练卷积神经网络以获得分辨性强的人脸特征;A-softmax损失函数定义了一个大角度间隔的学习方法,可以学习到类间距离大类内距离紧凑的人脸特征,通过两种损失函数的联合可以进一步的压缩人脸的类内距离。The specific process of this step 5 is: using the framework of convolutional neural network plus loss function, using the loss function to supervise the training of the entire convolutional neural network; the convolutional neural network uses a 20-layer residual network; using convolutional neural network The framework of network + loss function uses the loss function to supervise the training of the entire convolutional neural network, so that the network can learn facial features with strong discrimination. For the consideration of recognition speed, the convolutional neural network in the present invention uses a 20-layer residual network, and the loss function proposes an improved loss function in the present invention, which is jointly supervised by the joint center loss function and A-softmax loss function. The convolutional neural network is trained to obtain face features with a more compact intra-class distance, which ultimately improves the performance of face recognition. The central loss function can only compress the features within the class, and it needs to supervise the training convolutional neural network together with the softmax function to obtain highly discriminative face features; the A-softmax loss function defines a learning method with a large angle interval, which can After learning the face features with a large inter-class distance and a compact intra-class distance, the intra-class distance of the face can be further compressed through the combination of two loss functions.
该损失函数的公式如下:The formula of the loss function is as follows:
其中:LA表示A-softmax损失函数,LC表示中心损失函数,λ用来平衡中心损失函数与A-softmax损失函数的权重大小,N表示训练集样本的数目,xi代表第i个训练集样本的特征,m为超参数用来量化决策边界,j代表类别,代表第yi个类别的特征中心,是权重向量和xi之间的夹角,θj,i表示Wj和特征向量xi之间的夹角,和Wj分别表示网络全连接层对应于类别yi和j的权重。Among them: L A represents the A-softmax loss function, LC represents the center loss function, λ is used to balance the weight of the center loss function and the A-softmax loss function, N represents the number of training set samples, and xi represents the i-th training The characteristics of the set sample, m is the hyperparameter used to quantify the decision boundary, j represents the category, represents the feature center of the y i -th category, is the weight vector and x i , θ j,i represents the angle between W j and eigenvector x i , and W j represent the weights of the fully connected layer of the network corresponding to categories y i and j, respectively.
本发明还公开了一种基于深度学习的煤矿动态人脸识别考勤系统,包括图像采集模块,数据库,视频预处理模块,深度学习服务器,检测识别管理模块;图像采集模块:布设于煤矿入井口,用于煤矿下井作业人员人脸信息的采集,并生成对应的人脸特征信息存储到数据库中;The invention also discloses a coal mine dynamic face recognition attendance system based on deep learning, including an image acquisition module, a database, a video preprocessing module, a deep learning server, and a detection and identification management module; the image acquisition module: arranged at the coal mine entrance, It is used to collect face information of coal mine workers, and generate corresponding face feature information and store it in the database;
数据库:用于接收并存储人脸特征信息和身份信息;Database: used to receive and store facial feature information and identity information;
视频预处理模块:从监控摄像头获取实时的监控视频,将视频转换为一帧帧的图片,并对每一帧图片进行模糊度检测,当模糊度高于设定的阈值,图片不作处理,当低于设定的阈值,送入到深度学习服务器中;Video preprocessing module: Obtain real-time surveillance video from the surveillance camera, convert the video into a frame-by-frame picture, and perform blur detection on each frame of picture. When the blur degree is higher than the set threshold, the picture will not be processed. If it is lower than the set threshold, it will be sent to the deep learning server;
深度学习服务器:包括依次相连接的人脸检测模块、人脸对齐模块和人脸识别模块;Deep learning server: including face detection module, face alignment module and face recognition module connected in sequence;
预处理后的图片首先送入到人脸检测模块,利用基于深度学习的人脸检测算法对预处理后的图片中的人脸区域进行检测,若存在人脸,输出人脸位于图片中的坐标;然后将整幅图片(预处理后的图片)和检测到的人脸区域坐标一同送入到人脸对齐模块,检测出人脸关键点特征信息,并对人脸做对齐处理;最后将对齐后的人脸图片送入到人脸识别模块提取人脸的特征,与人脸特征数据库中的信息相比对,识别出每一个待检测人脸的身份信息;The preprocessed picture is first sent to the face detection module, and the face area in the preprocessed picture is detected by using the face detection algorithm based on deep learning. If there is a face, the coordinates of the face in the picture are output ; Then the whole picture (preprocessed picture) and the detected face area coordinates are sent to the face alignment module to detect the key point feature information of the face, and the face is aligned; finally the alignment The final face picture is sent to the face recognition module to extract the features of the face, compared with the information in the face feature database, to identify the identity information of each face to be detected;
检测识别管理模块:用于管理检测识别出的人脸身份信息,实现人员考勤信息的查询与记录。Detection and recognition management module: used to manage the face identity information detected and recognized, and realize the query and recording of personnel attendance information.
为了能够实现动态人脸识别考勤,也就是煤矿下井人员不需要做出配合性行为,在走过煤矿入井口的过程中便实现人脸的识别并签到。在入井口不同角度安装4~6个高清摄像头,目的是为了捕获下井人员在经过入井口时人脸的照片,通过多个摄像头的实时监控,可以100%保证人脸的捕获,不论下井人员在行走过程中出现什么样的扭动,都可以保证人脸的捕获。In order to be able to realize dynamic face recognition attendance, that is, coal mine personnel who go down the mine do not need to make cooperative behaviors, and realize face recognition and sign-in when they walk through the coal mine entrance. Install 4 to 6 high-definition cameras at different angles at the entrance of the well, the purpose is to capture photos of the faces of the personnel who go down the well when they pass the entrance of the well. Through the real-time monitoring of multiple cameras, the capture of the face can be 100% guaranteed, regardless of whether the personnel going down the well are walking Any twisting during the process can guarantee the capture of the face.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910859933.9A CN110569809A (en) | 2019-09-11 | 2019-09-11 | A coal mine dynamic face recognition attendance method and system based on deep learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910859933.9A CN110569809A (en) | 2019-09-11 | 2019-09-11 | A coal mine dynamic face recognition attendance method and system based on deep learning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110569809A true CN110569809A (en) | 2019-12-13 |
Family
ID=68779321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910859933.9A Pending CN110569809A (en) | 2019-09-11 | 2019-09-11 | A coal mine dynamic face recognition attendance method and system based on deep learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110569809A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111209860A (en) * | 2020-01-06 | 2020-05-29 | 上海海事大学 | Video attendance system and method based on deep learning and reinforcement learning |
CN111339869A (en) * | 2020-02-18 | 2020-06-26 | 北京拙河科技有限公司 | Face recognition method, face recognition device, computer readable storage medium and equipment |
CN111881876A (en) * | 2020-08-06 | 2020-11-03 | 桂林电子科技大学 | An Attendance Method Based on Single-Order Anchor-Free Detection Network |
CN111931671A (en) * | 2020-08-17 | 2020-11-13 | 青岛北斗天地科技有限公司 | Face recognition method for illumination compensation in underground coal mine adverse light environment |
CN113111847A (en) * | 2021-04-29 | 2021-07-13 | 四川隧唐科技股份有限公司 | Automatic monitoring method, device and system for process circulation |
WO2021184894A1 (en) * | 2020-03-20 | 2021-09-23 | 深圳市优必选科技股份有限公司 | Deblurred face recognition method and system and inspection robot |
CN114821844A (en) * | 2021-01-28 | 2022-07-29 | 深圳云天励飞技术股份有限公司 | Attendance checking method and device based on face recognition, electronic equipment and storage medium |
CN115050068A (en) * | 2022-05-30 | 2022-09-13 | 盛视科技股份有限公司 | Coal mine worker face recognition method |
CN115529475A (en) * | 2021-12-29 | 2022-12-27 | 北京智美互联科技有限公司 | Method and system for detecting video flow content and controlling wind |
CN116110100A (en) * | 2023-01-14 | 2023-05-12 | 深圳市大数据研究院 | A face recognition method, device, computer equipment and storage medium |
CN116452878A (en) * | 2023-04-20 | 2023-07-18 | 广东工业大学 | Attendance checking method and system based on deep learning algorithm and binocular vision |
CN116612519A (en) * | 2023-05-31 | 2023-08-18 | 深圳中维世纪科技有限公司 | A face recognition method, device and medium based on a high-definition camera |
CN117894091A (en) * | 2024-02-23 | 2024-04-16 | 江西远格科技有限公司 | Face attendance checking method for railway industry |
CN118429862A (en) * | 2024-05-09 | 2024-08-02 | 南京广播电视集团有限责任公司 | Video auditing system and method for broadcasting and television industry based on face recognition |
CN119314232A (en) * | 2024-12-16 | 2025-01-14 | 深圳市讯方技术股份有限公司 | Automatic attendance method, device, terminal equipment and storage medium |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104110271A (en) * | 2013-04-22 | 2014-10-22 | 开封市测控技术有限公司 | Under-mine equipment monitoring alarm system based on face recognition technology |
CN105354565A (en) * | 2015-12-23 | 2016-02-24 | 北京市商汤科技开发有限公司 | Full convolution network based facial feature positioning and distinguishing method and system |
CN105678248A (en) * | 2015-12-31 | 2016-06-15 | 上海科技大学 | Face key point alignment algorithm based on deep learning |
CN107480640A (en) * | 2017-08-16 | 2017-12-15 | 上海荷福人工智能科技(集团)有限公司 | A kind of face alignment method based on two-value convolutional neural networks |
CN108022318A (en) * | 2017-12-28 | 2018-05-11 | 上海享服信息技术有限公司 | More people's recognition of face attendance checking systems and its Work attendance method |
CN108256450A (en) * | 2018-01-04 | 2018-07-06 | 天津大学 | A kind of supervised learning method of recognition of face and face verification based on deep learning |
CN108446689A (en) * | 2018-05-30 | 2018-08-24 | 南京开为网络科技有限公司 | A kind of face identification method |
CN108960136A (en) * | 2018-06-29 | 2018-12-07 | 杭州西纬软件科技有限公司 | The determination method and apparatus of Initial Face shape in face alignment algorithm |
CN109033938A (en) * | 2018-06-01 | 2018-12-18 | 上海阅面网络科技有限公司 | A kind of face identification method based on ga s safety degree Fusion Features |
CN109508690A (en) * | 2018-11-29 | 2019-03-22 | 浙江工业大学 | A kind of non-active cooperation attendance checking system based on recognition of face |
CN109740501A (en) * | 2018-12-28 | 2019-05-10 | 广东亿迅科技有限公司 | A kind of Work attendance method and device of recognition of face |
CN109754478A (en) * | 2017-11-06 | 2019-05-14 | 北京航天长峰科技工业集团有限公司 | A kind of face intelligent Checking on Work Attendance method of low user's fitness |
CN109858466A (en) * | 2019-03-01 | 2019-06-07 | 北京视甄智能科技有限公司 | A kind of face critical point detection method and device based on convolutional neural networks |
-
2019
- 2019-09-11 CN CN201910859933.9A patent/CN110569809A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104110271A (en) * | 2013-04-22 | 2014-10-22 | 开封市测控技术有限公司 | Under-mine equipment monitoring alarm system based on face recognition technology |
CN105354565A (en) * | 2015-12-23 | 2016-02-24 | 北京市商汤科技开发有限公司 | Full convolution network based facial feature positioning and distinguishing method and system |
CN105678248A (en) * | 2015-12-31 | 2016-06-15 | 上海科技大学 | Face key point alignment algorithm based on deep learning |
CN107480640A (en) * | 2017-08-16 | 2017-12-15 | 上海荷福人工智能科技(集团)有限公司 | A kind of face alignment method based on two-value convolutional neural networks |
CN109754478A (en) * | 2017-11-06 | 2019-05-14 | 北京航天长峰科技工业集团有限公司 | A kind of face intelligent Checking on Work Attendance method of low user's fitness |
CN108022318A (en) * | 2017-12-28 | 2018-05-11 | 上海享服信息技术有限公司 | More people's recognition of face attendance checking systems and its Work attendance method |
CN108256450A (en) * | 2018-01-04 | 2018-07-06 | 天津大学 | A kind of supervised learning method of recognition of face and face verification based on deep learning |
CN108446689A (en) * | 2018-05-30 | 2018-08-24 | 南京开为网络科技有限公司 | A kind of face identification method |
CN109033938A (en) * | 2018-06-01 | 2018-12-18 | 上海阅面网络科技有限公司 | A kind of face identification method based on ga s safety degree Fusion Features |
CN108960136A (en) * | 2018-06-29 | 2018-12-07 | 杭州西纬软件科技有限公司 | The determination method and apparatus of Initial Face shape in face alignment algorithm |
CN109508690A (en) * | 2018-11-29 | 2019-03-22 | 浙江工业大学 | A kind of non-active cooperation attendance checking system based on recognition of face |
CN109740501A (en) * | 2018-12-28 | 2019-05-10 | 广东亿迅科技有限公司 | A kind of Work attendance method and device of recognition of face |
CN109858466A (en) * | 2019-03-01 | 2019-06-07 | 北京视甄智能科技有限公司 | A kind of face critical point detection method and device based on convolutional neural networks |
Non-Patent Citations (4)
Title |
---|
JIFENG DAI 等: ""R-FCN: Object Detection via Region-based Fully Convolutional Networks"", 《30TH CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS (NIPS 2016)》 * |
SLUMBERS: ""人脸识别损失函数综述(附开源实现)"", 《HTTPS://ZHUANLAN.ZHIHU.COM/P/51324547》 * |
YITONG WANG 等: "Detecting Faces Using Region-based Fully Convolutional Networks", 《ARXIV.ORG》 * |
戴海能 等: "一种改进的基于R- FCN 模型的人脸检测算法", 《计算机与现代化》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111209860A (en) * | 2020-01-06 | 2020-05-29 | 上海海事大学 | Video attendance system and method based on deep learning and reinforcement learning |
CN111209860B (en) * | 2020-01-06 | 2023-04-07 | 上海海事大学 | Video attendance system and method based on deep learning and reinforcement learning |
CN111339869A (en) * | 2020-02-18 | 2020-06-26 | 北京拙河科技有限公司 | Face recognition method, face recognition device, computer readable storage medium and equipment |
WO2021184894A1 (en) * | 2020-03-20 | 2021-09-23 | 深圳市优必选科技股份有限公司 | Deblurred face recognition method and system and inspection robot |
CN111881876B (en) * | 2020-08-06 | 2022-04-08 | 桂林电子科技大学 | Attendance checking method based on single-order anchor-free detection network |
CN111881876A (en) * | 2020-08-06 | 2020-11-03 | 桂林电子科技大学 | An Attendance Method Based on Single-Order Anchor-Free Detection Network |
CN111931671A (en) * | 2020-08-17 | 2020-11-13 | 青岛北斗天地科技有限公司 | Face recognition method for illumination compensation in underground coal mine adverse light environment |
CN114821844B (en) * | 2021-01-28 | 2024-05-07 | 深圳云天励飞技术股份有限公司 | Attendance checking method and device based on face recognition, electronic equipment and storage medium |
CN114821844A (en) * | 2021-01-28 | 2022-07-29 | 深圳云天励飞技术股份有限公司 | Attendance checking method and device based on face recognition, electronic equipment and storage medium |
CN113111847A (en) * | 2021-04-29 | 2021-07-13 | 四川隧唐科技股份有限公司 | Automatic monitoring method, device and system for process circulation |
CN115529475A (en) * | 2021-12-29 | 2022-12-27 | 北京智美互联科技有限公司 | Method and system for detecting video flow content and controlling wind |
CN115529475B (en) * | 2021-12-29 | 2024-07-16 | 北京国瑞数智技术有限公司 | Method and system for detecting and wind controlling video flow content |
CN115050068A (en) * | 2022-05-30 | 2022-09-13 | 盛视科技股份有限公司 | Coal mine worker face recognition method |
CN116110100A (en) * | 2023-01-14 | 2023-05-12 | 深圳市大数据研究院 | A face recognition method, device, computer equipment and storage medium |
CN116110100B (en) * | 2023-01-14 | 2023-11-14 | 深圳市大数据研究院 | Face recognition method, device, computer equipment and storage medium |
CN116452878A (en) * | 2023-04-20 | 2023-07-18 | 广东工业大学 | Attendance checking method and system based on deep learning algorithm and binocular vision |
CN116452878B (en) * | 2023-04-20 | 2024-02-02 | 广东工业大学 | An attendance method and system based on deep learning algorithm and binocular vision |
CN116612519A (en) * | 2023-05-31 | 2023-08-18 | 深圳中维世纪科技有限公司 | A face recognition method, device and medium based on a high-definition camera |
CN117894091A (en) * | 2024-02-23 | 2024-04-16 | 江西远格科技有限公司 | Face attendance checking method for railway industry |
CN118429862A (en) * | 2024-05-09 | 2024-08-02 | 南京广播电视集团有限责任公司 | Video auditing system and method for broadcasting and television industry based on face recognition |
CN119314232A (en) * | 2024-12-16 | 2025-01-14 | 深圳市讯方技术股份有限公司 | Automatic attendance method, device, terminal equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110569809A (en) | A coal mine dynamic face recognition attendance method and system based on deep learning | |
Marcel et al. | On the recent use of local binary patterns for face authentication | |
CN106778586B (en) | Off-line handwritten signature identification method and system | |
Lavi et al. | Survey on deep learning techniques for person re-identification task | |
Barnouti et al. | Face recognition: A literature review | |
CN102682309B (en) | A face registration method and device based on template learning | |
CN103902970B (en) | Automatic fingerprint Attitude estimation method and system | |
Saleem et al. | Face recognition using facial features | |
CN107392187B (en) | Face in-vivo detection method based on gradient direction histogram | |
CN102938065A (en) | Facial feature extraction method and face recognition method based on large-scale image data | |
CN113205002B (en) | Low-definition face recognition method, device, equipment and medium for unlimited video monitoring | |
CN108647621A (en) | A kind of video analysis processing system and method based on recognition of face | |
CN110555386A (en) | Face recognition identity authentication method based on dynamic Bayes | |
Yang et al. | Face recognition based on MTCNN and integrated application of FaceNet and LBP method | |
Wijnhoven et al. | Identity verification using computer vision for automatic garage door opening | |
Meng et al. | Face recognition based on local binary patterns with threshold | |
del Rio et al. | Face-based recognition systems in the ABC e-gates | |
Andiani et al. | Face recognition for work attendance using multitask convolutional neural network (MTCNN) and pre-trained facenet | |
CN106886771A (en) | The main information extracting method of image and face identification method based on modularization PCA | |
Naik | Detailed survey of different face recognition approaches | |
Razzaq et al. | A comprehensive survey on face detection techniques | |
Chawda et al. | Unique Face Identification System using Machine Learning | |
Zheng et al. | Face detection in low-resolution color images | |
Huang et al. | Skew correction of handwritten Chinese character based on ResNet | |
Li et al. | Facial peculiarity retrieval via deep neural networks fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191213 |