CN110561440A - multi-objective planning method for acceleration layer of redundant manipulator - Google Patents
multi-objective planning method for acceleration layer of redundant manipulator Download PDFInfo
- Publication number
- CN110561440A CN110561440A CN201910927597.7A CN201910927597A CN110561440A CN 110561440 A CN110561440 A CN 110561440A CN 201910927597 A CN201910927597 A CN 201910927597A CN 110561440 A CN110561440 A CN 110561440A
- Authority
- CN
- China
- Prior art keywords
- manipulator
- joint
- acceleration layer
- acceleration
- objective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000005457 optimization Methods 0.000 claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 230000003252 repetitive effect Effects 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 2
- 230000009916 joint effect Effects 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
一种冗余度机械臂加速度层多目标规划方法,分别设计加速度层的优化性能指标和不等式判据;结合机械臂末端的规划任务以及机械臂关节的物理极限,建立加速度层多目标规划方案,方案受约束于加速度层雅可比矩阵等式、机械臂动力学方程、避障不等式、关节角度极限、关节速度极限、关节加速度极限和关节力矩极限;将上述的多目标规划方案转化为一个标准的二次型优化问题,并采用数值算法来对其进行求解;下位机控制器根据算法的求解结果,驱动机械臂各个关节使其完成给定的末端规划任务。本发明设计的加速度层多目标规划方案,能够使得机械臂在关节受限并具有障碍物的情况下仍可完成给定的末端规划任务,且达到重复运动的目的。
A multi-objective planning method for the acceleration layer of a redundant manipulator, which separately designs the optimization performance index and the inequality criterion of the acceleration layer; combines the planning tasks at the end of the manipulator and the physical limits of the joints of the manipulator to establish a multi-objective planning scheme for the acceleration layer, The scheme is constrained by the Jacobian matrix equation of the acceleration layer, the dynamic equation of the manipulator, the obstacle avoidance inequality, the joint angle limit, the joint speed limit, the joint acceleration limit and the joint torque limit; the above multi-objective programming scheme is transformed into a standard The quadratic optimization problem is solved by numerical algorithm; the lower computer controller drives each joint of the manipulator to complete the given terminal planning task according to the solution result of the algorithm. The acceleration-level multi-objective planning scheme designed by the present invention can enable the mechanical arm to complete a given terminal planning task under the condition of limited joints and obstacles, and achieve the purpose of repeated motion.
Description
技术领域technical field
本发明涉及冗余度机械臂的运动规划及控制领域,特别是指一种冗余度机械臂加速度层多目标规划方法。The invention relates to the field of motion planning and control of redundant manipulators, in particular to a multi-objective planning method for acceleration layers of redundant manipulators.
背景技术Background technique
冗余度机械臂在工业自动化生产活动(如焊接、组装和喷漆等)中扮演着越来越重要的角色。冗余度机械臂应用研究中的两个热点是重复运动规划和障碍物躲避:这关系到机械臂能否在复杂工业环境中成功完成重复性的末端规划任务。Redundant robotic arms are playing an increasingly important role in industrial automation production activities such as welding, assembly, and painting. Two hotspots in the application research of redundant manipulators are repetitive motion planning and obstacle avoidance: this is related to whether the manipulator can successfully complete repetitive terminal planning tasks in complex industrial environments.
目前已有多种重复运动规划方案和避障规划方案被提出并有效应用于机械臂。然而,大部分的规划方案都只能实现单一目标(即重复运动或障碍物躲避),仅有为数不多的规划方案是可以同时实现重复运动和障碍物躲避。对于这些可实现多个目标的规划方案,其都是在速度层上进行设计和在忽略机械臂动力学的情况下进行研究的。显然,它们无法处理机械臂的关节加速度极限和关节力矩极限,也无法直接应用于与加速度或力矩控制相关的机械臂,因而方案的适用范围受到极大的限制。更重要的是,由于缺乏对机械臂动力学的考虑,这些方案在工业应用实践中往往容易失效,从而导致机械臂无法完成给定的末端规划任务。At present, a variety of repetitive motion planning schemes and obstacle avoidance planning schemes have been proposed and effectively applied to manipulators. However, most planning schemes can only achieve a single goal (ie, repetitive motion or obstacle avoidance), and only a few planning schemes can achieve both repetitive motion and obstacle avoidance. These multi-objective planning schemes are designed at the velocity level and studied while ignoring the dynamics of the manipulator. Obviously, they cannot deal with the joint acceleration limit and joint torque limit of the manipulator, nor can they be directly applied to the manipulator related to acceleration or torque control, so the scope of application of the scheme is greatly limited. More importantly, due to the lack of consideration of the dynamics of the manipulator, these schemes are often prone to failure in industrial application practice, resulting in the inability of the manipulator to complete the given end-planning task.
发明内容Contents of the invention
本发明的主要目的在于克服现有技术中的上述缺陷,提出一种冗余度机械臂加速度层多目标规划方法,能够使得机械臂在关节受限并具有障碍物的情况下仍可完成给定的末端规划任务,且达到重复运动的目的。The main purpose of the present invention is to overcome the above-mentioned defects in the prior art, and propose a multi-objective planning method for the acceleration layer of redundant manipulators, which can make the manipulators still complete the given tasks when the joints are limited and there are obstacles. end-planning tasks, and achieve the purpose of repetitive motion.
本发明采用如下技术方案:The present invention adopts following technical scheme:
一种冗余度机械臂加速度层多目标规划方法,其特征在于,包括如下步骤:A redundant manipulator acceleration layer multi-objective planning method, is characterized in that, comprises the steps:
1)设计加速度层的优化性能指标和避障不等式;1) Design the optimized performance index and obstacle avoidance inequality of the acceleration layer;
2)结合机械臂末端的规划任务、机械臂关节的物理极限及加速度层的优化性能指标建立加速度层多目标规划方案,其受约束于加速度层雅可比矩阵等式、机械臂动力学方程、避障不等式、关节角度极限、关节速度极限、关节加速度极限和关节力矩极限;2) Combine the planning tasks at the end of the manipulator, the physical limits of the joints of the manipulator and the optimization performance indicators of the acceleration layer to establish a multi-objective planning scheme for the acceleration layer, which is constrained by the Jacobian matrix equation of the acceleration layer, the dynamic equation of the manipulator, and the avoidance Barrier inequality, joint angle limit, joint speed limit, joint acceleration limit and joint torque limit;
3)将加速度层多目标规划方案转化为一个标准的二次型优化问题,并采用数值算法来对其进行求解;3) Transform the multi-objective programming scheme of the acceleration layer into a standard quadratic optimization problem, and use numerical algorithms to solve it;
4)下位机控制器根据求解结果,驱动机械臂各个关节动作完成给定的末端规划任务。4) The controller of the lower computer drives each joint action of the manipulator to complete the given terminal planning task according to the solution result.
优选的,所述加速度层的优化性能指标为:Preferably, the optimized performance index of the acceleration layer is:
其中||·||2表示向量的二范数,表示机械臂关节加速度,表示机械臂关节速度,θ表示机械臂关节角度,θ(0)表示机械臂关节的初始状态;设计参数λ>0用于调节性能指标以使机械臂达到重复运动规划的目的。Where ||·|| 2 represents the two-norm of the vector, Indicates the joint acceleration of the manipulator, Indicates the joint speed of the manipulator, θ indicates the joint angle of the manipulator, and θ(0) indicates the initial state of the joint of the manipulator; the design parameter λ>0 is used to adjust the performance index so that the manipulator can achieve the purpose of repetitive motion planning.
优选的,所述避障不等式为:Preferably, the obstacle avoidance inequality is:
其中,系数矩阵M和N分别定义为M=-[xC-xO,yC-yO,zC-zO]TJC和上标T表示矩阵或向量的转置,(xC,yC,zC)表示机械臂判据点的空间坐标,(xO,yO,zO)表示环境障碍物点的空间坐标,JC表示机械臂判据点的雅克比矩阵,表示JC的时间导数。Among them, the coefficient matrices M and N are respectively defined as M=-[x C -x O , y C -y O , z C -z O ] T J C and The superscript T represents the transpose of the matrix or vector, (x C , y C , z C ) represents the spatial coordinates of the criterion point of the manipulator, (x O , y O , z O ) represents the spatial coordinates of the environmental obstacle point, J C represents the Jacobian matrix of the criterion point of the manipulator, Denotes the time derivative of JC .
优选的,所述加速度层多目标规划方案设计为:Preferably, the acceleration layer multi-objective planning scheme is designed as:
最小化 minimize
受约束于 subject to
其中等式约束对应于机械臂末端在加速度层的运动规划任务,α和β表示设计参数且其数值满足α>0和β>0,J表示机械臂的雅可比矩阵,表示J的时间导数,e表示机械臂末端的位置误差且定义为e=f(θ)-rd,f(·)表示一个非线性映射函数,rd表示机械臂末端运动的期望轨迹,ε表示机械臂末端的速度误差且定义为表示rd的时间导数,表示的时间导数;等式约束表示机械臂的动力学方程,H表示机械臂惯性矩阵,c表示离心力变量,g表示重力变量,τ表示机械臂关节力矩;不等式约束用于实现机械臂对环境障碍物的躲避;和τ±分别表示关节角度极限、关节速度极限、关节加速度极限和关节力矩极限。where the equality constraints Corresponding to the motion planning task at the end of the manipulator at the acceleration layer, α and β represent the design parameters and their values satisfy α>0 and β>0, J represents the Jacobian matrix of the manipulator, Represents the time derivative of J, e represents the position error of the end of the manipulator and is defined as e=f(θ)-r d , f( ) represents a nonlinear mapping function, r d represents the expected trajectory of the end of the manipulator, ε represents the velocity error at the end of the manipulator and is defined as Indicates the time derivative of r d , express The time derivative of ; the equality constraint Represents the dynamic equation of the manipulator, H represents the inertia matrix of the manipulator, c represents the centrifugal force variable, g represents the gravity variable, τ represents the joint torque of the manipulator arm; inequality constraints It is used to realize the avoidance of environmental obstacles by the robotic arm; and τ ± represent joint angle limit, joint velocity limit, joint acceleration limit and joint torque limit, respectively.
优选的,将加速度层多目标规划方案转化为一个标准的二次型优化问题,其性能指标为xTx/2+pTx,约束条件为Cx=d,Ax≤b,η-≤x≤η+,其中, η±表示联立关节角度θ、关节速度和关节加速度后的上下极限,并且, k1>0和k2>0表示关节极限转换参数,δ>0表示关节极限转换裕量。Preferably, the acceleration layer multi-objective programming scheme is converted into a standard quadratic optimization problem, its performance index is x T x/2+p T x, and the constraint conditions are Cx=d, Ax≤b, η - ≤x ≤η + , where, η ± means simultaneous joint angle θ, joint speed and joint acceleration After the upper and lower limits, and, k 1 >0 and k 2 >0 represent the joint limit conversion parameters, and δ>0 represents the joint limit conversion margin.
优选的,采用数值算法来对二次型优化问题进行求解,具体为:将二次型优化问题的求解转化等效为一个分段线性投影方程的求解,从而采用相应的数值算法来计算得到分段线性投影方程的解以及二次型优化问题的最优化解。Preferably, a numerical algorithm is used to solve the quadratic optimization problem, specifically: the solution of the quadratic optimization problem is converted into a piecewise linear projection equation, and the corresponding numerical algorithm is used to calculate the fractional Solutions of segmental linear projection equations and optimal solutions of quadratic optimization problems.
由上述对本发明的描述可知,与现有技术相比,本发明具有如下有益效果:As can be seen from the above description of the present invention, compared with the prior art, the present invention has the following beneficial effects:
本发明能有效克服现有方法的不足,提供了一种能够使得冗余度机械臂在关节受限并具有障碍物的情况下仍可完成给定的末端规划任务,且达到重复运动的目的的加速度层多目标规划方法,对机械臂在复杂工业环境中的应用实践具有重要意义和价值。The present invention can effectively overcome the shortcomings of the existing methods, and provides a redundant mechanical arm that can complete a given terminal planning task and achieve the purpose of repeated motion even when the joints are limited and there are obstacles. The acceleration layer multi-objective planning method is of great significance and value to the application practice of manipulators in complex industrial environments.
附图说明Description of drawings
图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.
以下结合附图和具体实施例对本发明作进一步详述。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
具体实施方式Detailed ways
以下通过具体实施方式对本发明作进一步的描述。The present invention will be further described below through specific embodiments.
图1所示的一种冗余度机械臂加速度层多目标规划方法主要由设计可实现重复运动和障碍物躲避的性能指标和不等式判据、建立加速度层的多目标规划方案、转为标准的二次型优化问题、数值算法求解器、下位机控制器、冗余度机械臂这六个部分组成。具体的,包括如下步骤:A multi-objective programming method for the acceleration layer of redundant manipulators shown in Figure 1 is mainly composed of designing performance indicators and inequality criteria that can realize repetitive motion and obstacle avoidance, establishing a multi-objective planning scheme for the acceleration layer, and turning it into a standard It consists of six parts: quadratic optimization problem, numerical algorithm solver, lower computer controller, and redundant manipulator. Specifically, the following steps are included:
1)首先,为实现机械臂重复运动和障碍物躲避的目的,分别设计加速度层的优化性能指标和避障不等式。1) First, in order to achieve the purpose of repetitive movement of the manipulator and obstacle avoidance, the optimization performance index of the acceleration layer and the obstacle avoidance inequality are respectively designed.
可实现重复运动的加速度层性能指标设计为:The performance index of the acceleration layer that can realize repeated motion is designed as:
其中||·||2表示向量的二范数,表示机械臂关节加速度,表示机械臂关节速度,θ表示机械臂关节角度,θ(0)表示机械臂关节的初始状态;设计参数λ>0用于调节性能指标以使机械臂达到重复运动的目的。Where ||·|| 2 represents the two-norm of the vector, Indicates the joint acceleration of the manipulator, Indicates the joint speed of the manipulator, θ indicates the angle of the joint of the manipulator, and θ(0) indicates the initial state of the joint of the manipulator; the design parameter λ>0 is used to adjust the performance index so that the manipulator can achieve the purpose of repetitive motion.
可实现障碍物躲避的不等式判据设计为The inequality criterion that can realize obstacle avoidance is designed as
其中系数矩阵M和N分别定义为M=-[xC-xO,yC-yO,zC-zO]TJC和上标T表示矩阵或向量的转置,(xC,yC,zC)表示机械臂判据点的空间坐标,(xO,yO,zO)表示环境障碍物点的空间坐标,JC表示机械臂判据点的雅克比矩阵,表示JC的时间导数。Among them, the coefficient matrices M and N are respectively defined as M=-[x C -x O , y C -y O , z C -z O ] T J C and The superscript T represents the transpose of the matrix or vector, (x C , y C , z C ) represents the spatial coordinates of the criterion point of the manipulator, (x O , y O , z O ) represents the spatial coordinates of the environmental obstacle point, J C represents the Jacobian matrix of the criterion point of the manipulator, Denotes the time derivative of JC .
2)然后,结合机械臂末端的规划任务以及机械臂关节的物理极限,建立可同时实现多种规划目标的方案,即加速度层多目标规划方案。2) Then, combined with the planning tasks at the end of the manipulator and the physical limits of the joints of the manipulator, a scheme that can achieve multiple planning objectives at the same time is established, that is, the acceleration layer multi-objective planning scheme.
基于上述性能指标(1)和不等式判据(2),结合机械臂末端的规划任务以及机械臂关节的物理极限,便可建立如下的加速度层多目标规划方案:Based on the above performance index (1) and inequality criterion (2), combined with the planning tasks at the end of the manipulator and the physical limits of the manipulator joints, the following acceleration layer multi-objective planning scheme can be established:
最小化 minimize
约束条件: Restrictions:
θ-≤θ≤θ+ (7)θ - ≤ θ ≤ θ + (7)
τ-≤τ≤τ+ (10)τ − ≤τ≤τ + (10)
其中等式约束对应于机械臂末端在加速度层的运动规划任务,J表示机械臂的雅可比矩阵,表示J的时间导数,e表示机械臂末端的位置误差且定义为e=f(θ)-rd,f(·)表示一个非线性映射函数,rd表示机械臂末端运动的期望轨迹,ε表示机械臂末端的速度误差且定义为表示rd的时间导数,表示的时间导数;等式约束表示机械臂的动力学方程,H表示机械臂惯性矩阵,c表示离心力变量,g表示重力变量,τ表示机械臂关节力矩;不等式约束用于实现机械臂对环境障碍物的躲避;θ±、和τ±分别表示关节角度极限、关节速度极限、关节加速度极限和关节力矩极限。where the equality constraints Corresponding to the motion planning task at the acceleration layer at the end of the manipulator, J represents the Jacobian matrix of the manipulator, Represents the time derivative of J, e represents the position error of the end of the manipulator and is defined as e=f(θ)-r d , f( ) represents a nonlinear mapping function, r d represents the expected trajectory of the end of the manipulator, ε represents the velocity error at the end of the manipulator and is defined as Indicates the time derivative of r d , express The time derivative of ; the equality constraint Represents the dynamic equation of the manipulator, H represents the inertia matrix of the manipulator, c represents the centrifugal force variable, g represents the gravity variable, τ represents the joint moment of the manipulator arm; inequality constraints It is used to realize the avoidance of the manipulator to the environmental obstacles; θ ± , and τ ± represent joint angle limit, joint velocity limit, joint acceleration limit and joint torque limit, respectively.
3)进而,将该规划方案转化为一个标准的二次型优化问题,并采用数值算法来进行求解,具体如下:3) Furthermore, transform the planning scheme into a standard quadratic optimization problem, and use numerical algorithms to solve it, as follows:
对于上述加速度层多目标规划方案(3)-(10),其可转化为如下标准的二次型优化问题:For the above acceleration layer multi-objective planning schemes (3)-(10), it can be transformed into the following standard quadratic optimization problem:
最小化xTx/2+pTx (11)Minimize xTx /2+ pTx (11)
约束条件:Cx=d (12)Constraints: Cx=d (12)
Ax≤b (13)Ax≤b (13)
η-≤x≤η+ (14)η - ≤ x ≤ η + (14)
其中,A=[MT -HT HT]T,η±表示联立关节角度θ、关节速度和关节加速度后的上下极限,并且,k1>0和k2>0表示关节极限转换参数,δ>0表示关节极限转换裕量。in, A=[M T -H T H T ] T , η ± means simultaneous joint angle θ, joint speed and joint acceleration After the upper and lower limits, and, k 1 >0 and k 2 >0 represent the joint limit conversion parameters, and δ>0 represents the joint limit conversion margin.
上述二次型优化问题(11)-(14)的求解可转化等效为如下分段线性投影方程的求解:The solutions to the above quadratic optimization problems (11)-(14) can be transformed into equivalent solutions to the following piecewise linear projection equations:
u-PΩ(u-(Mu+q))=0 (15)uP Ω (u-(Mu+q))=0 (15)
其中,PΩ(·)表示分段线性投影算子。分段线性投影方程(15)中的原对偶决策向量u,系数矩阵M和向量q分别定义如下:where P Ω (·) represents the piecewise linear projection operator. The original dual decision vector u, the coefficient matrix M and the vector q in the piecewise linear projection equation (15) are respectively defined as follows:
其中,I表示单位矩阵,对偶变量w和v分别对应于等式约束(12)和不等式约束(13)。为了求解上述分段线性投影方程(15)以及相应的二次型优化问题(11)-(14),可采用如下的数值算法:where I represents the identity matrix, and the dual variables w and v correspond to the equality constraints (12) and inequality constraints (13), respectively. In order to solve the above piecewise linear projection equation (15) and the corresponding quadratic optimization problems (11)-(14), the following numerical algorithm can be used:
σ(uk)=uk-PΩ(uk-(Muk+q))σ(u k )=u k -P Ω (u k -(Mu k +q))
其中上标k表示迭代次数且k=0,1,2,…。给定一个初始值u0,通过该数值算法的不断迭代计算,便可获得分段线性投影方程(15)的理论解,从而得到二次型优化问题(11)-(14)的最优解,也即前文所述的加速度层多目标规划方案(3)-(10)的最优解。where the superscript k represents the number of iterations and k=0, 1, 2, . . . Given an initial value u 0 , the theoretical solution of the piecewise linear projection equation (15) can be obtained through continuous iterative calculation of the numerical algorithm, and thus the optimal solution of the quadratic optimization problem (11)-(14) can be obtained , that is, the optimal solution of the acceleration layer multi-objective planning scheme (3)-(10) mentioned above.
4)最后,将求解结果用于驱动机械臂的各个关节以使机械臂在关节受限并具有障碍物的情况下仍可完成给定的末端规划任务,且达到重复运动的目的,具体如下:4) Finally, the solution results are used to drive each joint of the manipulator so that the manipulator can still complete the given terminal planning task when the joints are limited and have obstacles, and achieve the purpose of repeated motion, as follows:
采用上述数值算法求解器计算得到加速度层多目标规划方案(3)-(10)的最优解之后,再将相应的求解结果传递给下位机控制器来驱动机械臂各个关节的运动,从而使得机械臂在关节受限并具有障碍物的情况下仍可完成给定的末端规划任务,且达到重复运动的目的。After calculating the optimal solutions of acceleration layer multi-objective planning schemes (3)-(10) by using the above numerical algorithm solver, the corresponding solution results are passed to the lower computer controller to drive the movement of each joint of the manipulator, so that The robotic arm can still complete a given terminal planning task with limited joints and obstacles, and achieve the purpose of repetitive motion.
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。The above is only a specific embodiment of the present invention, but the design concept of the present invention is not limited thereto, and any non-substantial changes made to the present invention by using this concept should be an act of violating the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910927597.7A CN110561440B (en) | 2019-09-27 | 2019-09-27 | Multi-objective planning method for acceleration layer of redundant manipulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910927597.7A CN110561440B (en) | 2019-09-27 | 2019-09-27 | Multi-objective planning method for acceleration layer of redundant manipulator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110561440A true CN110561440A (en) | 2019-12-13 |
CN110561440B CN110561440B (en) | 2022-06-07 |
Family
ID=68783024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910927597.7A Active CN110561440B (en) | 2019-09-27 | 2019-09-27 | Multi-objective planning method for acceleration layer of redundant manipulator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110561440B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111958598A (en) * | 2020-08-17 | 2020-11-20 | 北方工业大学 | Multi-target fusion redundant drive parallel robot internal force optimization method and system |
CN112605992A (en) * | 2020-12-09 | 2021-04-06 | 中山大学 | Method and device for controlling cyclic motion of double-arm robot |
CN112847323A (en) * | 2021-01-06 | 2021-05-28 | 中国铁建重工集团股份有限公司 | Robot model parameter error compensation method, device, electronic device and medium |
CN113084803A (en) * | 2021-03-31 | 2021-07-09 | 信阳师范学院 | Multi-task control method for redundant manipulator based on multilayer structure |
CN113232016A (en) * | 2021-04-13 | 2021-08-10 | 哈尔滨工业大学(威海) | Mechanical arm path planning method integrating reinforcement learning and fuzzy obstacle avoidance |
CN113618742A (en) * | 2021-08-24 | 2021-11-09 | 深圳市优必选科技股份有限公司 | Robot obstacle avoidance method and device and robot |
CN114571448A (en) * | 2021-12-30 | 2022-06-03 | 广州铁路职业技术学院(广州铁路机械学校) | Joint-limited pseudo-inverse repetitive motion planning method for redundant manipulator |
CN115107028A (en) * | 2022-07-06 | 2022-09-27 | 海南大学 | A noise-tolerant three-wheel omnidirectional mobile manipulator repetitive motion planning method |
CN115107027A (en) * | 2022-07-06 | 2022-09-27 | 海南大学 | A method for repetitive motion planning of wheeled mobile manipulators with anti-noise properties |
CN115157262A (en) * | 2022-07-29 | 2022-10-11 | 中山大学 | Obstacle avoidance and optimization control method, system and robot for joint-constrained redundant manipulator |
US20230101489A1 (en) * | 2021-09-27 | 2023-03-30 | Ubtech Robotics Corp Ltd | Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium |
CN116968016A (en) * | 2022-11-16 | 2023-10-31 | 重庆大学 | Construction method and visual interaction system of feasible space of hydraulic arm end speed |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102514008A (en) * | 2011-11-21 | 2012-06-27 | 中山大学 | Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously |
US20140074289A1 (en) * | 2012-09-10 | 2014-03-13 | Fanuc America Corporation | Method of controlling a redundant robot |
CN104908040A (en) * | 2015-06-23 | 2015-09-16 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Fault-tolerant planning method for accelerated speed layer of redundancy mechanical arm |
CN107351081A (en) * | 2017-06-27 | 2017-11-17 | 华侨大学 | Redundancy mechanical arm impact degree layer motion planning method with speed-optimization characteristic |
CN108326844A (en) * | 2017-01-20 | 2018-07-27 | 香港理工大学深圳研究院 | The motion planning method and device of the operable degree optimization of redundancy mechanical arm |
CN108422424A (en) * | 2018-05-28 | 2018-08-21 | 兰州大学 | A kind of disturbance rejection mechanical arm repetitive motion planning method with saturated characteristic |
-
2019
- 2019-09-27 CN CN201910927597.7A patent/CN110561440B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102514008A (en) * | 2011-11-21 | 2012-06-27 | 中山大学 | Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously |
US20140074289A1 (en) * | 2012-09-10 | 2014-03-13 | Fanuc America Corporation | Method of controlling a redundant robot |
CN104908040A (en) * | 2015-06-23 | 2015-09-16 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Fault-tolerant planning method for accelerated speed layer of redundancy mechanical arm |
CN108326844A (en) * | 2017-01-20 | 2018-07-27 | 香港理工大学深圳研究院 | The motion planning method and device of the operable degree optimization of redundancy mechanical arm |
CN107351081A (en) * | 2017-06-27 | 2017-11-17 | 华侨大学 | Redundancy mechanical arm impact degree layer motion planning method with speed-optimization characteristic |
CN108422424A (en) * | 2018-05-28 | 2018-08-21 | 兰州大学 | A kind of disturbance rejection mechanical arm repetitive motion planning method with saturated characteristic |
Non-Patent Citations (2)
Title |
---|
张雨浓等: "基于新型性能指标的冗余度机械臂重复运动规划之方案分析与验证", 《武汉理工大学学报(交通科学与工程版)》 * |
郭东生等: "一种采用雅克比转置技术的带反馈的障碍物躲避方案", 《中国科技论文》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111958598A (en) * | 2020-08-17 | 2020-11-20 | 北方工业大学 | Multi-target fusion redundant drive parallel robot internal force optimization method and system |
CN111958598B (en) * | 2020-08-17 | 2021-08-31 | 北方工业大学 | Internal force optimization method and system for redundant drive parallel robot based on multi-objective fusion |
CN112605992A (en) * | 2020-12-09 | 2021-04-06 | 中山大学 | Method and device for controlling cyclic motion of double-arm robot |
CN112847323A (en) * | 2021-01-06 | 2021-05-28 | 中国铁建重工集团股份有限公司 | Robot model parameter error compensation method, device, electronic device and medium |
CN113084803A (en) * | 2021-03-31 | 2021-07-09 | 信阳师范学院 | Multi-task control method for redundant manipulator based on multilayer structure |
CN113232016A (en) * | 2021-04-13 | 2021-08-10 | 哈尔滨工业大学(威海) | Mechanical arm path planning method integrating reinforcement learning and fuzzy obstacle avoidance |
CN113618742B (en) * | 2021-08-24 | 2022-07-29 | 深圳市优必选科技股份有限公司 | Robot obstacle avoidance method and device and robot |
CN113618742A (en) * | 2021-08-24 | 2021-11-09 | 深圳市优必选科技股份有限公司 | Robot obstacle avoidance method and device and robot |
US20230101489A1 (en) * | 2021-09-27 | 2023-03-30 | Ubtech Robotics Corp Ltd | Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium |
US11992946B2 (en) * | 2021-09-27 | 2024-05-28 | Ubkang (Qingdao) Technology Co., Ltd. | Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium |
CN114571448A (en) * | 2021-12-30 | 2022-06-03 | 广州铁路职业技术学院(广州铁路机械学校) | Joint-limited pseudo-inverse repetitive motion planning method for redundant manipulator |
CN115107028A (en) * | 2022-07-06 | 2022-09-27 | 海南大学 | A noise-tolerant three-wheel omnidirectional mobile manipulator repetitive motion planning method |
CN115107027A (en) * | 2022-07-06 | 2022-09-27 | 海南大学 | A method for repetitive motion planning of wheeled mobile manipulators with anti-noise properties |
CN115157262A (en) * | 2022-07-29 | 2022-10-11 | 中山大学 | Obstacle avoidance and optimization control method, system and robot for joint-constrained redundant manipulator |
CN115157262B (en) * | 2022-07-29 | 2023-07-11 | 中山大学 | Obstacle avoidance and optimal control method and system for joint-limited redundant mechanical arm and robot |
CN116968016A (en) * | 2022-11-16 | 2023-10-31 | 重庆大学 | Construction method and visual interaction system of feasible space of hydraulic arm end speed |
Also Published As
Publication number | Publication date |
---|---|
CN110561440B (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110561440A (en) | multi-objective planning method for acceleration layer of redundant manipulator | |
CN106945041B (en) | A Redundant Manipulator Repeated Motion Planning Method | |
CN101927495B (en) | Repetitive motion planning method for redundant manipulator | |
CN104965517B (en) | A kind of planing method of robot cartesian space track | |
CN109782601B (en) | Design method of self-adaptive neural network synchronous robust controller of coordinated mechanical arm | |
CN102514008B (en) | Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously | |
CN104908040B (en) | A kind of fault-tolerant planing method of redundancy mechanical arm acceleration layer | |
CN105183009B (en) | A kind of redundant mechanical arm method for controlling trajectory | |
CN107891424A (en) | A kind of finite time Neural network optimization for solving redundant mechanical arm inverse kinematics | |
CN111975768A (en) | A motion planning method for robotic arm based on solid parameter neural network | |
CN106926238B (en) | Cooperative control method and device for multi-redundancy manipulator system based on sudden addition | |
CN107966907B (en) | An obstacle avoidance solution applied to redundant manipulators | |
CN107160401B (en) | A method for solving the joint angle offset problem of redundant manipulators | |
CN110103225B (en) | Data-driven method and device for controlling repeated motion of mechanical arm | |
CN107962566A (en) | A kind of mobile mechanical arm repetitive motion planning method | |
WO2023116129A1 (en) | Compliant force control method and system for collaborative robot | |
CN114942593B (en) | An adaptive sliding mode control method for a manipulator based on disturbance observer compensation | |
Hu et al. | Adaptive variable impedance control of dual-arm robots for slabstone installation | |
CN115139301B (en) | Mechanical arm motion planning method based on topological structure self-adaptive neural network | |
CN109782759A (en) | A kind of Approximate Decoupling of wheeled mobile robot, quick Trajectory Tracking Control method | |
CN108098777B (en) | Redundant manipulator moment layer repetitive motion control method | |
CN108908347A (en) | One kind is towards redundancy mobile mechanical arm error-tolerance type repetitive motion planning method | |
CN107378952A (en) | A kind of solution method that redundancy mechanical arm end effector posture is kept | |
CN113954077B (en) | Underwater swimming mechanical arm trajectory tracking control method and device with energy optimization function | |
CN115533920A (en) | A collaborative planning method and system for solving the inverse kinematics of a rope-driven manipulator, and a computer storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |