CN110558975B - 一种心电信号分类方法及系统 - Google Patents
一种心电信号分类方法及系统 Download PDFInfo
- Publication number
- CN110558975B CN110558975B CN201910973897.9A CN201910973897A CN110558975B CN 110558975 B CN110558975 B CN 110558975B CN 201910973897 A CN201910973897 A CN 201910973897A CN 110558975 B CN110558975 B CN 110558975B
- Authority
- CN
- China
- Prior art keywords
- layer
- ecg signal
- data
- input
- random
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000011176 pooling Methods 0.000 claims abstract description 36
- 238000013528 artificial neural network Methods 0.000 claims abstract description 23
- 239000000284 extract Substances 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 6
- 238000012549 training Methods 0.000 claims description 26
- 230000015654 memory Effects 0.000 claims description 17
- 230000006870 function Effects 0.000 claims description 13
- 230000006403 short-term memory Effects 0.000 claims description 12
- 230000002457 bidirectional effect Effects 0.000 claims description 10
- 230000005284 excitation Effects 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 7
- 230000002779 inactivation Effects 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 4
- 238000012952 Resampling Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 2
- 230000007787 long-term memory Effects 0.000 claims 6
- 230000004927 fusion Effects 0.000 abstract 1
- 238000002565 electrocardiography Methods 0.000 description 58
- 210000004027 cell Anatomy 0.000 description 10
- 238000013135 deep learning Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 210000001174 endocardium Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Cardiology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910973897.9A CN110558975B (zh) | 2019-10-14 | 2019-10-14 | 一种心电信号分类方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910973897.9A CN110558975B (zh) | 2019-10-14 | 2019-10-14 | 一种心电信号分类方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110558975A CN110558975A (zh) | 2019-12-13 |
CN110558975B true CN110558975B (zh) | 2020-12-01 |
Family
ID=68784906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910973897.9A Active CN110558975B (zh) | 2019-10-14 | 2019-10-14 | 一种心电信号分类方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110558975B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111000633B (zh) * | 2019-12-20 | 2020-11-03 | 山东大学齐鲁医院 | 一种内镜诊疗操作过程的监控方法及系统 |
CN112272074B (zh) * | 2020-10-27 | 2022-11-25 | 国网内蒙古东部电力有限公司电力科学研究院 | 一种基于神经网络的信息传输速率控制方法及系统 |
CN112600772B (zh) * | 2020-12-09 | 2022-05-17 | 齐鲁工业大学 | 一种基于数据驱动神经网络的ofdm信道估计与信号检测方法 |
CN113393936B (zh) * | 2021-07-06 | 2023-01-24 | 重庆大学 | 一种基于端-边-云架构的失能老人健康监护系统 |
CN114159070A (zh) * | 2021-12-20 | 2022-03-11 | 武汉大学 | 一种卷积神经网络的心脏骤停风险实时预测方法及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170249445A1 (en) * | 2014-09-12 | 2017-08-31 | Blacktree Fitness Technologies Inc. | Portable devices and methods for measuring nutritional intake |
CN107890348B (zh) * | 2017-11-21 | 2018-12-25 | 郑州大学 | 一种基于深度学习法心电节拍特征自动化提取及分类方法 |
CN108720831B (zh) * | 2018-05-12 | 2021-01-15 | 鲁东大学 | 一种基于导联深度神经网络的自动心律失常分析方法 |
CN109820525A (zh) * | 2019-01-23 | 2019-05-31 | 五邑大学 | 一种基于cnn-lstm深度学习模型的驾驶疲劳识别方法 |
CN110090012A (zh) * | 2019-03-15 | 2019-08-06 | 上海图灵医疗科技有限公司 | 一种基于机器学习的人体疾病检测方法及检测产品 |
-
2019
- 2019-10-14 CN CN201910973897.9A patent/CN110558975B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110558975A (zh) | 2019-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110558975B (zh) | 一种心电信号分类方法及系统 | |
CN104523266B (zh) | 一种心电信号自动分类方法 | |
CN107822622B (zh) | 基于深度卷积神经网络的心电图诊断方法和系统 | |
CN106503799B (zh) | 基于多尺度网络的深度学习模型及在脑状态监测中的应用 | |
CN111990989A (zh) | 一种基于生成对抗及卷积循环网络的心电信号识别方法 | |
CN112508110A (zh) | 一种基于深度学习的心电信号图的分类方法 | |
JP2020528336A (ja) | 心電信号の検出 | |
CN104523264B (zh) | 一种心电信号处理方法 | |
CN110313894A (zh) | 基于卷积神经网络的心率失常分类算法 | |
CN110522444A (zh) | 一种基于Kernel-CNN的心电信号识别分类方法 | |
CN111657925A (zh) | 基于机器学习的心电信号分类方法、系统、终端以及存储介质 | |
CN110327055A (zh) | 一种基于高阶谱和卷积神经网络的心冲击信号的分类方法 | |
CN110613445B (zh) | 一种基于dwnn框架的心电信号的识别方法 | |
CN116439672A (zh) | 一种基于动态自适应核图神经网络的多分辨率睡眠阶段分类方法 | |
CN110960207A (zh) | 一种基于树模型的房颤检测方法、装置、设备及存储介质 | |
CN110327033A (zh) | 一种基于深度神经网络的心肌梗死心电图的筛查方法 | |
Xu et al. | Hybrid label noise correction algorithm for medical auxiliary diagnosis | |
Qu et al. | ECG heartbeat classification detection based on WaveNet-LSTM | |
CN114451898B (zh) | 短时训练卷积神经网络的心电信号分类方法 | |
Feng et al. | A deep dynamic neural network model and its application for ECG classification | |
CN116350234A (zh) | 基于gcnn-lstm模型的ecg心律失常分类方法及系统 | |
CN116649899A (zh) | 一种基于注意力机制特征融合的心电信号分类方法 | |
CN115844419A (zh) | 一种心电信号质量检测方法、装置及计算机可读介质 | |
CN110584652B (zh) | 一种心电散点图三维图像增强方法 | |
CN115105085B (zh) | 基于自动深度卷积学习模型的十二导联心电图的分类方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211101 Address after: 250000 417, floor 4, block B, Yinhe building, No. 2008, Xinluo street, Jinan area, China (Shandong) pilot Free Trade Zone, Jinan City, Shandong Province Patentee after: Shandong Shanke Zhixin Technology Co.,Ltd. Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501 Patentee before: Qilu University of Technology |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A method and system for ECG signal classification Effective date of registration: 20230112 Granted publication date: 20201201 Pledgee: Qilu Bank Co.,Ltd. Jinan Wuying East Road Sub branch Pledgor: Shandong Shanke Zhixin Technology Co.,Ltd. Registration number: Y2023980030850 |