CN110557250B - 基于四粒子χ态的多方量子密钥协商方法 - Google Patents

基于四粒子χ态的多方量子密钥协商方法 Download PDF

Info

Publication number
CN110557250B
CN110557250B CN201910867036.2A CN201910867036A CN110557250B CN 110557250 B CN110557250 B CN 110557250B CN 201910867036 A CN201910867036 A CN 201910867036A CN 110557250 B CN110557250 B CN 110557250B
Authority
CN
China
Prior art keywords
user
sequence
particle
key
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910867036.2A
Other languages
English (en)
Other versions
CN110557250A (zh
Inventor
李太超
姜敏
吕诚名
王庚
戴丽丽
李格格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201910867036.2A priority Critical patent/CN110557250B/zh
Publication of CN110557250A publication Critical patent/CN110557250A/zh
Application granted granted Critical
Publication of CN110557250B publication Critical patent/CN110557250B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0855Quantum cryptography involving additional nodes, e.g. quantum relays, repeaters, intermediate nodes or remote nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于四粒子χ态的多方量子密钥协商方法。本发明所有参与者在他们之间不进行经典比特交换的情形下都可以协商出共享密钥,同时这个方法可以抵抗外部和内部攻击,从而极大地提高了信息效率和安全性。主要包含(1)实施本方法中需要使用的
Figure DDA0002201561740000011
Figure DDA0002201561740000012
(2)参与的每位用户都事先通过网络中心服务器的身份认证,防止发生内部攻击。另外每位用户都拥有一组长为4l的密钥序列Ki(3)收到传输序列的用户在前一位用户的帮助下,利用诱饵单光子来检测是否存在窃听者,确保了方案的安全性(4)参与用户根据自己所拥有的密钥序列Ki选择相应的幺正操作,对接收到的序列进行幺正操作。

Description

基于四粒子χ态的多方量子密钥协商方法
技术领域
本发明涉及量子通讯领域,具体涉及一种基于四粒子χ态的多方量子密钥协商方法。
背景技术
量子密码学作为一门新型交叉学科,主要是利用量子力学的基本原理,建立了一种新的密码体制,在理论上保证了无条件的安全性。目前量子密码学通常把通信双方以量子态为信息载体,利用量子力学原理,通过量子信道传输,在保密通信双方之间建立共享密钥的方法,称为量子密钥分发。其安全性由量子力学中的不确定性关系及量子克隆定理所保证。目前量子密钥分发作为量子信息技术中最有应用前景的技术之一,随着量子技术的发展,已经能够在光纤通道或数公里的空间通道中实现信息传输。针对各种密码任务目前已经提出了许多协议,包括量子密钥分配[1,2],量子签名(QS),量子秘密共享(QSS)[3,4],量子安全直接通信(QSDC)[5],量子比特承诺(QBC),量子缺失转移(QOT)等。
量子密钥协商(Quantum Key Agreement,QKA)[6-15]是量子密码及量子信息技术中的一个重要分支,它不同于传统的量子密钥分配,其中一个参与者将预定密钥分配给其他参与者,QKA允许参与者经由传统的公共量子通道共享秘密密钥协商。此外,QKA中的每个参与者同样有助于生成共享密钥,共享密钥不能完全由其中任何一个参与者决定。由于传统意义上不可破解的经典密码在量子信息技术的发展下已不再坚不可摧,所以在量子信息领域的密码技术研究已得到很大的发展,出现了如多方量子秘密共享,基于中国剩余定理的量子秘密共享以及高效的多方量子秘密共享等许多量子秘密共享方法。这些方法的出现弥补了经典领域的不足,极大的提高了通信的安全性和可靠性。
到目前为止,国内外在QKA领域的研究一直在进行。2004年报告了第一个基于量子隐形传态技术的QKA协议[6]。然而有两个在他们的协议中,一方可以单独确定共享密钥[7]。2012年,Shi等[8]在没有第三方帮助的情况下,提出了两种基于纠缠交换的两方和多方量子密钥协商协议。2013年,Huang等[9]提出了另一种具有EPR对和单粒子测量的量子密钥协商协议,可以避免集体噪声的影响。在2015年,为了保证基于四比特cluster态情况下每一方都能对协议做出平等的贡献,沈等[10]何等人[11]分别提出了一种双方量子密钥和三方量子密钥协商协议。Sun等[12,13]提出了两种六量子比特簇态的多方量子密钥协商协议。最近,何等[14]和蔡等[15]分别提出了基于逻辑χ态和逻辑Bell态的两方密钥协商协议。
[1]Bennett,C.H.,Brassard,G.:Quantum cryptography:public keydistribution and cointossing.In:Proceedings of IEEE International Conferenceon Computers,Systems,and Signal Processing,Bangalore,India,pp.175–179(1984)
[2]Curty,M.,Santos,D.J.:Quantum authentication of classicalmessages.Phys.Rev.A 64,062309(2001)
[3]Yin,X.R.,Ma,W.P.,Liu,W.Y.:A blind quantum signature scheme withχ-type entangled states.Int.J.Theor.Phys.51,455–461(2012)
[4]Zhang,Z.,Man,Z.:Multiparty quantum secret sharing of classicalmessages based on entanglement swapping.Phys.Rev.A 72,022303(2005)
[5]Chang,Y.,Xu,C.X.,Zhang,S.B.,et al.:Quantum secure directcommunication and authentication protocol with singlephotons.Chin.Sci.Bull.58,4571–4576(2013)
[6]Zhou,N.,Zeng,G.,Xiong,J.:Quantum key agreementprotocol.Electron.Lett.40,1(2004)
[7]Chong,S.K.,Tsai,C.W.,Hwang,T.:Improvement on“quantum key agreementprotocol with maximally entangled states”.Int.J.Theor.Phys.50,1793–1802(2011)
[8]Shi,R.H.,Zhong,H.:Multi-party quantum key agreement with bellstates and bell measurements.Quantum Inf.Process.12,921–932(2013)
[9]Huang,W.,Wen,Q.Y.,Liu,B.,et al.:Quantum key agreement with EPRpairs and single-particle measurements.Quantum Inf.Process.13,649–663(2014)
[10]Shen,D.S.,Ma,W.P.,Wang,L.:Two-party quantum key agreement withfour-qubit cluster states.Quantum Inf.Process.13,2313–2324(2014)
[11]He,Y.F.,Ma,W.P.:Quantum key agreement protocols with four-qubitcluster states.Quantum Inf.Process.14,3483–3498(2015)
[12]Sun,Z.,Zhang,C.,Wang,P.,et al.:Multi-party quantum key agreementby an entangled six-qubit state.Int.J.Theor.Phys.55,1920–1929(2016)
[13]Sun,Z.,Yu,J.,Wang,P.:Effificient multi-party quantum keyagreement by cluster states.Quantum Inf.Process.15,373–384(2016)
[14]He,Y.F.,Ma,W.P.:Two-party quantum key agreement againstcollective noise.Quantum Inf.Process.15,5023–5035(2016)
[15]Cai,B.B.,Guo,G.D.,Lin,S.:Multi-party quantum key agreementwithout entanglement.Int.J.Theor.Phys.56,1039(2016)
发明内容
本发明要解决的技术问题是提供一种基于四粒子χ态的多方量子密钥协商方法。
为了解决上述技术问题,本发明提供了一种基于四粒子χ态的多方量子密钥协商方法,所有参与者在他们之间不进行经典比特交换的情形下都可以协商出共享密钥,同时此方法还可以抵抗外部和内部攻击,从而极大地提高了信息效率和安全性。整个方案中包含m个参与者Pi(i=1,2,…,m),并且网络中心服务器要确保每个参与者都已经通过量子身份安全认证。经所有参与者协商出本次方案所需协商密钥的长度为4l(l为整数),则每一方参与者Pi都需生成各自长度为4l的密钥Ki(ki,1,ki,2,…,ki,4l)。相邻参与者通过检查窃听和协商并对对变换后的χ态中的两个量子位分别执行各自密钥对应的幺正操作。最后各参与者测量各自接收到的未知χ态并进行相应的解码操作,通过测量结果所有参与者都可以平等地获得协商密钥
Figure BDA0002201561720000041
具体包括以下步骤:
步骤1:实施准备由于本方法中所有参与者协商生成4l比特量子协商密钥,因此每一位参与密钥协商的合法用户都接收到网络中心服务器发送的l个|χ00>1234态,其基本形式表示如下:
00>1234=(|00>(|00>-|11>)-|01>(|01>-|10>)+|10>(|01>+|10>)+|11>(|00>+|11>))1234
U=(|00>+|11>)<00|+(|01>+|10>)<01|+(|01>-|10>)<10|+(|00>-|11>)<11|
每个参与方需将自己的|χ00>1234态通过U矩阵作用后转化成
Figure BDA0002201561720000042
态,过程如下:
Figure BDA0002201561720000043
然后每个参与方用户Pi将这l个
Figure BDA0002201561720000044
态顺序的表示为
Figure BDA0002201561720000045
(其中上标表示每个
Figure BDA0002201561720000046
态的4个比特,下标表示每个
Figure BDA0002201561720000047
态的顺序)。随后每一方参与者分别将自己所拥有的
Figure BDA0002201561720000048
态中的第一个粒子,第二个粒子,第三个粒子,第四个粒子分别组合成四个序列如下:
Figure BDA0002201561720000049
由于本方法需要各用户根据自己的密钥序列对接收到的粒子序列进行编码,所以各用户需要在方法实施前了解本方法编码位置、密钥和编码幺正操作之间的对应关系,如下
Figure BDA0002201561720000051
Figure BDA0002201561720000052
Figure BDA0002201561720000053
Figure BDA0002201561720000054
Figure BDA0002201561720000055
Figure BDA0002201561720000056
Figure BDA0002201561720000057
Figure BDA0002201561720000058
Figure BDA0002201561720000059
Figure BDA00022015617200000510
Figure BDA00022015617200000511
Figure BDA00022015617200000512
Figure BDA00022015617200000513
Figure BDA00022015617200000514
Figure BDA00022015617200000515
Figure BDA00022015617200000516
对应表格如下
表1经对1,3粒子幺正操作后的协商密钥和最终
Figure BDA00022015617200000517
态对应表
Figure BDA00022015617200000518
步骤2:序列传输用户Pi向粒子序列
Figure BDA00022015617200000519
中随机地插入诱骗单光子序列Zi,形成传输序列
Figure BDA0002201561720000061
Figure BDA0002201561720000062
这些诱饵单光子随机的从{|0>,|1>,|+>,|->}这些状态中选取,其中
Figure BDA0002201561720000063
用户Pi通过量子信道将传输序列
Figure BDA0002201561720000064
Figure BDA0002201561720000065
发送给下一个参与用户
Figure BDA0002201561720000066
(
Figure BDA0002201561720000067
表示模m加)。
步骤3:安全检测当确认用户
Figure BDA0002201561720000068
接收到传输序列
Figure BDA0002201561720000069
Figure BDA00022015617200000610
后,用户Pi向用户
Figure BDA00022015617200000611
公布量子序列中的诱饵单光子的位置,同时公布相应的测量基;其中|0>,|1>采用Z基测量,|+>,|->选取X基测量。用户
Figure BDA00022015617200000612
根据用户Pi公布的信息从{|0>,|1>,|+>,|->}中选择相应的测量基对诱饵单光子进行测量,并将测量结果发送给用户Pi,用户Pi可以通过提前设定的阈值来检测是否存在窃听者;
如果错误率低于预设的阈值,表示没有窃听者,继续执行步骤4;
否则,如果错误率超出了提前设定的阈值,就舍弃之前的全部操作重新开始协议;
步骤4:编码安全检测通过后,用户
Figure BDA00022015617200000613
丢弃诱饵单光子并恢复出粒子序列
Figure BDA00022015617200000614
Figure BDA00022015617200000615
用户
Figure BDA00022015617200000616
根据自己的密钥
Figure BDA00022015617200000617
然后通过参考表1中给出的编码位置、密钥和编码幺正操作之间的对应关系,
Figure BDA00022015617200000618
分别对
Figure BDA00022015617200000619
Figure BDA00022015617200000620
序列中的
Figure BDA00022015617200000621
执行
Figure BDA00022015617200000622
操作得到新的粒子序列
Figure BDA00022015617200000623
Figure BDA00022015617200000624
然后用户
Figure BDA00022015617200000625
随机向粒子序列
Figure BDA00022015617200000626
中插入诱饵单光子序列,形成传输序列
Figure BDA00022015617200000627
通过量子信道发送给下一位用户
Figure BDA00022015617200000628
步骤5:重复执行步骤3和步骤4用户
Figure BDA00022015617200000629
重复执行步骤3和步骤4进行安全检测和消息编码,如果所有的序列都是安全的,他们就会在每个序列相应的量子位上编码他们的密钥,并在序列中随机插入诱饵单光子序列,然后发送给下一位参与者,否则,他们将终止本次密钥协商并重新开始。
步骤6:生成协商密钥接收到经过所有其他用户加密操作后的传输序列
Figure BDA00022015617200000630
后,用户Pi在用户
Figure BDA00022015617200000631
的帮助下进行安全检测。安全检测通过后,用户Pi丢弃诱饵单光子并恢复出粒子序列,然后对4个序列
Figure BDA00022015617200000632
中的相同位置的粒子序列
Figure BDA0002201561720000071
先进行两次U+操作,再进行U1234和U12幺正操作和两比特测量,其操作形式如下:
U+=|00>(<00|+<11|)+|01>(<01|+<10|)+|10>(<01|-<10|)+|11>(<00|-<11|)
Figure BDA0002201561720000072
Figure BDA0002201561720000073
Figure BDA0002201561720000074
Figure BDA0002201561720000075
Figure BDA0002201561720000076
Figure BDA0002201561720000077
Figure BDA0002201561720000078
Figure BDA0002201561720000079
Figure BDA00022015617200000710
Figure BDA00022015617200000711
Figure BDA00022015617200000712
Figure BDA00022015617200000713
Figure BDA00022015617200000714
Figure BDA00022015617200000715
Figure BDA00022015617200000716
Figure BDA00022015617200000717
Figure BDA00022015617200000718
Figure BDA00022015617200000719
表2两比特测量结果和最终对应的
Figure BDA00022015617200000720
态的对应表
Figure BDA0002201561720000081
各用户将两比特的测量结果对应表2就可以查出各自接收到的粒子序列处于
Figure BDA0002201561720000082
态,又根据本方法协商过程可知
Figure BDA0002201561720000083
态与
Figure BDA0002201561720000084
态是一一对应的关系,所以用户Pi可以得出自己接收到的粒子序列对应
Figure BDA0002201561720000085
态,再结合表1就可以得知经其他m-1个参与用户
Figure BDA0002201561720000086
作用后对应的联合密钥
Figure BDA0002201561720000087
最终,所有参与用户都可以获得相同的协商密钥
Figure BDA0002201561720000088
本发明的有益效果:
1、本发明是首次使用χ态进行多方密钥协商,很大程度上提高了密钥协商的安全性,提高了粒子的利用效率。
2、本发明只涉及两粒子测量,参与协商的用户不需要实施复杂的多比特态测量,降低了用户端的测量难度和设备需求,使得方案更易实现。
附图说明
图1是本发明基于四粒子χ态的多方量子密钥协商方法的流程图。
图2是本发明基于四粒子χ态的三方量子密钥协商方法的示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
1、Z基、X基
{|0>,|1>}形成Z基,{|+>,|->}形成X基,其中
Figure BDA0002201561720000091
2、Hadamard门
Hadamard门又叫H变换,它的作用可表示为
Figure BDA0002201561720000092
其对单比特的操作表述如下,
Figure BDA0002201561720000093
Figure BDA0002201561720000094
2、Bell基
Bell基是由两粒子构成的最大纠缠态,它构成了四维Hilbert空间的一组完备正交基,具体形式如下
Figure BDA0002201561720000101
Figure BDA0002201561720000102
Figure BDA0002201561720000103
Figure BDA0002201561720000104
4、控制相位门
控制相位门(CZ门),它拥有两个输入量子比特,分别是控制量子比特和目标量子比特。其作用是:当控制量子比特与目标量子比特同时处于|1>时,将这两个体态的相位反转π。其对应的矩阵形式为:
Figure BDA0002201561720000105
5、量子受控非门
量子受控非门(controlled-NOT门或CNOT门),它拥有两个输入量子比特,分别是控制量子比特和目标量子比特。其作用是:当控制量子比特为|0>时,目标量子比特状态不变;当控制量子比特为|1>时,则目标比特状态翻转。其对应的矩阵形式为:
Figure BDA0002201561720000106
6、Pauli阵
本发明中还会用到一些幺正矩阵,也即Pauli阵。具体形式如下:
Figure BDA0002201561720000111
Figure BDA0002201561720000112
Figure BDA0002201561720000113
Figure BDA0002201561720000114
实施案例:一种基于四粒子χ态的多方量子密钥协商协议方法,以三方参与用户为例,实现基于四粒子χ态的三方量子密钥协商,包括:
步骤1:假设有三位用户Alice、Bob和Charlie参与密钥协商,他们事先都通过了网络中心服务器的身份认证,且每位用户都拥有一组长为4比特的密钥序列:KA=0010,KB=0101,KC=1010。随后网络中心服务器分别给每个用户发送一个初始|χ00>1234态,其基本形式如下:
00>1234=(|00>(|00>-|11>)-|01>(|01>-|10>)+|10>(|01>+|10>)+|11>(|00>+|11>))1234
U=(|00>+|11>)<00|+(|01>+|10>)<01|+(|01>-|10>)<10|+(|00>-|11>)<11|
每个参与方需将自己的|χ00>1234态通过U矩阵作用后转化成
Figure BDA0002201561720000115
态,过程如下:
Figure BDA0002201561720000116
然后,Alice、Bob和Charlie将经U操作后的
Figure BDA0002201561720000117
态分成四个粒子序列,分别记作:
Figure BDA0002201561720000118
其中,下标A,B,C分别表示该粒子序列属于用户Alice、Bob和Charlie。序列
Figure BDA0002201561720000119
分别表示Alice、Bob和Charlie持有
Figure BDA00022015617200001110
态的第一个粒子,第二个粒子,第三个粒子和第四个粒子组成的序列。
步骤2:Alice向粒子序列
Figure BDA0002201561720000121
中随机地插入诱饵单光子序列Zi,形成传输序列
Figure BDA0002201561720000122
然后通过量子信道将传输序列
Figure BDA0002201561720000123
发送给Bob。Bob接收到传输序列
Figure BDA0002201561720000124
后,先进行安全检测,确认没有窃听者后丢弃诱饵单光子序列,恢复得到粒子序列
Figure BDA0002201561720000125
然后Bob将拥有的密钥序列KB两两一组分成两个密钥对{(01),(01)},并根据查看表1得知密钥对应粒子序列
Figure BDA0002201561720000126
进行相应幺正操作
Figure BDA0002201561720000127
幺正操作后,Bob向粒子序列
Figure BDA0002201561720000128
中随机插入诱饵单光子序列Zi形成传输序列
Figure BDA0002201561720000129
然后通过量子信道将传输序列
Figure BDA00022015617200001210
发送给Charlie。
Figure BDA00022015617200001211
表1经对1,3粒子幺正操作后的协商密钥和最终
Figure BDA00022015617200001212
态对应表
步骤3:Charlie接收到传输序列
Figure BDA00022015617200001213
后,先进行安全检测,确认没有窃听者后丢弃诱饵单光子序列,恢复得到粒子序列
Figure BDA00022015617200001214
然后Charlie将拥有的密钥序列KC两两一组分成两个密钥对{(10),(10)},并根据查看表1得知密钥对对粒子序列
Figure BDA0002201561720000131
进行相应幺正操作
Figure BDA0002201561720000132
幺正操作后,Charlie向粒子序列
Figure BDA0002201561720000133
中随机插入诱饵单光子序列Zi形成传输序列
Figure BDA0002201561720000134
然后通过量子信道将传输序列
Figure BDA0002201561720000135
发送给Alice。
步骤4:Alice接收到传输序列
Figure BDA0002201561720000136
后,先进行安全检测,确认没有窃听者后丢弃诱饵单光子序列,恢复得到粒子序列
Figure BDA0002201561720000137
然后Alice将接收到的粒子序列
Figure BDA0002201561720000138
恢复出最终的
Figure BDA0002201561720000139
态分别如下
Figure BDA00022015617200001310
然后Alice先执行两次U+操作,再进行U1234和U12操作和两比特测量,其操作形式如下:
U+=|00>(<00|+<11|)+|01>(<01|+<10|)+|10>(<01|-<10|)+|11>(<00|-<11|)
Figure BDA00022015617200001311
Figure BDA00022015617200001312
Figure BDA00022015617200001313
Figure BDA00022015617200001314
Figure BDA00022015617200001315
Figure BDA00022015617200001316
Figure BDA00022015617200001317
Figure BDA00022015617200001318
Figure BDA00022015617200001319
Figure BDA00022015617200001320
Figure BDA00022015617200001321
Figure BDA00022015617200001322
Figure BDA00022015617200001323
Figure BDA00022015617200001324
Figure BDA0002201561720000141
Figure BDA0002201561720000142
Figure BDA0002201561720000143
Figure BDA0002201561720000144
表2两比特测量结果和对应的
Figure BDA0002201561720000145
态的关系对应表
Figure BDA0002201561720000146
经由Alice分别对12,34粒子进行两比特的测量,可得测量结果分别为|11>34|00>12;再对应表2就可以查出经操作后的粒子序列处于
Figure BDA0002201561720000147
态,又根据本方法协商过程可知
Figure BDA0002201561720000148
态与
Figure BDA0002201561720000149
态是一一对应的关系,所以Alice可以得出自己接收到的粒子序列分别对应
Figure BDA00022015617200001410
态,再结合表1就可以得知其他2个参与用户的联合密钥
Figure BDA00022015617200001411
为1111。最终,Alice结合自己的密钥就可以获得协商密钥
Figure BDA00022015617200001412
与上述方法的过程相同,分别从Bob和Charlie初始发出的顺序操作Bob→Charlie→Alice→Bob和Charlie→Alice→Bob→Charlie也能使Bob和Charlie得到同样的密钥K。即Alice、Bob和Charlie三位用户最终协商的密钥为K=1101。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (1)

1.一种基于四粒子χ态的多方量子密钥协商方法,其特征在于,包括:
步骤1:实施准备:每一位参与密钥协商的合法用户都接收到网络中心服务器发送的l个|χ00>1234态,其基本形式表示如下:
00>1234=(|00>(|00>-|11>)-|01>(|01>-|10>)+|10>(|01>+|10>)+|11>(|00>+|11>))1234
U=(|00>+|11>)<00|+(|01>+|10>)<01|+(|01>-|10>)<10|+(|00>-|11>)<11|
每个参与方需将自己的|χ00>1234态通过U矩阵作用后转化成
Figure FDA0003054265220000011
态,过程如下:
Figure FDA0003054265220000012
然后每个参与方用户Pi将这l个
Figure FDA0003054265220000013
态顺序的表示为
Figure FDA0003054265220000014
其中,上标表示每个
Figure FDA0003054265220000015
态的4个比特,下标表示每个
Figure FDA0003054265220000016
态的顺序;随后每一方参与者分别将自己所拥有的
Figure FDA0003054265220000017
态中的第一个粒子,第二个粒子,第三个粒子,第四个粒子分别组合成四个序列如下:
Figure FDA0003054265220000018
各用户根据自己的密钥序列对接收到的粒子序列进行编码,各用户需要在方法实施前了解本方法编码位置、密钥和编码幺正操作之间的对应关系;
步骤2:序列传输:用户Pi向粒子序列
Figure FDA0003054265220000019
中随机地插入诱饵单光子序列Zi,形成传输序列
Figure FDA00030542652200000110
Figure FDA00030542652200000111
这些诱饵单光子随机的从{|0>,|1>,|+>,|->}这些状态中选取,其中
Figure FDA00030542652200000112
用户Pi通过量子信道将传输序列
Figure FDA00030542652200000113
Figure FDA00030542652200000114
发送给下一个参与用户
Figure FDA00030542652200000115
其中,
Figure FDA00030542652200000116
表示模m加;
步骤3:安全检测:当确认用户
Figure FDA00030542652200000119
接收到传输序列
Figure FDA00030542652200000117
Figure FDA00030542652200000118
后,用户Pi向用户
Figure FDA0003054265220000021
公布量子序列中的诱饵单光子的位置,同时公布相应的测量基;其中|0>,|1>采用Z基测量,|+>,|->选取X基测量;用户
Figure FDA0003054265220000022
根据用户Pi公布的信息从{|0>,|1>,|+>,|->}中选择相应的测量基对诱饵单光子进行测量,并将测量结果发送给用户Pi,用户Pi可以通过提前设定的阈值来检测是否存在窃听者;
如果错误率低于预设的阈值,表示没有窃听者,继续执行步骤4;
步骤4:编码:安全检测通过后,用户
Figure FDA0003054265220000023
丢弃诱饵单光子并恢复出粒子序列
Figure FDA0003054265220000024
Figure FDA0003054265220000025
用户
Figure FDA0003054265220000026
根据自己的密钥
Figure FDA0003054265220000027
然后通过参考表1中给出的编码位置、密钥和编码幺正操作之间的对应关系,
Figure FDA0003054265220000028
分别对
Figure FDA0003054265220000029
Figure FDA00030542652200000210
序列中的
Figure FDA00030542652200000211
执行
Figure FDA00030542652200000212
操作得到新的粒子序列
Figure FDA00030542652200000213
Figure FDA00030542652200000214
其中,j∈{1,2,…,l};然后用户
Figure FDA00030542652200000215
随机向粒子序列
Figure FDA00030542652200000216
中插入诱饵单光子序列,形成传输序列
Figure FDA00030542652200000217
通过量子信道发送给下一位用户
Figure FDA00030542652200000218
步骤5:重复执行步骤3和步骤4:用户
Figure FDA00030542652200000219
重复执行步骤3和步骤4进行安全检测和消息编码,如果所有的序列都是安全的,他们就会在每个序列相应的量子位上编码他们的密钥,并在序列中随机插入诱饵单光子序列,然后发送给下一位参与者,否则,他们将终止本次密钥协商并重新开始;
步骤6:生成协商密钥:接收到经过所有其他用户加密操作后的传输序列
Figure FDA00030542652200000220
后,用户Pi在用户
Figure FDA00030542652200000221
的帮助下进行安全检测;安全检测通过后,用户Pi丢弃诱饵单光子并恢复出粒子序列,然后对4个序列
Figure FDA00030542652200000222
中的相同位置的粒子序列
Figure FDA00030542652200000223
先进行两次U+操作,再进行U1234和U12幺正操作和两比特测量,其操作形式如下:
U+=|00>(<00|+<11|)+|01>(<01|+<10|)+|10>(<01|-<10|)+|11>(<00|-<11|)
Figure FDA00030542652200000224
Figure FDA00030542652200000225
Figure FDA0003054265220000031
Figure FDA0003054265220000032
Figure FDA0003054265220000033
Figure FDA0003054265220000034
Figure FDA0003054265220000035
Figure FDA0003054265220000036
Figure FDA0003054265220000037
Figure FDA0003054265220000038
Figure FDA0003054265220000039
Figure FDA00030542652200000310
Figure FDA00030542652200000311
Figure FDA00030542652200000312
Figure FDA00030542652200000313
Figure FDA00030542652200000314
Figure FDA00030542652200000315
Figure FDA00030542652200000316
各用户将两比特的测量结果对应表2就可以查出各自接收到的粒子序列处于
Figure FDA00030542652200000317
态,又根据本方法协商过程可知
Figure FDA00030542652200000318
态与
Figure FDA00030542652200000319
态是一一对应的关系,所以用户Pi可以得出自己接收到的粒子序列对应
Figure FDA00030542652200000320
态,再结合表1就可以得知经其他m-1个参与用户
Figure FDA00030542652200000321
作用后对应的联合密钥
Figure FDA00030542652200000322
最终,所有参与用户都可以获得相同的协商密钥
Figure FDA00030542652200000323
“各用户根据自己的密钥序列对接收到的粒子序列进行编码,各用户需要在方法实施前了解本方法编码位置、密钥和编码幺正操作之间的对应关系;”具体如下:
Figure FDA0003054265220000041
Figure FDA0003054265220000042
Figure FDA0003054265220000043
Figure FDA0003054265220000044
Figure FDA0003054265220000045
Figure FDA0003054265220000046
Figure FDA0003054265220000047
Figure FDA0003054265220000048
Figure FDA0003054265220000049
Figure FDA00030542652200000410
Figure FDA00030542652200000411
Figure FDA00030542652200000412
Figure FDA00030542652200000413
Figure FDA00030542652200000414
Figure FDA00030542652200000415
Figure FDA00030542652200000416
对应表格如下
表1经对1,3粒子幺正操作后的协商密钥和最终
Figure FDA00030542652200000417
态对应表;
Figure FDA00030542652200000418
测量结果对应表2具体如下:
Figure FDA0003054265220000051
CN201910867036.2A 2019-09-12 2019-09-12 基于四粒子χ态的多方量子密钥协商方法 Active CN110557250B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910867036.2A CN110557250B (zh) 2019-09-12 2019-09-12 基于四粒子χ态的多方量子密钥协商方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910867036.2A CN110557250B (zh) 2019-09-12 2019-09-12 基于四粒子χ态的多方量子密钥协商方法

Publications (2)

Publication Number Publication Date
CN110557250A CN110557250A (zh) 2019-12-10
CN110557250B true CN110557250B (zh) 2021-07-02

Family

ID=68740169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910867036.2A Active CN110557250B (zh) 2019-09-12 2019-09-12 基于四粒子χ态的多方量子密钥协商方法

Country Status (1)

Country Link
CN (1) CN110557250B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294206B (zh) * 2020-04-28 2020-07-28 南京大学 一种量子会议密钥协商方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093036A3 (en) * 2008-01-25 2009-09-11 Qinetiq Limited Quantum cryptography apparatus
US7697693B1 (en) * 2004-03-09 2010-04-13 Bbn Technologies Corp. Quantum cryptography with multi-party randomness
CN105245332A (zh) * 2015-10-21 2016-01-13 西安邮电大学 基于四粒子χ态的两方量子密钥协商协议
CN106452757A (zh) * 2016-11-14 2017-02-22 浙江神州量子网络科技有限公司 量子秘密共享系统及其共享方法、纠错方法
CN106712936A (zh) * 2016-12-20 2017-05-24 中国电子科技集团公司第三十研究所 基于环式结构的多方量子密钥协商协议
CN108809644A (zh) * 2018-07-17 2018-11-13 苏州大学 基于高能级bell态的无序高容量多方量子密钥协商方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0809038D0 (en) * 2008-05-19 2008-06-25 Qinetiq Ltd Quantum key device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697693B1 (en) * 2004-03-09 2010-04-13 Bbn Technologies Corp. Quantum cryptography with multi-party randomness
WO2009093036A3 (en) * 2008-01-25 2009-09-11 Qinetiq Limited Quantum cryptography apparatus
CN105245332A (zh) * 2015-10-21 2016-01-13 西安邮电大学 基于四粒子χ态的两方量子密钥协商协议
CN106452757A (zh) * 2016-11-14 2017-02-22 浙江神州量子网络科技有限公司 量子秘密共享系统及其共享方法、纠错方法
CN106712936A (zh) * 2016-12-20 2017-05-24 中国电子科技集团公司第三十研究所 基于环式结构的多方量子密钥协商协议
CN108809644A (zh) * 2018-07-17 2018-11-13 苏州大学 基于高能级bell态的无序高容量多方量子密钥协商方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"基于Bell态的三方量子密钥协商";尹逊汝 等;《物理学报》;20130726;第62卷(第17期);全文 *

Also Published As

Publication number Publication date
CN110557250A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
Shi et al. Multi-party quantum key agreement with bell states and bell measurements
Sun et al. Efficient multi-party quantum key agreement by cluster states
He et al. Quantum key agreement protocols with four-qubit cluster states
Chang et al. Quantum secure direct communication and authentication protocol with single photons
Chou et al. Semi-quantum private comparison protocol under an almost-dishonest third party
He et al. Two-party quantum key agreement against collective noise
Cai et al. Multi-party quantum key agreement with five-qubit brown states
Min et al. Novel multi-party quantum key agreement protocol with g-like states and bell states
Zhou et al. Novel quantum deterministic key distribution protocols with entangled states
Abulkasim et al. Quantum secret sharing with identity authentication based on Bell states
Mohapatra et al. Controller-independent bidirectional quantum direct communication
Naresh et al. Multiparty Quantum Key Agreement With Strong Fairness Property.
Tang et al. Controlled quantum key agreement based on maximally three-qubit entangled states
Deng et al. Quantum secure direct communication network with superdense coding and decoy photons
CN111654373B (zh) 基于d级量子系统Bell纠缠态之间纠缠交换的多方量子隐私比较方法
CN110557250B (zh) 基于四粒子χ态的多方量子密钥协商方法
Li et al. Quantum key agreement via non-maximally entangled cluster states
Yin et al. Multiparty quantum key agreement based on three-photon entanglement with unidirectional qubit transmission
Zhu et al. Cryptanalysis of a new circular quantum secret sharing protocol for remote agents
CN110932848B (zh) 基于参数已知的非最大纠缠Bell态的多方量子密钥协商方法
Li et al. Improved quantum “Ping-pong” protocol based on GHZ state and classical XOR operation
He et al. Two-party quantum key agreement protocol with four-particle entangled states
CN110932849B (zh) 基于参数未知的非最大纠缠Bell态的多方量子密钥协商方法
CN109495262A (zh) 量子通信网络中具有稠密编码特点的量子密钥分发方法
Yin et al. Efficient quantum dialogue without information leakage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant