CN110550384A - High-precision flow scale based on soft conveying belt structure - Google Patents

High-precision flow scale based on soft conveying belt structure Download PDF

Info

Publication number
CN110550384A
CN110550384A CN201910704898.3A CN201910704898A CN110550384A CN 110550384 A CN110550384 A CN 110550384A CN 201910704898 A CN201910704898 A CN 201910704898A CN 110550384 A CN110550384 A CN 110550384A
Authority
CN
China
Prior art keywords
conveying belt
weighing
soft
platform
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910704898.3A
Other languages
Chinese (zh)
Inventor
郑劲松
马颜春
赵章风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910704898.3A priority Critical patent/CN110550384A/en
Publication of CN110550384A publication Critical patent/CN110550384A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • B65G15/42Belts or like endless load-carriers made of rubber or plastics having ribs, ridges, or other surface projections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G69/00Auxiliary measures taken, or devices used, in connection with loading or unloading
    • B65G69/20Auxiliary treatments, e.g. aerating, heating, humidifying, deaerating, cooling, de-watering or drying, during loading or unloading; Loading or unloading in a fluid medium other than air

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)
  • Sorting Of Articles (AREA)

Abstract

A high-precision flow scale based on a soft conveying belt structure comprises a soft conveying belt, a conveying belt supporting platform and a weighing device; the conveying belt is formed by firmly splicing two different materials at two sides of the edge and the middle part of the edge, the two sides of the edge of the conveying belt are used for driving the whole conveying belt and the materials on the conveying belt to be conveyed forwards, the two sides of the conveying belt move synchronously, and the middle part of the conveying belt is made of soft materials; weighing area separating marks are arranged on two sides of the conveying belt; the distance between two adjacent separation marks is matched with the length of the weighing platform; the conveyor belt supporting platform comprises a weighing flat plate front part, a weighing flat plate part and a weighing flat plate rear part; in the weighing device, a weighing sensor is arranged below a weighing platform part; the position sensor is arranged at the beginning or the end of the weighing platform part and is used for detecting the separation mark fixed on the conveying belt. The invention provides a high-precision flow scale based on a soft conveying belt structure, which is high in precision.

Description

High-precision flow scale based on soft conveying belt structure
Technical Field
The invention relates to a flow scale, in particular to a high-precision dynamic flow scale based on a soft conveying belt.
Background
In the industries of tea processing, traditional Chinese medicinal materials, food, chemical industry, electromechanical industry and the like, the real-time flow of a material to be processed is very important data influencing the stable quality and the excellent quality of the processed material, and the high-precision flow is called as key equipment for measuring the flow of a raw material. Especially on an automated production line, all production processes are continuous, and the flow rate of the production line is a very important process parameter. The flow is often measured in motion, such as a conveyor belt, in the motion process, due to factors such as mechanical precision, belt tension and vibration, the real reflection of sensor data is seriously influenced, the sensor runs for a long time, the number of unstable factors is large, the accumulated error is uncontrollable, and particularly, the error is very large in the measurement of small flow, so that the practical value is not high.
The sensor position of the flow scale is below the moving conveying belt, so that the moving mechanism has great influence on the measurement of the sensor, or the static scale is adopted by some flow scales to replace the flow scales, so that the material conveying is discontinuous. The existing technical defects are as follows: the real-time flow scale has large and many influence factors on the measurement accuracy, is unstable in long-term operation, and has high requirements on the accuracy of a mechanical structure and the stability of a transmission part.
Disclosure of Invention
The invention provides a high-precision flow scale based on a soft conveying belt structure, which has high precision and aims to overcome the defects of large and multiple influence factors of the measurement precision of the real-time flow scale, unstable long-term operation and high requirements on the precision of a mechanical structure and the stability of a transmission part in the prior art.
The technical scheme adopted by the invention for solving the technical problems is as follows:
A high-precision flow scale based on a soft conveying belt structure comprises a soft conveying belt, a conveying belt supporting platform and a weighing device;
The conveying belt is formed by firmly splicing two different materials at two sides of the edge and the middle part of the edge, the two sides of the edge of the conveying belt are used for driving the whole conveying belt and the materials on the conveying belt to convey forwards, the two sides of the edge of the conveying belt are strictly synchronous in the forward conveying process, the two sides are forbidden to be staggered, and the middle part of the conveying belt is made of soft materials; weighing area separating marks are arranged on two sides of the conveying belt and fixed on the conveying belt, and the separating marks move along with the conveying belt; the distance between two adjacent separation marks is matched with the length of the weighing platform;
The conveying belt supporting plate comprises a weighing flat plate front part, a weighing flat plate part and a weighing flat plate rear part, the weighing flat plate front part is a front platform, the weighing flat plate rear part is a rear platform, and the front platform, the weighing flat plate part and the rear platform are in the same plane;
The weighing device comprises a position sensor and a weighing sensor, and the weighing sensor is arranged below the weighing platform part; the position sensor is arranged at the beginning end or the ending end of the weighing platform part and is used for detecting the separation mark fixed on the conveying belt. A position sensor detects the separation mark, which means that only one complete separation area completely enters the weighing platform, and the position sensor triggers in real time: weight and time of collection. The weight sensor can measure the weight in real time and provide a real-time data acquisition interface.
Further, the flow balance further comprises a material flow guide device, wherein the material flow guide device is a mechanism which is arranged at the feed inlet and guides materials distributed on the whole conveying belt to slowly flow and concentrate on the middle area of the conveying belt. May be in the form of baffles or other structures.
The flow scale also comprises a material separating device, wherein the material separating device is a device which is arranged at the tail end of the flow guide device and fixed on the rack and consists of a position sensor and the material separating device.
The position sensor detects the separation mark and provides a separation material signal; the material separating device separates the materials on the conveying belt after receiving the separating signal.
The material separating device can be a separating strip which is arranged between the conveying belt and the front flat plate, the conveying belt is shaken upwards after the separating signal is received, and the materials on the conveying belt are dispersed towards two sides, so that no materials are arranged above the separating strip.
Or the material separating device can be in a brush structure, and the material on the conveying belt is separated back and forth by the brush after the separating signal is received.
or the material separating device can be an air blowing device, after receiving the separating signal, the material on the conveying belt is separated from the front and the back by air, and a cover is arranged to prevent the material from flying.
The technical conception of the invention is as follows: the conveying belt of the dynamic flow scale is reformed into two different materials which are spliced, the edge parts of two sides of the conveying belt play the roles of fixing the conveying belt and transmitting the conveying belt, the middle part of the conveying belt is soft and is not stressed, the influence of the movement of the conveying belt on the weighing device is isolated, and the whole real weight of the material can be measured by the weighing device. The weighing device is static and is placed below the soft conveying belt, so that the weighing device is not influenced by movement, and the measurement precision is improved. By means of a real-time data acquisition technical means, data such as the weight of the material of the weighing platform, the acquisition time and the like are obtained, so that real-time flow data can be calculated, and the flow weighing function is realized.
The invention has the following beneficial effects: the weighing device is still, and the weighing sensor and the conveyer belt movement influence factors are completely isolated; the flow balance has the advantages that the requirement on the assembly precision of the mechanical structure is greatly reduced, and the cost can be effectively reduced. The measuring precision of the dynamic flow scale is greatly improved by combining the near-sighted static weighing and real-time data acquisition of the moving materials, and the high-precision measurement from very small flow to very large flow is realized.
Drawings
Fig. 1 is a schematic diagram of a high-precision dynamic flow scale based on a soft conveying belt.
Fig. 2 is a top view of fig. 1.
Detailed Description
the invention is further described below with reference to the accompanying drawings.
Referring to fig. 1 and 2, a high-precision dynamic flow scale based on a soft conveying belt comprises the soft conveying belt, a conveying belt supporting platform, a weighing device, a material flow guide device and a material separation device.
the soft conveying belt is formed by firmly splicing two different materials at two sides and the middle part of the edge. The two sides of the edge of the conveying belt are made of a certain elastic and slightly hard material, and the elastic and slightly hard material is used for driving the whole conveying belt and ensuring the synchronous movement of the two sides of the conveying belt and the forward conveying of the material on the conveying belt; the middle part of the conveying belt is made of soft materials, does not bear the weight of materials, and only plays a role in conveying the materials to move forwards; weighing area separating marks are arranged on two sides of the conveying belt and fixed on the conveying belt, and the separating marks move along with the conveying belt; the distance between two adjacent separating marks is equal to (may be slightly larger or smaller than) the length of the weighing platform.
the conveying belt supporting platform consists of three parts. The first part is a front platform, consisting of a rigid flat plate, which is separate from the second part weighing platform. The second part is a weighing device, a flat plate is rigidly fixed on the second part, a weighing sensor is arranged below the flat plate, the flat plate of the second part is free in the vertical direction, and the weight of the materials placed on the flat plate can be measured by the sensor. The third part is a rear platform and consists of a rigid flat plate, and the materials enter the platform and move out of the flow scale, so that the materials are separated from the second part.
Furthermore, the weighing device consists of a position sensor, a weighing flat plate and a weighing sensor. The position sensor detects the separation mark and provides when to collect weight data (collecting weight and collecting time); the weighing sensors measure the weight of the material on the weighing flat plate, the weighing sensors need to provide a real-time data acquisition interface, the acquisition frequency is set according to the application scene requirements of the flow scale, and the number of the weighing sensors can be determined according to the requirements.
the material guiding device is arranged at the feeding hole and guides materials distributed on the whole conveying belt to be slowly guided and concentrated in the middle area of the conveying belt.
The material separating device is a device which is arranged at the tail end of the flow guide device and fixed on the rack, and comprises a position sensor and a material separating device. The position sensor detects the separation mark and provides a material separation time; the material separating device is used for separating materials of two adjacent weighing areas. The material separating device can be a separating strip which is arranged between the conveying belt and the front flat plate, the separating strip shakes the conveying belt upwards after receiving the separating moment, and the materials on the conveying belt are dispersed to two sides, so that no materials exist above the separating strip; the structure of the device can also be a brush arranged on the conveyer belt, and the brush can separate materials on the conveyer belt after receiving the separation signal; the structure of the device can also be an air blowing device, and the materials are separated on the conveying belt by air blowing after the separation signal is received.
In the embodiment, the mechanical structure ensures that the raw materials to be weighed can be continuously guided to the middle area of the conveying belt; the areas marked by the two separation marks are weighing areas, and materials cannot exist between two adjacent weighing areas, namely the materials in the two adjacent weighing areas are separated and are stacked discontinuously; and the position sensor fixed at the beginning end or the ending end of the weighing platform detects the separation mark fixed on the conveying belt, triggers a data acquisition signal and acquires the weight and the time. The distance between the two separation marks is equal to the length of the weighing platform, so that when weight is collected, weighed raw materials are completely moved out of the weighing platform, and the raw materials to be weighed completely enter the weighing platform. The real-time data acquisition refers to recording the current acquisition weight and the current acquisition interval time, and the current acquisition weight/current acquisition interval time is called the real-time flow. The total weight of conveyed materials is obtained by accumulating the current collection weight through software, the total working time of the flow scale is obtained by accumulating the current collection interval time, and if the length of an accumulation window selects the time of one circle of the running of the conveying belt, the real-time average flow of the single circle of the flow scale is obtained, namely: the total weight of a single circle of raw materials/total working time of the single circle is called the real-time average flow of the single circle.
The high-precision dynamic flow scale structure based on the soft conveying belt in the embodiment is shown in fig. 1 and comprises a driving motor 7, a driving wheel 14, a middle part 3 and two side parts 4 of the soft conveying belt, a material guiding device 1, a material separating device 2 and a front platform 8, wherein the weighing device comprises a weighing platform 12, a position sensor 10, a weighing sensor 11 and a rear platform 13. Weighing area separating marks 5 are evenly arranged on the soft conveyor belt 4. A position sensor 9 is fixed on the material separating device 2. And a human-computer interface 6 for real-time data acquisition, real-time dynamic flow calculation, display and flow balance operation. The human-computer interface is used for collecting and displaying the flow scale information, and can also transmit data to a third party and collect data of the third party.

Claims (8)

1. A high-precision flow scale based on a soft conveying belt structure is characterized by comprising a soft conveying belt, a conveying belt supporting platform and a weighing device;
The conveying belt is formed by firmly splicing two different materials at two sides of the edge and the middle part of the edge, the two sides of the edge of the conveying belt are used for driving the whole conveying belt and the materials on the conveying belt to be conveyed forwards, the two sides of the conveying belt move synchronously, and the middle part of the conveying belt is made of soft materials; weighing area separating marks are arranged on two sides of the conveying belt and fixed on the conveying belt, and the separating marks move along with the conveying belt; the distance between two adjacent separation marks is matched with the length of the weighing platform;
The conveying belt supporting plate comprises a weighing flat plate front part, a weighing flat plate part and a weighing flat plate rear part, the weighing flat plate front part is a front platform, the weighing flat plate rear part is a rear platform, and the front platform, the weighing flat plate part and the rear platform are in the same plane;
The weighing device comprises a position sensor and a weighing sensor, and the weighing sensor is arranged below the weighing platform part; the position sensor is arranged at the beginning end or the ending end of the weighing platform part and is used for detecting the separation mark fixed on the conveying belt.
2. The high-precision flow scale based on the structure of the soft conveyer belt according to claim 1, further comprising a material guiding device, wherein the material guiding device is a mechanism which is installed at the feeding hole and guides the material distributed on the whole conveyer belt to be slowly guided and concentrated to the middle area of the conveyer belt.
3. The high precision flow scale based on the structure of the soft conveyer belt according to claim 1 or 2, wherein the distance between two adjacent separation marks is the same as the length of the weighing platform.
4. The high-precision flow scale based on the structure of the soft conveyer belt according to claim 1 or 2, characterized in that the flow scale further comprises a material separation device, wherein the material separation device is a device which is arranged at the tail end of the flow guide device and fixed on the machine frame, and consists of a position sensor and the material separation device.
5. The high precision flow scale based on the structure of the soft conveyer belt according to claim 4, wherein the position sensor detects the separation mark and provides a separation material signal; the material separating device separates the materials on the conveying belt after receiving the separating signal.
6. the high precision flow balance based on the structure of the soft conveying belt according to claim 5, characterized in that the material separation device is a separation strip installed between the conveying belt and the front flat plate.
7. A high accuracy flow scale based on the structure of a flexible conveyer belt according to claim 5, characterized in that said material separating means is a brush, and the brush is used to separate the material on the conveyer belt back and forth after receiving the separating signal.
8. A high accuracy flow meter based on a flexible conveyer belt structure as claimed in claim 5, wherein said material separating means is a blowing means for separating the material on the conveyer belt back and forth by gas after receiving the separation signal, and a cover for preventing the material from flying.
CN201910704898.3A 2019-07-31 2019-07-31 High-precision flow scale based on soft conveying belt structure Pending CN110550384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910704898.3A CN110550384A (en) 2019-07-31 2019-07-31 High-precision flow scale based on soft conveying belt structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910704898.3A CN110550384A (en) 2019-07-31 2019-07-31 High-precision flow scale based on soft conveying belt structure

Publications (1)

Publication Number Publication Date
CN110550384A true CN110550384A (en) 2019-12-10

Family

ID=68737174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910704898.3A Pending CN110550384A (en) 2019-07-31 2019-07-31 High-precision flow scale based on soft conveying belt structure

Country Status (1)

Country Link
CN (1) CN110550384A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2322809A3 (en) * 1975-09-05 1977-04-01 Salmet Gmbh Co Kg Egg sorter feed device with endless conveyor belt - has counterweighted balance beam for pivotal belt frame controlling upstream feed
CN101666673A (en) * 2009-09-28 2010-03-10 云南昆船电子设备有限公司 Panel bearing type electronic belt scale
CN103072788A (en) * 2011-10-25 2013-05-01 常州市纬编针织有限公司 Grid type transmission band
CN203211868U (en) * 2013-04-08 2013-09-25 张向荣 Conveying device capable of counting workpieces and conducting weighing
CN103662599A (en) * 2012-09-18 2014-03-26 昆山尚达智机械有限公司 Belt conveyor with weighing function
KR101413961B1 (en) * 2013-08-14 2014-07-07 윤병업 pellet Supply device with supply control function
CN103935752A (en) * 2014-04-21 2014-07-23 云南大红山管道有限公司 Ore blending system and method in slurry pipeline conveying system
CN211168510U (en) * 2019-07-31 2020-08-04 浙江工业大学 High-precision flow scale based on soft conveying belt structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2322809A3 (en) * 1975-09-05 1977-04-01 Salmet Gmbh Co Kg Egg sorter feed device with endless conveyor belt - has counterweighted balance beam for pivotal belt frame controlling upstream feed
CN101666673A (en) * 2009-09-28 2010-03-10 云南昆船电子设备有限公司 Panel bearing type electronic belt scale
CN103072788A (en) * 2011-10-25 2013-05-01 常州市纬编针织有限公司 Grid type transmission band
CN103662599A (en) * 2012-09-18 2014-03-26 昆山尚达智机械有限公司 Belt conveyor with weighing function
CN203211868U (en) * 2013-04-08 2013-09-25 张向荣 Conveying device capable of counting workpieces and conducting weighing
KR101413961B1 (en) * 2013-08-14 2014-07-07 윤병업 pellet Supply device with supply control function
CN103935752A (en) * 2014-04-21 2014-07-23 云南大红山管道有限公司 Ore blending system and method in slurry pipeline conveying system
CN211168510U (en) * 2019-07-31 2020-08-04 浙江工业大学 High-precision flow scale based on soft conveying belt structure

Similar Documents

Publication Publication Date Title
CN207547734U (en) A kind of strip cutter
JPS6366592B2 (en)
CN211168510U (en) High-precision flow scale based on soft conveying belt structure
US20050000299A1 (en) Device for measuring the bending strength of flat consignments
CN202361953U (en) Automatic weighing and gauging device
EP0376496B1 (en) Mail thickness measuring apparatus
CN202984134U (en) Automatic size grading device for power ferrites
WO2018000802A1 (en) Impact plate belt scale and weighing method thereof
CN110550384A (en) High-precision flow scale based on soft conveying belt structure
CN103323466A (en) High-accuracy detection system for line trace of solar silicon wafer
CN114535124A (en) Dynamic weighing system based on machine vision
CN210893379U (en) High-precision dynamic flow scale based on pushing mode
CN202928667U (en) Dynamic metering device
US7141745B1 (en) In-line mail weighing system and scale
CN105181089B (en) A kind of tobacco leaf online weighing device
CN201914510U (en) Specially packaged cigarette marking device
CN208383254U (en) A kind of simple weighing belt instrument of automatic survey skin
CN103017872A (en) Dynamic metering device
CN101666673A (en) Panel bearing type electronic belt scale
CN210346883U (en) High-speed checkweigher
CN201240674Y (en) Metering chain scraper conveyor
CN110455388A (en) Dynamic High-accuracy flow based on push mode claims
CN201561794U (en) Flat plate bearing type electronic belt scale
CN219284430U (en) High-low weighing machine and sorting system
CN110296646A (en) A kind of product outer width and depth of groove detection system and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination