CN110549692A - 一种显示复合材料低速冲击损伤的紫外荧光示踪层 - Google Patents

一种显示复合材料低速冲击损伤的紫外荧光示踪层 Download PDF

Info

Publication number
CN110549692A
CN110549692A CN201910715159.4A CN201910715159A CN110549692A CN 110549692 A CN110549692 A CN 110549692A CN 201910715159 A CN201910715159 A CN 201910715159A CN 110549692 A CN110549692 A CN 110549692A
Authority
CN
China
Prior art keywords
composite material
layer
ultraviolet fluorescent
resin
speed impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910715159.4A
Other languages
English (en)
Inventor
王迎芬
潘翠红
周洪飞
孙占红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Composite Corp Ltd
Original Assignee
AVIC Composite Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Composite Corp Ltd filed Critical AVIC Composite Corp Ltd
Priority to CN201910715159.4A priority Critical patent/CN110549692A/zh
Publication of CN110549692A publication Critical patent/CN110549692A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明是一种显示复合材料低速冲击损伤的紫外荧光示踪层,该方法为在复合材料本体近表层铺覆一层或多层紫外荧光树脂预浸料,在紫外荧光树脂预浸料外表面铺覆遮挡层,与其他树脂基复合材料一同固化成型制成树脂基复合材料制件,功能是通过该紫外荧光预浸料复合材料层受到低速冲击后的状态变化,来辨别复合材料相应冲击受损区域、冲击能量的大小及冲击后剩余压缩强度;本发明能够在遭受低速冲击、造成内部损伤时,在表面能及时显示出内部的损伤情况,使地面保障人员可及时发现潜在危险,保障飞行器安全。

Description

一种显示复合材料低速冲击损伤的紫外荧光示踪层
技术领域
本发明是一种显示复合材料低速冲击损伤的紫外荧光示踪层,属于复合材料制造技术领域。
背景技术
复合材料由于其高比强度、高比刚度、耐腐蚀、耐疲劳等优良性能,在航空航天领域得到了广泛应用,其用量已成为衡量飞行器结构先进性的标志。然而复合材料对面外低速冲击非常敏感,当复合材料层板遭受较大能量的面外低速冲击后(低速冲击一般指按准静态处理的冲击事件,冲击速度上限为几十米/秒,取决于目标的刚度、材料特性和冲击物的质量和刚度。通常按照冲击造成的损伤划分冲击的类型,高速冲击的主要特征是纤维断裂,低速冲击的主要特征是基体开裂和分层),内部产生严重的分层、纤维断裂、基体开裂等损伤,然而层合板表面往往只有目视勉强可见的凹坑和裂纹,难以被可靠检出。此时其冲击后压缩强度最多可下降60%,严重威胁飞机的安全。因此复合材料面外低速冲击的耐久性和损伤容限性能一直是研究的重点之一。
解决复合材料面外低速冲击问题主要有2个途径。一是研发具有高损伤容限性能的复合材料体系,在同样的面外低速冲击能量下层板表面凹坑/裂纹更为明显可见,冲击后压缩性能尽可能提高;二是采用监测手段、辅助材料等定位层板遭受冲击位置,而后针对该位置开展详细的无损检测。监测手段包括应变片、光栅光纤、压电片等,辅助材料包括表层陶瓷(专利号CN102990990A)、表面铺层(公开号CN101503014A)等。采用应变片、光栅光纤、压电片等监测手段,需要在飞机结构上布置大量的传感器和导线,实时监控结构是否遭受损伤,系统复杂且造成飞机结构增重。另外应变片等粘接强度受环境影响显著,可靠性不高。采用表面陶瓷及表面高韧性铺层等辅助材料会造成与构件本体铺层热膨胀系数不匹配,两相基体不相容等问题,易造成构件热变形等问题,且制备工艺相对复杂,可靠性不高。
发明内容
本发明正是针对上述现有技术存在的不足而设计提出了一种显示复合材料低速冲击损伤的紫外荧光示踪层,其目的复合材料本体近表层铺覆一层或几层紫外荧光树脂预浸料,在紫外荧光树脂预浸料外表面铺覆遮挡层,与其他树脂基复合材料一同固化成型制成树脂基复合材料制件,功能是当复合材料层板受到面外冲击时,表面遮挡层脱落或产生裂纹,从而使紫外荧光示踪层暴露,可在紫光灯照射下被目视检出,进而辨别复合材料相应冲击受损区域、冲击能量的大小及冲击后剩余压缩强度。
本发明的目的是通过以下技术方案来实现的:
该种显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:该示踪层2是铺覆在复合材料本体1近表层的、具有紫外荧光反射功能的树脂预浸料,在该示踪层2的表面铺覆有遮挡层3,示踪层2和复合材料本体1随树脂基复合材料制件一同固化成型。
进一步,该示踪层2与复合材料本体1采用相同的树脂基体和增强纤维,在制备示踪层2的树脂基体时加入紫外荧光粉。该示踪层2的树脂预浸料的增强体是碳纤维、玻璃纤维、芳纶纤维、或天然植物纤维;增强纤维的形式为单向纤维、无纬布、平纹织物、缎纹织物或斜纹织物。
进一步,该示踪层2的树脂预浸料的树脂基体为环氧树脂、双马树脂、酚醛树脂、聚酰亚胺树脂。
进一步,遮挡层3与复合材料本体1采用相同的树脂基体和增强纤维。或遮挡层3采用与复合材料本体1相同树脂基体的树脂膜。
进一步,遮挡层3采用飞机涂料制成。
固化成型的方法为热压罐成型、真空袋成型、模压成型。
当树脂基复合材料本体1正面受到冲击头4低速冲击时,树脂基复合材料本体1背面的遮挡层3会出现裂纹,树脂基复合材料本体1的内部会出现基体开裂、纤维断裂等缺陷,此时用紫外灯照射树脂基复合材料本体1背面,便可快速发现从遮挡层3透出的光线以显示出冲击损伤的区域,这样就可以快速确定对冲击损伤进行补强或修复区域,达到目视检测的要求。
本发明技术方案具有以下优点:
1、本发明提出了一种显示复合材料低速冲击后紫外荧光示踪层,此失踪层为添加适量紫外荧光粉的预浸料,应用于树脂基复合材料制件时,当复合材料制件受到面外冲击时,遮挡层脱落或产生裂纹,从而使紫外荧光示踪层暴露,可在紫光灯照射下被目视检出,进而辨别复合材料相应冲击受损区域、冲击能量的大小及冲击后剩余压缩强度;
2、本发明的紫外荧光示踪层是当树脂基复合材料制件在遭受面外低速冲击、造成内部不可见损伤时,在表面及时显示出所受冲击位置和严重程度,使地面维护、保障人员可以及时发现潜在的危险,保证飞行器安全。该紫外荧光示踪层应用于飞行器特定区域(例如翼面蒙皮、机身蒙皮等),这些区域是地面检修人员可以通过壁板检修孔进入,利用紫外灯照射翼面蒙皮背面,便可发现受冲击损伤区域;或地面维修人员在例行检查维修时,拆掉机身内部装饰,利用紫外等便可从内侧发现受冲击损伤区域,提高了面外低速冲击的可检性,可提高复合材料的设计许用值,有利于实现结构减重;
3、本发明的紫外荧光示踪层,仅在复合材料本体表面铺覆一层或几层,基本保持了原有复合材料的基本性能,避免了对现有材料和工艺的影响,充分挖掘了现有材料的潜力。本发明的紫外荧光示踪层,适用于多种体系的复合材料、多种成型工艺(热压罐、真空袋、模压等),具有广泛的应用范围。
附图说明
图1为本发明所述紫外荧光示踪层在复合材料制件中的位置及结构示意图。
具体实施方式
实施例1
该种显示复合材料低速冲击损伤的紫外荧光示踪层的制备过程如下:
(1)制备T300级紫外荧光环氧预浸料
1.1制备环氧树脂基体时,在分散混合阶段加入质量分数为0.1%~2%的紫外荧光粉,分散搅拌均匀,制成紫外荧光环氧树脂,进而制备环氧树脂膜;
1.2在预浸机上将环氧树脂膜和T300级单项碳纤维预浸制备成T300级紫外荧光环氧预浸料;
(2)复合材料本体预浸料铺层
将T300级单向碳纤维环氧树脂预浸料按照[+45/0/-45/90]4S铺层铺贴层合板,铺贴完毕后,将2层T300级单向碳纤维紫外荧光环氧树脂预浸料铺贴于复合材料本体1表面,然后继续铺贴一层复合材料本体环氧树脂膜,铺贴完毕后,封装;
(3)复合材料成型
在热压罐中按照180℃保温3h工艺固化后得到的具有示踪层的复合材料层合板。如图1所示。按照ASTM 7136/7137标准对复合材料进行冲击后压缩强度(CAI)测试,冲击能量为6.67J/mm,冲击后,层合板背面受损伤的遮挡层出现裂纹,此时用紫外灯照射冲击背面,便可快速发现出现冲击损伤的区域,达到目视可检技术判断的要求。
实施例2
该种显示复合材料低速冲击损伤的紫外荧光示踪层的制备过程如下:
(1)制备T700级紫外荧光环氧树脂预浸料
1.1制备环氧树脂基体时,在分散混合阶段加入质量分数为2%~5%的紫外荧光粉,分散搅拌均匀,制成紫外荧光环氧树脂,进而制备环氧树脂膜;
1.2在预浸机上将环氧树脂膜和T700级单项碳纤维预浸制备成T700级紫外荧光环氧预浸料;
(2)复合材料本体预浸料铺层
将T700级单向碳纤维环氧树脂预浸料按照[+45/0/-45/90]4S铺层铺贴层合板,铺贴完毕后,将2层T700级单向碳纤维紫外荧光环氧树脂预浸料铺贴于复合材料本体1表面,然后继续铺贴一层复合材料本体环氧树脂预浸料,铺贴完毕后,封装;
(3)复合材料成型
在热压罐中按照180℃保温3h工艺固化后得到的具有示踪层的复合材料层合板。
按照ASTM 7136/7137标准对复合材料进行冲击后压缩强度(CAI)测试,冲击能量为6.67J/mm,冲击后,层合板背面受损伤的遮挡层出现裂纹,此时用紫外灯照射冲击背面,便可快速发现出现冲击损伤的区域,达到目视可检技术判断的要求。
实施例3
该种显示复合材料低速冲击损伤的紫外荧光示踪层的制备过程如下:
(1)制备T700级紫外荧光双马预浸料
1.1制备双马树脂基体时,在分散混合阶段加入质量分数为1.5%的紫外荧光粉,分散搅拌均匀,制成紫外荧光双马树脂,进而制备双马树脂膜;
1.2在预浸机上将双马树脂膜和T700级单项碳纤维预浸制备成T700级紫外荧光双马预浸料;
(2)复合材料本体预浸料铺层
将T700级单向碳纤维双马树脂预浸料按照[+45/0/-45/90]4S铺层铺贴层合板,铺贴完毕后,将1层T700级单向碳纤维紫外荧光双马树脂预浸料铺贴于复合材料本体表面,然后继续铺贴一层复合材料本体双马树脂预浸料,铺贴完毕后,封装;
(3)复合材料成型
在热压罐中按照125℃保温1h;185℃保温1h;200℃保温5h工艺固化后得到的具有示踪层的复合材料层合板。
按照ASTM 7136/7137标准对复合材料进行冲击后压缩强度(CAI)测试,冲击能量为6.67J/mm,冲击后,层合板背面受损伤的遮挡层出现裂纹,此时用紫外灯照射冲击背面,便可快速发现出现冲击损伤的区域,达到目视可检技术判断的要求。
实施例4
该种显示复合材料低速冲击损伤的紫外荧光示踪层的制备过程如下:
(1)制备紫外荧光预浸料
1.1制备双马树脂基体时,在分散混合阶段加入质量分数为2.5%的紫外荧光粉,分散搅拌均匀,制成紫外荧光双马树脂,进而制备双马树脂膜;
1.2在预浸机上将双马树脂膜和T700级碳纤维机织物预浸制备成T700级紫外荧光预浸料;
(2)复合材料本体预浸料铺层
将T700级碳纤维机织物双马树脂预浸料按照[(+45/-45)/(0/90)]5S铺层铺贴层合板,铺贴完毕后,将1层T700级碳纤维机织物紫外荧光双马树脂预浸料铺贴于复合材料本体表面,铺贴完毕后,封装;
(3)复合材料成型
在热压机中按照125℃保温1h;185℃保温1h;200℃保温5h工艺固化后得到的具有示踪层的复合材料层合板。
在铺贴有紫外荧光复合材料表层喷涂一层飞机涂料。
按照ASTM 7136/7137标准对复合材料进行冲击后压缩强度(CAI)测试,冲击能量为6.67J/mm,冲击后,层合板背面受损伤的遮挡层出现脱落,此时用紫外灯照射冲击背面,便可快速发现出现冲击损伤的区域,达到目视可检技术判断的要求。

Claims (9)

1.一种显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:该示踪层(2)是铺覆在复合材料本体(1)近表层的、具有紫外荧光反射功能的树脂预浸料,在该示踪层(2)的表面铺覆有遮挡层(3),示踪层(2)和复合材料本体(1)随树脂基复合材料制件一同固化成型。
2.根据权利要求1所述的显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:该示踪层(2)与复合材料本体(1)采用相同的树脂基体和增强纤维,在制备示踪层(2)的树脂基体时加入紫外荧光粉。
3.根据权利要求1所述的显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:该示踪层(2)的树脂预浸料的树脂基体为环氧树脂、双马树脂、酚醛树脂、聚酰亚胺树脂。
4.根据权利要求2所述的显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:该示踪层(2)的树脂预浸料的增强体是碳纤维、玻璃纤维、芳纶纤维、或天然植物纤维;增强纤维的形式为单向纤维、无纬布、平纹织物、缎纹织物或斜纹织物。
5.根据权利要求1所述的显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:该示踪层(2)铺覆1~10层。
6.根据权利要求1所述的显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:遮挡层(3)与复合材料本体(1)采用相同的树脂基体和增强纤维。
7.根据权利要求1所述的显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:遮挡层(3)采用与复合材料本体(1)相同树脂基体的树脂膜。
8.根据权利要求1所述的显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:遮挡层(3)采用飞机涂料制成。
9.根据权利要求1所述的显示复合材料低速冲击损伤的紫外荧光示踪层,其特征在于:固化成型的方法为热压罐成型、真空袋成型、模压成型。
CN201910715159.4A 2019-08-02 2019-08-02 一种显示复合材料低速冲击损伤的紫外荧光示踪层 Pending CN110549692A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910715159.4A CN110549692A (zh) 2019-08-02 2019-08-02 一种显示复合材料低速冲击损伤的紫外荧光示踪层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910715159.4A CN110549692A (zh) 2019-08-02 2019-08-02 一种显示复合材料低速冲击损伤的紫外荧光示踪层

Publications (1)

Publication Number Publication Date
CN110549692A true CN110549692A (zh) 2019-12-10

Family

ID=68737008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910715159.4A Pending CN110549692A (zh) 2019-08-02 2019-08-02 一种显示复合材料低速冲击损伤的紫外荧光示踪层

Country Status (1)

Country Link
CN (1) CN110549692A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3888912A1 (en) * 2020-03-30 2021-10-06 Hamilton Sundstrand Corporation Composite structures with damage detection capability
CN113686702A (zh) * 2021-09-13 2021-11-23 东华大学 一种表征柔性材料防护低速冲击效果的直观方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2194062A (en) * 1986-08-15 1988-02-24 British Aerospace Detection of damage in materials
CN101762601A (zh) * 2008-11-28 2010-06-30 吴江市天龙机械有限公司 压铸件荧光检验工艺方法
CN102607935A (zh) * 2011-12-27 2012-07-25 中国飞机强度研究所 一种含冲击损伤复合材料层压板剩余压缩强度的测算方法
KR20140034363A (ko) * 2012-09-10 2014-03-20 한국항공우주연구원 광발광 입자를 함유하는 섬유강화 복합재 구조물, 이의 제조방법 및 이의 외부충격 손상 감지방법
CN107219109A (zh) * 2017-07-17 2017-09-29 北京航空航天大学 一种基于光敏树脂的复杂结构表面裂纹检测方法
RU2644917C1 (ru) * 2016-12-02 2018-02-14 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Люминесцентное полимерное покрытие для обнаружения повреждений конструкции
CN107723701A (zh) * 2017-09-04 2018-02-23 中国航发北京航空材料研究院 超高强度钢起落架构件裂纹的电磁搅拌激光熔覆修复方法
CN108872365A (zh) * 2018-07-16 2018-11-23 德阳市重装检测有限责任公司 一种材料表面裂纹的检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2194062A (en) * 1986-08-15 1988-02-24 British Aerospace Detection of damage in materials
CN101762601A (zh) * 2008-11-28 2010-06-30 吴江市天龙机械有限公司 压铸件荧光检验工艺方法
CN102607935A (zh) * 2011-12-27 2012-07-25 中国飞机强度研究所 一种含冲击损伤复合材料层压板剩余压缩强度的测算方法
KR20140034363A (ko) * 2012-09-10 2014-03-20 한국항공우주연구원 광발광 입자를 함유하는 섬유강화 복합재 구조물, 이의 제조방법 및 이의 외부충격 손상 감지방법
RU2644917C1 (ru) * 2016-12-02 2018-02-14 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Люминесцентное полимерное покрытие для обнаружения повреждений конструкции
CN107219109A (zh) * 2017-07-17 2017-09-29 北京航空航天大学 一种基于光敏树脂的复杂结构表面裂纹检测方法
CN107723701A (zh) * 2017-09-04 2018-02-23 中国航发北京航空材料研究院 超高强度钢起落架构件裂纹的电磁搅拌激光熔覆修复方法
CN108872365A (zh) * 2018-07-16 2018-11-23 德阳市重装检测有限责任公司 一种材料表面裂纹的检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3888912A1 (en) * 2020-03-30 2021-10-06 Hamilton Sundstrand Corporation Composite structures with damage detection capability
US11890852B2 (en) 2020-03-30 2024-02-06 Hamilton Sundstrand Corporation Composite structures with damage detection capability
CN113686702A (zh) * 2021-09-13 2021-11-23 东华大学 一种表征柔性材料防护低速冲击效果的直观方法

Similar Documents

Publication Publication Date Title
Caminero et al. Analysis of adhesively bonded repairs in composites: Damage detection and prognosis
EP2390074B1 (en) Apparatus and closed-loop method for the manufacture of prepregs and/or laminates comprising the same
Ahmad et al. Hygro effects on the low-velocity impact behavior of unidirectional CFRP composite plates for aircraft applications
CN110549692A (zh) 一种显示复合材料低速冲击损伤的紫外荧光示踪层
Bhatia et al. The role of patch-parent configurations on the tensile response of patch repaired carbon/epoxy laminates
CN110877464A (zh) 飞行器复合材料快速修理的标准硬补片法
Arıkan et al. Improvement of load carrying capacity of sandwich composites by different patch repair types
Cao et al. Formation mechanism and detection and evaluation methods as well as repair technology of crack damage in fiber-reinforced composite wind turbine blade: a review
Grabovac et al. Composite reinforcement of a ship superstructure—project overview
Powell et al. High strain rate mechanical characterization of carbon fiber reinforced polymer composites using digital image correlations
Ashwill et al. Composite Materials For Innovative Wind Turbine Blades.
Warnock et al. Cure Cycle Development and Qualification for Thick-Section Composites.
CN102990990B (zh) 一种复合材料低速冲击示踪层
Ong et al. Repair of F-104 aircraft nosedome by composite patching
Jiang et al. Monitoring of multidirectional and cure-induced strain in CFRP laminates using FBG sensors
Hwang et al. Adhesive strength analysis and real-scale simulation for smart curing in a large turbine blade with carbon fiber-reinforced plastic spar cap
Lusty et al. Alternative Damage Tolerant Materials for Wind Turbine Blades: An Overview
Wang et al. Overview of intelligent composites with embedded FBG sensors
Damghani et al. An experimental investigation of tensile residual strength of repaired composite laminates after low velocity impact
Tan et al. Feasibility analysis of inter-laminar toughening for improving delamination resistance
Kadum et al. Improving the mechanical properties of fiber metal laminate composite used in aircraft wing
EP3159655A1 (en) Profilometry inspection systems and methods for spar caps of composite wind turbine blades
Reddy et al. Mechanical characterization of carbon/epoxy unidirectional and bidirectional composites for structural application
Natesh et al. Introduction on Repair of Composites: Types of Repair Techniques
Baysallı et al. Effects of Porosity on CFRP Repair Performance with Aerospace Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191210