CN110543093A - Power distribution terminal time synchronization method using power grid frequency value comparison - Google Patents

Power distribution terminal time synchronization method using power grid frequency value comparison Download PDF

Info

Publication number
CN110543093A
CN110543093A CN201910981468.6A CN201910981468A CN110543093A CN 110543093 A CN110543093 A CN 110543093A CN 201910981468 A CN201910981468 A CN 201910981468A CN 110543093 A CN110543093 A CN 110543093A
Authority
CN
China
Prior art keywords
frequency value
power
distribution terminal
time
time synchronization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910981468.6A
Other languages
Chinese (zh)
Inventor
韩国政
剧晶晶
赵文青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Publication of CN110543093A publication Critical patent/CN110543093A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G7/00Synchronisation
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

A method for carrying out time synchronization by using a power frequency value of a power grid voltage as a reference quantity can improve the time synchronization precision between different power distribution terminals on a power distribution line, and is characterized in that: the power frequency value of the power grid is changed in real time, the frequency values acquired and calculated at different places are the same, and by utilizing the characteristic, clock synchronization is realized through frequency value comparison, and the error of clock synchronization is reduced. By the method and the device, the time synchronization precision between different power distribution terminals on the same distribution line can be improved.

Description

Power distribution terminal time synchronization method using power grid frequency value comparison
Technical Field
A method for comparing power grid frequency values and calculating clock deviation to achieve clock consistency between power distribution terminals belongs to the field of power system automation. The method is suitable for keeping clock synchronization among all power distribution terminals on the same power distribution line or power distribution terminals on different power distribution lines on the same bus.
Background
Feeder automation is an important component of distribution automation, and by means of a distribution automation terminal (short for a distribution terminal, FTU) installed on a distribution line (feeder), the states of a feeder section switch and a tie switch and the conditions of feeder current and voltage are monitored in real time under a normal state, so that remote or local switching-on and switching-off operations of the line switch are realized. When the fault occurs, the fault record is obtained, the fault section of the feeder line can be automatically distinguished and isolated, and the power supply can be rapidly recovered to the non-fault area. The method has the advantages that fault positioning, isolation and automatic recovery are significant to improving the reliability of power supply and shortening the power failure time of a non-fault area, and the method is a main function of feed automation. The basic principle is as follows: the power distribution network line of the open-loop operation of the ring network structure is divided into a plurality of power supply sections by the section switches, when a permanent fault occurs in a feeder line, the fault is automatically positioned, and fault isolation is realized through the sequential action of the switch equipment; the load transfer is realized in the power distribution network with the looped network operation or the looped network structure but the open loop operation, and the power supply is recovered. When a transient fault occurs, the fault current is normally cut off, and the fault automatically disappears, so that the breaker automatically closes and the power supply to the load can be restored. Therefore, the power failure range is reduced, the power failure time is shortened, and the power supply reliability is improved. In order to realize feeder automation, a distribution terminal device is required to be installed at a section switch on a distribution line (feeder), the current and voltage conditions of the feeder are monitored, and the remote control of opening and closing of the section switch is realized. Therefore, the clocks of different power distribution terminals are kept consistent, and the method has important influence on fault judgment, isolation and power supply recovery of the power distribution line.
In order to keep the clocks of the distribution terminals on the same distribution line consistent, a common method is to install a GPS or beidou clock in a substation to provide a standard clock signal, the distribution terminal of the substation is responsible for clock synchronization of the terminals on the distribution line, the standard clock signal is sent to the distribution terminal on the feeder line, and the distribution terminal on the distribution line adjusts the local clock according to the received standard clock. Common time synchronization methods include IEC 60870-5-101/104 time synchronization method, simple network time protocol SNTP, IEEE 1588 time synchronization protocol and the like. When the time setting command of IEC 60870-5-101/104 is adopted to time the power distribution terminal, the network delay is difficult to calculate, and the time setting error is large, usually in the order of seconds. The SNTP protocol adopts a client/server working mode, the server receives GPS signals as the time reference of the system, and the client acquires accurate time information by regularly accessing the time service provided by the server and adjusts the system clock of the client to achieve the aim of network clock synchronization. In a feeder-automated network environment, the SNTP time tick error exceeds 10 ms. IEC 61588 uses hardware and software to cooperate at the same time, more accurate timing synchronization is obtained, and microsecond-level time synchronization accuracy can be realized. However, IEC 61588 requires the support of routers and switches, and is difficult to implement in a feeder-automated network environment.
Disclosure of Invention
The invention aims to provide a time synchronization method, which utilizes the characteristics that the frequency values of a power grid are changed at different times and the frequency values of the power grid at different places and the same time are the same, and takes the frequency values of the power grid as the reference quantity for adjusting the clock of a power distribution terminal, thereby improving the time synchronization precision of the power distribution terminal and realizing that the time synchronization error between the power distribution terminals is less than 1 ms.
The purpose of the invention can be realized by the following technical scheme.
A time synchronization method for a power distribution terminal by using a frequency value of a grid voltage as a reference quantity is realized by a system comprising a power distribution terminal (FTU) and a communication system on the same distribution line, as shown in figure 1. The power distribution terminals exchange information through the communication system.
The distribution terminal (FTU) comprises an FTU positioned at a substation bus and an FTU positioned at a section switch on a distribution line. And monitoring the voltage information of the substation bus by the FTU at the substation bus. FTU on the distribution lines monitors and collects the current and voltage information of the operation of the distribution lines and the on-off action information of the switches, and the line fault is judged according to the collected line information. And receiving time tick information and adjusting the local clock of the FTU.
The communication system provides channels for communication among the FTUs of the power distribution terminals.
FTU0 is the distribution terminal of monitoring transformer substation busbar voltage, installs at the transformer substation, and FTU0 links to each other with the GPS or the beidou system of transformer substation, as standard clock source. FTU11, FTU12, FTU13 are power distribution terminals installed at section switches on the distribution line 1 (feeder 1), and FTU11, FTU12, FTU13 are clocked in line with FTU 0.
All the power distribution terminals can collect the same-phase voltage power frequency signals (taking AB line voltage as an example).
The time stamp of the time tick is composed of 64-bit unsigned floating point numbers, the integer part is the first 32 bits, the decimal part is the last 32 bits, the unit is second, and the time is 1 month, 1 day and zero point corresponding to 1900 years. The frequency value of the cycle is expressed by 32-bit unsigned integer, and the number is divided by 1000 to obtain the true value of the frequency, and the unit is Hz.
The flow of the whole system time setting is shown in fig. 2: the FTU0 sends broadcast messages to all the power distribution terminals (FTU 11, FTU12 and FTU 13) on the same distribution line, and informs the FTU0 of being a standard clock source of the local area, and the power distribution terminals (FTU 11, FTU12 and FTU 13) on the line carry out clock synchronization by taking the FTU0 as the standard clock.
FTU11 sends a time tick request command to FTU0, while FTU11 starts collecting voltage (for example, AB line voltage) signals and calculates frequency values, once per cycle, recording the time and frequency values at which the cycle starts.
After receiving the time synchronization request command, the FTU0 starts to collect voltage (for example, AB line voltage) signals of the power grid and calculates frequency values, each cycle is calculated once, and the time T0 when the 1 st cycle starts (phase of 0 °) and 5 consecutive frequency values are recorded. And after 5 cycles, stopping frequency calculation.
After the frequency values of 5 consecutive cycles are calculated, the FTU0 sends a time response command to the FTU11, where the command information includes the start time of the 1 st cycle and the frequency values of 5 consecutive cycles.
And after receiving the time-setting response command sent by the FTU0, the FTU11 stops frequency calculation.
f 11 FTU11 begins to perform frequency value comparisons. If the frequency values of N cycles are recorded in the FTU11 from the beginning of sending the time synchronization request to the time synchronization response, the comparison is performed from the 1 st frequency value f11 to the N-5 th frequency value, and the following are calculated:
f1 (i+k) f0 (i+1) k k k ρ kin the above formula, f1(i + k) represents the frequency value recorded by the FTU11, f0(i +1) represents the frequency value recorded by the FTU0, k represents the kth frequency value recorded by the FTU11, and k starts from 1. And selecting k corresponding to the minimum rho value, wherein the time T1k-1 corresponding to the beginning of the kth cycle of the FTU11 is the same as the time T0 returned by the FTU0, and the clock deviation is Toffset = T0-T1 k-1.
FTU11 performs clock correction: t = T + Toffset
The time setting process of other FTUs such as the FTU12 and the like is the same as that of the FTU11, and the steps are the same as [0013] to [0018 ].
Drawings
Fig. 1 is a block diagram of a feeder automation system; fig. 2 is a diagram of a power distribution terminal versus time communication process.
Detailed Description
The specific embodiment of the present invention is shown in fig. 2, but is not limited to this example.
FTU0 is the FTU located at the feeder line outlet switch of the substation, and the substation GPS provides a standard clock for FTU 0. FTU0 serves as a standard clock for FTU11, FTU12, etc. on the feeder line. FTU11 is the FTU at the section switch on the feeder line, and FTU11 needs to be clocked in line with FTU 0.
FTUs 0, 11, and the like have a function of detecting voltage and current on a feeder line.
FTU0, FTU11, etc. are connected via a communication network.

Claims (5)

1. A distribution terminal time synchronization method using a power grid frequency value as a reference quantity is characterized in that a distribution terminal at a bus of a transformer substation is used as a standard clock source, and time difference between distribution terminals is calculated through frequency value comparison by utilizing the characteristics that the power grid frequency value changes constantly and the power grid frequency values detected by different distribution terminals at the same moment are the same, so that time synchronization precision is improved.
2. The method of claim 1, wherein the power distribution terminal at the standard clock source power distribution terminal of the substation and the power distribution terminal at the section switch on the power distribution line select voltage power frequency signals of the same phase (such as AB line) for collecting and calculating the power grid frequency, and the starting time of each cycle is the time when the power grid voltage phase angle is 0 °.
3. A method according to claim 1, 2, characterized in that the power distribution terminal (slave clock) on the line, after sending the time synchronization request command, starts the frequency calculation of the voltage signal immediately and records the starting time and frequency value of each cycle.
4. The method of claim 1 or 2, wherein the distribution terminal (master clock) of the substation, after receiving the time synchronization request command, starts the frequency calculation of the voltage signal, records the starting time of the 1 st cycle and the frequency value of 5 consecutive cycles, and sends the time synchronization response command, wherein the command information includes the starting time of the 1 st cycle and the frequency value of 5 consecutive cycles.
5. The method as claimed in claims 1, 2, 3 and 4, wherein the master clock and the slave clock are compared by frequency value to find out the cycle corresponding relationship of the master clock and the slave clock and calculate the clock deviation.
CN201910981468.6A 2019-07-05 2019-10-16 Power distribution terminal time synchronization method using power grid frequency value comparison Pending CN110543093A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019106077033 2019-07-05
CN201910607703 2019-07-05

Publications (1)

Publication Number Publication Date
CN110543093A true CN110543093A (en) 2019-12-06

Family

ID=68715834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910981468.6A Pending CN110543093A (en) 2019-07-05 2019-10-16 Power distribution terminal time synchronization method using power grid frequency value comparison

Country Status (1)

Country Link
CN (1) CN110543093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462848A (en) * 2020-12-07 2021-03-09 深圳供电局有限公司 Clock offset correction method and device and computer equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090180358A1 (en) * 2008-01-10 2009-07-16 Oki Semiconductor Co., Ltd. Frequency corrector and clocking apparatus using the same
CN103576543A (en) * 2012-07-30 2014-02-12 国家电网公司 Power grid time synchronization system
CN108762048A (en) * 2018-06-01 2018-11-06 齐鲁工业大学 A method of realizing distribution terminal clock synchronization using power frequency current signal
CN109343333A (en) * 2018-12-11 2019-02-15 齐鲁工业大学 A kind of distribution terminal time synchronization method and system using voltage power frequency component
CN109343334A (en) * 2018-12-11 2019-02-15 齐鲁工业大学 A kind of distribution terminal time synchronization method using signal injection method
CN109683060A (en) * 2019-01-14 2019-04-26 国网江西省电力有限公司南昌供电分公司 A kind of distribution network line state monitoring method and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090180358A1 (en) * 2008-01-10 2009-07-16 Oki Semiconductor Co., Ltd. Frequency corrector and clocking apparatus using the same
CN103576543A (en) * 2012-07-30 2014-02-12 国家电网公司 Power grid time synchronization system
CN108762048A (en) * 2018-06-01 2018-11-06 齐鲁工业大学 A method of realizing distribution terminal clock synchronization using power frequency current signal
CN109343333A (en) * 2018-12-11 2019-02-15 齐鲁工业大学 A kind of distribution terminal time synchronization method and system using voltage power frequency component
CN109343334A (en) * 2018-12-11 2019-02-15 齐鲁工业大学 A kind of distribution terminal time synchronization method using signal injection method
CN109683060A (en) * 2019-01-14 2019-04-26 国网江西省电力有限公司南昌供电分公司 A kind of distribution network line state monitoring method and system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴今迈: "《设备诊断实例》", 31 March 1997 *
张全元: "《变电运行现场技术问答 第3版》", 28 February 2013 *
路松行: "《电工与电子技术》", 31 March 2006 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462848A (en) * 2020-12-07 2021-03-09 深圳供电局有限公司 Clock offset correction method and device and computer equipment
CN112462848B (en) * 2020-12-07 2024-04-09 深圳供电局有限公司 Clock deviation correction method and device and computer equipment

Similar Documents

Publication Publication Date Title
EP2316179B1 (en) Time synchronization in industrial process control or automation systems
US20070300094A1 (en) System and method for providing accurate time generation in a computing device of a power system
EP1479144B1 (en) Method and system for external clock to obtain multiple synchronized redundant computers
US8275485B2 (en) Electric power system automation using time coordinated instructions
US20090088990A1 (en) Synchronized phasor processor for a power system
US7111195B2 (en) Method and system for external clock to obtain multiple synchronized redundant computers
CN108762048A (en) A method of realizing distribution terminal clock synchronization using power frequency current signal
CN111179570B (en) Low-voltage distribution room acquisition equipment clock synchronization method based on HPLC carrier communication
CN103069526B (en) Circuit breaker phase control switch system and circuit breaker control unit
CN102928741A (en) Satellite time synchronization based electric power line fault location system and method
Crossley et al. Time synchronization for transmission substations using GPS and IEEE 1588
CN108205096B (en) Multisource fault data analysis method based on active time correction
Schweitzer et al. Real-time power system control using synchrophasors
CN113630157B (en) Clock synchronization method and system based on HPLC communication network delay correction
EP2520040A1 (en) Method and apparatus for detecting communication channel delay asymmetry
WO2004015433A1 (en) System and method for synchronizing electrical generators
CN110350516B (en) Automatic identification method for single-ring network topology of high-voltage distribution network
US20070133724A1 (en) Method and apparatus for time synchronization of devices within electrical power systems
EP2765679B1 (en) Intelligent electrical power network device
CN110492962A (en) A kind of accurate time synchronization method of electric energy meter and concentrator
CN110543093A (en) Power distribution terminal time synchronization method using power grid frequency value comparison
Knezev et al. Automated circuit breaker monitoring
Aweya et al. Role of time synchronization in power system automation and smart grids
US10298343B2 (en) Systems and methods for time-synchronized communication
CN109343333A (en) A kind of distribution terminal time synchronization method and system using voltage power frequency component

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191206