CN110537193A - 卷积神经网络的快速计算 - Google Patents
卷积神经网络的快速计算 Download PDFInfo
- Publication number
- CN110537193A CN110537193A CN201880017855.1A CN201880017855A CN110537193A CN 110537193 A CN110537193 A CN 110537193A CN 201880017855 A CN201880017855 A CN 201880017855A CN 110537193 A CN110537193 A CN 110537193A
- Authority
- CN
- China
- Prior art keywords
- housebroken
- convolutional
- neural networks
- input data
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 164
- 238000000034 method Methods 0.000 claims abstract description 64
- 238000004422 calculation algorithm Methods 0.000 claims description 60
- 238000012545 processing Methods 0.000 claims description 40
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000001914 filtration Methods 0.000 claims description 9
- 238000003475 lamination Methods 0.000 claims description 8
- 230000001537 neural effect Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 24
- 230000015654 memory Effects 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 15
- 238000004891 communication Methods 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 12
- 238000004590 computer program Methods 0.000 description 10
- 238000010801 machine learning Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 238000012549 training Methods 0.000 description 8
- 230000000712 assembly Effects 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19173—Classification techniques
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Neurology (AREA)
- Human Computer Interaction (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/111655 WO2020082263A1 (en) | 2018-10-24 | 2018-10-24 | Fast computation of convolutional neural network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110537193A true CN110537193A (zh) | 2019-12-03 |
Family
ID=66850328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880017855.1A Pending CN110537193A (zh) | 2018-10-24 | 2018-10-24 | 卷积神经网络的快速计算 |
Country Status (14)
Country | Link |
---|---|
US (1) | US10635951B1 (zh) |
EP (1) | EP3662414A4 (zh) |
JP (1) | JP6798021B1 (zh) |
KR (1) | KR102141324B1 (zh) |
CN (1) | CN110537193A (zh) |
AU (1) | AU2018353930B2 (zh) |
BR (1) | BR112019008055B1 (zh) |
CA (1) | CA3040685C (zh) |
MX (1) | MX2019004654A (zh) |
PH (1) | PH12019500889A1 (zh) |
RU (1) | RU2722473C1 (zh) |
SG (1) | SG11201903591QA (zh) |
WO (1) | WO2020082263A1 (zh) |
ZA (1) | ZA201902547B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111580828A (zh) * | 2020-04-30 | 2020-08-25 | 腾讯科技(深圳)有限公司 | 机器学习模型的编译优化方法和装置 |
CN113095493A (zh) * | 2020-01-08 | 2021-07-09 | 马克西姆综合产品公司 | 降低神经网络中的内存需求的系统和方法 |
CN113419779A (zh) * | 2020-05-08 | 2021-09-21 | 黑芝麻智能科技(重庆)有限公司 | 可扩展多精度数据流水线系统和方法 |
CN117495833A (zh) * | 2023-11-16 | 2024-02-02 | 广州思沛医药科技股份有限公司 | 一种基于大数据的脑卒中预测方法、系统及存储介质 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10990648B2 (en) * | 2017-08-07 | 2021-04-27 | Intel Corporation | System and method for an optimized winograd convolution accelerator |
US11494608B2 (en) * | 2019-08-14 | 2022-11-08 | Intel Corporation | Methods and apparatus to tile walk a tensor for convolution operations |
US11657282B2 (en) * | 2019-09-16 | 2023-05-23 | Qualcomm Incorporated | Efficient inferencing with fast pointwise convolution |
CN112766471B (zh) * | 2019-11-01 | 2024-03-29 | 中科寒武纪科技股份有限公司 | 运算装置及相关产品 |
CN112784206A (zh) * | 2019-11-01 | 2021-05-11 | 中科寒武纪科技股份有限公司 | winograd卷积运算方法、装置、设备及存储介质 |
CN111294512A (zh) * | 2020-02-10 | 2020-06-16 | 深圳市铂岩科技有限公司 | 图像处理方法、装置、存储介质及摄像装置 |
CN111475775B (zh) * | 2020-04-14 | 2023-09-15 | 腾讯科技(深圳)有限公司 | 图形处理器的数据处理方法、文本处理方法、装置和设备 |
CN111415000B (zh) * | 2020-04-29 | 2024-03-22 | Oppo广东移动通信有限公司 | 卷积神经网络、基于卷积神经网络的数据处理方法和装置 |
CN111553466B (zh) * | 2020-04-30 | 2024-03-22 | 上海商汤智能科技有限公司 | 信息处理方法、装置及设备 |
CN111767964A (zh) * | 2020-07-08 | 2020-10-13 | 福州大学 | 基于改进的DenseNet的多通道特征重标记图像分类方法 |
JP2022018997A (ja) * | 2020-07-17 | 2022-01-27 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子、撮像装置、および、情報処理システム |
JP7530434B2 (ja) | 2020-09-28 | 2024-08-07 | 富士フイルム株式会社 | 医療画像処理方法及び医療画像処理装置 |
WO2022119466A1 (en) * | 2020-12-01 | 2022-06-09 | Huawei Technologies Co., Ltd. | Device and method for implementing a tensor-train decomposition operation |
JP7420100B2 (ja) * | 2021-03-15 | 2024-01-23 | オムロン株式会社 | 処理装置、処理方法、およびプログラム |
KR20220162971A (ko) * | 2021-06-02 | 2022-12-09 | 세메스 주식회사 | 데이터 처리 방법 및 데이터 비교 방법 |
EP4099609A1 (en) * | 2021-06-04 | 2022-12-07 | Zama SAS | Computational network conversion for fully homomorphic evaluation |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112014027631A2 (pt) * | 2012-05-04 | 2019-05-14 | Rearden, Llc | sistema de multipla antena (mas) e multiusuário (mu) e método |
EP3259911B1 (en) * | 2015-02-19 | 2021-04-07 | Magic Pony Technology Limited | Enhancing visual data using updated neural networks |
US10403269B2 (en) * | 2015-03-27 | 2019-09-03 | Google Llc | Processing audio waveforms |
CN105740894B (zh) * | 2016-01-28 | 2020-05-29 | 北京航空航天大学 | 一种高光谱遥感图像的语义标注方法 |
US20170344876A1 (en) * | 2016-05-31 | 2017-11-30 | Samsung Electronics Co., Ltd. | Efficient sparse parallel winograd-based convolution scheme |
CN106407986B (zh) * | 2016-08-29 | 2019-07-19 | 电子科技大学 | 一种基于深度模型的合成孔径雷达图像目标识别方法 |
GB2554711B (en) * | 2016-10-06 | 2020-11-25 | Imagination Tech Ltd | Buffer addressing for a convolutional neural network |
US10230725B2 (en) * | 2016-10-24 | 2019-03-12 | Sonicwall Inc. | Edge protection for internal identity providers |
US10482155B2 (en) * | 2016-12-30 | 2019-11-19 | Intel Corporation | Winograd algorithm on a matrix processing architecture |
RU2651147C1 (ru) * | 2017-03-27 | 2018-04-18 | Акционерное общество "ЭЛВИС-НеоТек" | Устройство и способ каскадной обработки потока изображений с помощью свёрточных нейронных сетей |
US10467795B2 (en) * | 2017-04-08 | 2019-11-05 | Intel Corporation | Sub-graph in frequency domain and dynamic selection of convolution implementation on a GPU |
CN107480707B (zh) * | 2017-07-26 | 2020-08-07 | 天津大学 | 一种基于信息无损池化的深度神经网络方法 |
US10990648B2 (en) * | 2017-08-07 | 2021-04-27 | Intel Corporation | System and method for an optimized winograd convolution accelerator |
KR102452953B1 (ko) * | 2017-10-30 | 2022-10-11 | 삼성전자주식회사 | 뉴럴 네트워크의 컨볼루션 연산을 수행하는 방법 및 장치 |
CN107844833A (zh) * | 2017-11-28 | 2018-03-27 | 郑州云海信息技术有限公司 | 一种卷积神经网络的数据处理方法、装置及介质 |
US10372787B2 (en) * | 2017-12-12 | 2019-08-06 | Facebook, Inc. | Hardware accelerator pre-configured with coefficients for matrix-transform operations |
-
2018
- 2018-10-24 CN CN201880017855.1A patent/CN110537193A/zh active Pending
- 2018-10-24 MX MX2019004654A patent/MX2019004654A/es unknown
- 2018-10-24 AU AU2018353930A patent/AU2018353930B2/en active Active
- 2018-10-24 WO PCT/CN2018/111655 patent/WO2020082263A1/en unknown
- 2018-10-24 RU RU2019111961A patent/RU2722473C1/ru active
- 2018-10-24 EP EP18867295.0A patent/EP3662414A4/en not_active Withdrawn
- 2018-10-24 BR BR112019008055-4A patent/BR112019008055B1/pt active IP Right Grant
- 2018-10-24 CA CA3040685A patent/CA3040685C/en active Active
- 2018-10-24 SG SG11201903591QA patent/SG11201903591QA/en unknown
- 2018-10-24 JP JP2019521684A patent/JP6798021B1/ja active Active
- 2018-10-24 KR KR1020197011555A patent/KR102141324B1/ko active IP Right Grant
-
2019
- 2019-04-22 US US16/390,042 patent/US10635951B1/en active Active
- 2019-04-23 ZA ZA2019/02547A patent/ZA201902547B/en unknown
- 2019-04-24 PH PH12019500889A patent/PH12019500889A1/en unknown
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113095493A (zh) * | 2020-01-08 | 2021-07-09 | 马克西姆综合产品公司 | 降低神经网络中的内存需求的系统和方法 |
CN111580828A (zh) * | 2020-04-30 | 2020-08-25 | 腾讯科技(深圳)有限公司 | 机器学习模型的编译优化方法和装置 |
CN111580828B (zh) * | 2020-04-30 | 2021-08-27 | 腾讯科技(深圳)有限公司 | 机器学习模型的编译优化方法和装置 |
CN113419779A (zh) * | 2020-05-08 | 2021-09-21 | 黑芝麻智能科技(重庆)有限公司 | 可扩展多精度数据流水线系统和方法 |
US20210349718A1 (en) * | 2020-05-08 | 2021-11-11 | Black Sesame International Holding Limited | Extensible multi-precision data pipeline for computing non-linear and arithmetic functions in artificial neural networks |
US11687336B2 (en) * | 2020-05-08 | 2023-06-27 | Black Sesame Technologies Inc. | Extensible multi-precision data pipeline for computing non-linear and arithmetic functions in artificial neural networks |
CN117495833A (zh) * | 2023-11-16 | 2024-02-02 | 广州思沛医药科技股份有限公司 | 一种基于大数据的脑卒中预测方法、系统及存储介质 |
CN117495833B (zh) * | 2023-11-16 | 2024-05-28 | 广州思沛医药科技股份有限公司 | 一种基于大数据的脑卒中预测方法、系统及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
KR20200049695A (ko) | 2020-05-08 |
CA3040685A1 (en) | 2020-04-28 |
AU2018353930B2 (en) | 2020-10-08 |
RU2722473C1 (ru) | 2020-06-01 |
WO2020082263A1 (en) | 2020-04-30 |
BR112019008055A2 (pt) | 2021-05-18 |
MX2019004654A (es) | 2022-05-04 |
EP3662414A4 (en) | 2020-07-22 |
CA3040685C (en) | 2020-07-28 |
JP6798021B1 (ja) | 2020-12-09 |
PH12019500889A1 (en) | 2019-06-17 |
BR112019008055B1 (pt) | 2022-02-01 |
JP2021501377A (ja) | 2021-01-14 |
SG11201903591QA (en) | 2020-05-28 |
US20200134400A1 (en) | 2020-04-30 |
KR102141324B1 (ko) | 2020-08-05 |
ZA201902547B (en) | 2021-02-24 |
US10635951B1 (en) | 2020-04-28 |
AU2018353930A1 (en) | 2020-05-14 |
EP3662414A1 (en) | 2020-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110537193A (zh) | 卷积神经网络的快速计算 | |
US11074107B1 (en) | Data processing system and method for managing AI solutions development lifecycle | |
US20240007414A1 (en) | Methods, systems, articles of manufacture and apparatus to optimize resources in edge networks | |
CN104937544B (zh) | 用于计算任务结果的方法、计算机可读介质和计算机系统 | |
US9262493B1 (en) | Data analytics lifecycle processes | |
US11128668B2 (en) | Hybrid network infrastructure management | |
CN112199189B (zh) | 深度学习模型对资源受限边缘设备的适应 | |
US20180060330A1 (en) | Parallel scoring of an ensemble model | |
US20170124492A1 (en) | System for automated capture and analysis of business information for reliable business venture outcome prediction | |
US11468368B2 (en) | Parametric modeling and simulation of complex systems using large datasets and heterogeneous data structures | |
US20220261299A1 (en) | Api configuration using auto-rationalization and modeling | |
JP2023544904A (ja) | 機械学習パイプラインの分散型リソースアウェアトレーニング | |
US20210312324A1 (en) | Systems and methods for integration of human feedback into machine learning based network management tool | |
US20210142197A1 (en) | Methods and systems for diverse instance generation in artificial intelligence planning | |
US20240086791A1 (en) | Automatic adjustment of constraints in task solution generation | |
US20240112065A1 (en) | Meta-learning operation research optimization | |
US20230186074A1 (en) | Fabricating data using constraints translated from trained machine learning models | |
US11734576B2 (en) | Cooperative neural networks with spatial containment constraints | |
CN115002215A (zh) | 面向云上政企的资源分配模型训练方法以及资源分配方法 | |
CN113052309A (zh) | 压缩神经网络模型的方法、计算机系统以及存储介质 | |
US12112249B2 (en) | Multi-objective automated machine learning | |
US20240085892A1 (en) | Automatic adaption of business process ontology using digital twins | |
US20240220270A1 (en) | Data-analysis-based consolidation of process pipelines | |
US20240144052A1 (en) | Automated decision optimization for maintenance of physical assets | |
US20240249183A1 (en) | Automated text generation using artificial intelligence techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40017973 Country of ref document: HK |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200925 Address after: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman Islands Applicant after: Innovative advanced technology Co.,Ltd. Address before: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman Islands Applicant before: Advanced innovation technology Co.,Ltd. Effective date of registration: 20200925 Address after: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman Islands Applicant after: Advanced innovation technology Co.,Ltd. Address before: A four-storey 847 mailbox in Grand Cayman Capital Building, British Cayman Islands Applicant before: Alibaba Group Holding Ltd. |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191203 |