CN110534613B - 一种基于si衬底的五结太阳电池的制备方法 - Google Patents

一种基于si衬底的五结太阳电池的制备方法 Download PDF

Info

Publication number
CN110534613B
CN110534613B CN201810517085.9A CN201810517085A CN110534613B CN 110534613 B CN110534613 B CN 110534613B CN 201810517085 A CN201810517085 A CN 201810517085A CN 110534613 B CN110534613 B CN 110534613B
Authority
CN
China
Prior art keywords
type doped
doping concentration
gaas
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810517085.9A
Other languages
English (en)
Other versions
CN110534613A (zh
Inventor
方亮
高鹏
姚立勇
张恒
张启明
唐悦
石璘
刘如彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN201810517085.9A priority Critical patent/CN110534613B/zh
Publication of CN110534613A publication Critical patent/CN110534613A/zh
Application granted granted Critical
Publication of CN110534613B publication Critical patent/CN110534613B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种基于SI衬底的五结太阳电池的制备方法。本发明属于太阳电池技术领域。基于SI衬底的五结太阳电池的制备方法,AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池采用MOCVD技术,在表面有GaAs层的硅衬底上用MOCVD外延反向生长和GaAs晶格匹配的太阳电池材料,包括AlGaInP子电池,AlGaAs子电池,GaAs子电池;在表面有InP层的硅衬底上用MOCVD外延正向生长和InP晶格匹配的太阳电池材料,包括GaInAsP子电池,GaInAs子电池;然后通过低温键合工艺把GaAs子电池和GaInAsP子电池接在一起,最后通过化学刻蚀完成Si/GaAs衬底的剥离,得到五结太阳电池。本发明具有理论转换效率达到56%,剥离的InP和GaAs衬底通过CMP等过程可以重复使用,显著降低五结太阳电池制备成本等优点。

Description

一种基于SI衬底的五结太阳电池的制备方法
技术领域
本发明属于太阳电池技术领域,特别是涉及一种基于SI衬底的五结太阳电池的制备方法。
背景技术
目前,随着半导体键合工艺在砷化镓多结(四结及以上)太阳电池的应用,将在GaAs衬底和InP衬底上外延生长的多结太阳电池连接在一起,实现了太阳电池的带隙和太阳光谱的理想匹配,同时避免了正向晶格失配(UMM)和反向晶格失配多结太阳电池由于采用渐变缓冲层导致的穿透位错对太阳电池吸收层的影响。美国Boeing Spectrolab制备的五结砷化镓太阳电池实现了38.8%(AM1.5)的光电转换效率,德国Fraunhofer ISE/法国Soitec制备的四结砷化镓太阳电池在聚光条件下实现了46%的光电转换效率。但是以上的多结太阳电池需要采用成本甚高的InP衬底和GaAs衬底,而价格低廉的Si衬底由于晶格常数、热膨胀系数等方面和外延材料的不一致导致直接外延生长的材料质量很差。
发明内容
本发明为解决公知技术中存在的技术问题而提供一种基于SI衬底的五结太阳电池的制备方法。
本发明的目的是提供一种具有理论转换效率达到56%,剥离的InP和GaAs衬底通过CMP等过程可以重复使用,显著降低五结太阳电池制备成本等特点的基于SI衬底的五结太阳电池的制备方法。
本发明采用半导体键合、离子注入剥离的技术在Si衬底上制备InP和GaAs薄层;在表面有GaAs薄层的硅衬底上用MOCVD外延反向生长和GaAs晶格匹配的太阳电池材料,包括AlGaInP子电池,AlGaAs子电池,GaAs子电池。在表面有InP薄层的硅衬底上用MOCVD外延正向生长和InP晶格匹配的太阳电池材料,包括GaInAsP子电池,GaInAs子电池。然后通过低温键合工艺把GaAs子电池和GaInAsP子电池接在一起,最后通过化学刻蚀完成Si/GaAs衬底的剥离,即制成本发明的五结太阳电池。
本发明AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池的制备方法:
AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池,其特点是包括以下制备步骤:
步骤1、采用半导体键、离子注入和剥离的方法在Si衬底上制备GaAs和InP薄层,制成Si/GaAs和Si/InP复合衬底
步骤2、在Si/GaAs衬底上反向外延生长AlGaInP子电池、AlGaAs子电池和GaAs子电池
将Si/GaAs衬底置于MOCVD操作室内,生长温度设置为500℃~800℃,在衬底上面依次外延生长厚度为0.1﹣0.3um的GaAs缓冲层、厚度为0.1﹣0.3um的GaInP腐蚀停止层、厚度为100﹣500nm的n型掺杂GaAs帽层、AlGaInP子电池、第一隧穿结、AlGaAs子电池、第二隧穿结、GaAs子电池;
步骤3、在Si/InP衬底上正向外延生长GaInAsP子电池和GaInAs子电池
将Si/InP衬底置于MOCVD操作室内,生长温度设置为500℃~800℃,在衬底上面依次外延生长厚度为0.1﹣0.3um的GaInAs缓冲层、GaInAs子电池、第四隧穿结、GaInAsP子电池、第三隧穿结。
步骤4、将步骤2、3制备的电池键合在一起
通过CMP工艺表面处理GaAs子电池的背场层及第三隧穿结的p++层,使得表面粗糙度降至1nm以内。将表面清洗后的电池表面用等离子体进行表面活化处理,将Si/Ga和Si/InP衬底通过范德华力贴合在一起;置入键合机的键合腔,键合腔内充满N2,将键合腔的温度升至80-120℃时,对电池进行60-120秒的预热;然后施加1-5KN的键合压力,,以15℃/min升温的速度将键合腔内温度提升到150-250℃,保持恒温,进行1-2小时的键合,然后以3℃/min降温的速度将键合腔内温度降到室温,实现低温键合;
步骤5、剥离Si/GaAs衬底
使用HNO3:H2O:HF=50:20:1刻蚀Si衬底,使用HF:H2O2:H2O=2:1:1腐蚀液腐蚀GaAs薄层及缓冲层,Si衬底、GaAs薄层及缓冲层从电池上被剥离掉后,用HCl:H2O=1:1腐蚀液腐蚀GaInP腐蚀停止层,GaInP腐蚀停止层从电池上被剥离掉,完成化学刻蚀的过程;
步骤6、最后按照砷化镓太阳电池的器件工艺完成AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池的制备。
本发明AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池的制备方法还可以采用如下技术措施:
第一结AlGaInP电池:依次生长为厚度100-200nm的P型掺杂AlInP背场层、厚度500-1000nm的P型掺杂AlGaInP基区、厚度50-100nm的n型掺杂AlGaInP发射区、厚度30-100nm的n型掺杂AlInP窗口层;其中:P型掺杂AlInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂AlGaInP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂AlGaInP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第一隧穿结:依次生长为厚度10-100nm的n型GaInP层和厚度10-100nm的p型GaInP:其中:n型GaInP层的掺杂浓度为1×1018-1×1020cm-3,p型GaInP的掺杂浓度为1×1018-1×1020cm-3
第二结AlGaAs电池:依次生长为厚度100-200nm的P型掺杂GaInP背场层、厚度500-1500nm的P型掺杂AlGaAs基区、厚度50-200nm的n型掺杂AlGaAs发射区、厚度30-100nm的n型掺杂GaInP窗口层;其中:P型掺杂GaInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂AlGaAs基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂AlGaAs发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂GaInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第二隧穿结:依次生长为厚度10-100nm的n型GaInP层和厚度10-100nm的p型AlGaAs:其中:n型GaInP层的掺杂浓度为1×1018-1×1020cm-3,p型AlGaAs的掺杂浓度为1×1018-1×1020cm-3
第三结GaAs电池:依次生长为厚度100-200nm的P型掺杂GaInP背场层、厚度1-2μm的GaAs基区、厚度50-100nm的n型掺杂GaAs发射区、厚度30-100nm的n型掺杂GaInP窗口层;其中:P型掺杂GaInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaAs基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂GaAs发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂GaInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第三隧穿结:依次生长为厚度100-200nm的n型GaAs层和厚度10-100nm的p型AlGaAs:其中:n型GaAs层的掺杂浓度为1×1018-1×1020cm-3,p型AlGaAs的掺杂浓度为1×1018-1×1020cm-3
第四结GaInAsP电池:依次生长为厚度100-200nm的P型掺杂InP背场层、厚度1-3μm的GaInAsP基区、厚度50-100nm的n型掺杂InP发射区、厚度30-100nm的n型掺杂AlInAs窗口层;其中:P型掺杂InP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaInAsP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂InP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInAs窗口层的掺杂浓度为1×1017-1×1019cm-3
第四隧穿结:依次生长为厚度10-100nm的n型InP层和厚度10-100nm的p型InP:其中:n型InP层的掺杂浓度为1×1018-1×1020cm-3,p型InP的掺杂浓度为1×1018-1×1020cm-3
第五结GaInAs电池:依次生长为厚度100-200nm的P型掺杂InP背场层、厚度1-3μm的GaInAs基区、厚度50-100nm的n型掺杂InP发射区、厚度30-100nm的n型掺杂AlInAs窗口层;其中:P型掺杂InP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaInAsP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂InP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInAs窗口层的掺杂浓度为1×1017-1×1019cm-3
本发明基于SI衬底的五结太阳电池的制备方法所采取的技术方案是:
一种基于SI衬底的五结太阳电池的制备方法,其特点是:基于SI衬底的五结太阳电池的制备过程,AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池采用MOCVD技术,在表面有GaAs层的硅衬底上用MOCVD外延反向生长和GaAs晶格匹配的太阳电池材料,包括AlGaInP子电池,AlGaAs子电池,GaAs子电池;在表面有InP层的硅衬底上用MOCVD外延正向生长和InP晶格匹配的太阳电池材料,包括GaInAsP子电池,GaInAs子电池;然后通过低温键合工艺把GaAs子电池和GaInAsP子电池接在一起,最后通过化学刻蚀完成Si/GaAs衬底的剥离,得到五结太阳电池。
本发明基于SI衬底的五结太阳电池的制备方法还可以采用如下技术方案:
所述的基于SI衬底的五结太阳电池的制备方法,其特点是:AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池,依次连接GaAs接触层、AlGaInP子电池、第一隧穿结、AlGaAs子电池、第二隧穿结、GaAs子电池第三隧穿结、GaInAsP子电池、第四隧穿结、GaInAs子电池。
所述的基于SI衬底的五结太阳电池的制备方法,其特点是:第一结AlGaInP电池:依次生长为厚度100-200nm的P型掺杂AlInP背场层、厚度500-1000nm的P型掺杂AlGaInP基区、厚度50-100nm的n型掺杂AlGaInP发射区、厚度30-100nm的n型掺杂AlInP窗口层;其中:P型掺杂AlInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂AlGaInP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂AlGaInP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第一隧穿结:依次生长为厚度10-100nm的n型GaInP层和厚度10-100nm的p型GaInP;其中:n型GaInP层的掺杂浓度为1×1018-1×1020cm-3,p型GaInP的掺杂浓度为1×1018-1×1020cm-3
第二结AlGaAs电池:依次生长为厚度100-200nm的P型掺杂GaInP背场层、厚度500-1500nm的P型掺杂AlGaAs基区、厚度50-200nm的n型掺杂AlGaAs发射区、厚度30-100nm的n型掺杂GaInP窗口层;其中:P型掺杂GaInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂AlGaAs基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂AlGaAs发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂GaInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第二隧穿结:依次生长为厚度10-100nm的n型GaInP层和厚度10-100nm的p型AlGaAs:其中:n型GaInP层的掺杂浓度为1×1018-1×1020cm-3,p型AlGaAs的掺杂浓度为1×1018-1×1020cm-3
第三结GaAs电池:依次生长为厚度100-200nm的P型掺杂GaInP背场层、厚度1-2μm的GaAs基区、厚度50-100nm的n型掺杂GaAs发射区、厚度30-100nm的n型掺杂GaInP窗口层;其中:P型掺杂GaInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaAs基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂GaAs发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂GaInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第三隧穿结:依次生长为厚度100-200nm的n型GaAs层和厚度10-100nm的p型AlGaAs:其中:n型GaAs层的掺杂浓度为1×1018-1×1020cm-3,p型AlGaAs的掺杂浓度为1×1018-1×1020cm-3
第四结GaInAsP电池:依次生长为厚度100-200nm的P型掺杂InP背场层、厚度1-3μm的GaInAsP基区、厚度50-100nm的n型掺杂InP发射区、厚度30-100nm的n型掺杂AlInAs窗口层;其中:P型掺杂InP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaInAsP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂InP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInAs窗口层的掺杂浓度为1×1017-1×1019cm-3
第四隧穿结:依次生长为厚度10-100nm的n型InP层和厚度10-100nm的p型InP:其中:n型InP层的掺杂浓度为1×1018-1×1020cm-3,p型InP的掺杂浓度为1×1018-1×1020cm-3
第五结GaInAs电池:依次生长为厚度100-200nm的P型掺杂InP背场层、厚度1-3μm的GaInAs基区、厚度50-100nm的n型掺杂InP发射区、厚度30-100nm的n型掺杂AlInAs窗口层;其中:P型掺杂InP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaInAsP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂InP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInAs窗口层的掺杂浓度为1×1017-1×1019cm-3
所述的基于SI衬底的五结太阳电池的制备方法,其特点是:AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池的禁带宽度分别为2.2±0.05eV、1.70±0.05eV、1.40±0.05eV、1.05±0.05eV、0.73±0.05eV。
所述的基于SI衬底的五结太阳电池的制备方法,其特点是:Si衬底上的InP和GaAs层采用衬底键合及离子注入剥离的方法制备,剥离的InP和GaAs衬底通过CMP过程重复使用。
本发明具有的优点和积极效果是:
基于SI衬底的五结太阳电池的制备方法由于采用了本发明全新的技术方案,与现有技术相比,本发明具有以下特点:
1.本发明中的AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池,其特性在于:这种带隙组合能够实现子电池带隙和AM0太阳光谱的理想匹配,理论转换效率达到56%(AM1.5)。
2.本发明中的Si衬底上的InP和GaAs薄层采用衬底键合、离子注入剥离的方法制备,剥离的InP和GaAs衬底通过CMP等过程可以重复使用。
3.本发明采用Si衬底外延生长五结太阳电池可以显著的降低五结太阳电池的制备成本。
附图说明
图1是本发明在Si/GaAs衬底上反向外延生长的AlGaInP/AlGaAs/GaAs三结太阳电池结构示意图;
图2是本发明在Si/InP衬底上正向外延生长的GaInAsP/GaInAs双结太阳电池结构示意图;
图3是本发明制备的AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池结构示意图。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
参阅附图1、图2和图3。
实施例1
一种基于SI衬底的AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池的制备方法,AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池采用MOCVD技术,在表面有GaAs层的硅衬底上用MOCVD外延反向生长和GaAs晶格匹配的太阳电池材料,包括AlGaInP子电池,AlGaAs子电池,GaAs子电池;在表面有InP层的硅衬底上用MOCVD外延正向生长和InP晶格匹配的太阳电池材料,包括GaInAsP子电池,GaInAs子电池;然后通过低温键合工艺把GaAs子电池和GaInAsP子电池接在一起,最后通过化学刻蚀完成Si/GaAs衬底的剥离,得到五结太阳电池。
具体工艺过程如下:
步骤1、采用半导体键合和离子注入剥离的方法制备Si/GaAs和Si/InP衬底:
其中:选用p型掺杂的Si片作为衬底,Si片的厚度为200-300μm,掺杂浓度为1×1017-1×1018cm-3;选用厚度为200-400μm的GaAs衬底和厚度为200-400μm的InP衬底:
通过CMP工艺表面处理以上衬底,使得表面粗糙度降至1nm以内。将表面清洗后的衬底表面用等离子体进行表面活化处理,将Si衬底和InP衬底置入键合机的键合腔,键合腔内充满N2,将键合腔的温度升至80-120℃时,对电池进行60-120秒的预热;然后施加1-5KN的键合压力,,以15℃/min升温的速度将键合腔内温度提升到150-250℃,保持恒温,进行1-2小时的键合,然后以3℃/min降温的速度将键合腔内温度降到室温,实现低温键合;
将H+注入InP衬底,H+的能量为50-250KeV,注入的剂量为1×1016-1×1018cm-2,注入的位置大约距离Si/InP界面1-3μm;然后通过半导体剥离技术将InP衬底剥离下来,表面的InP薄层通过CMP工艺处理,去除H+注入造成的100-300nm的损伤区,同时使得表面粗糙度降至1nm以内,最后制成Si/InP复合衬底;
采用相同的工艺方法在Si表面形成GaAs薄层,制成Si/GaAs复合衬底;
步骤2、采用MOCVD在Si/GaAs衬底上反向外延生长AlGaInP/AlGaAs/GaAs三结太阳电池结构
采用MOCVD设备,在Si/GaAs衬底上依次外延生长GaAs缓冲层、GaInP腐蚀停止层、n型掺杂的GaAs帽层、AlGaInP子电池、第一隧穿结、AlGaAs子电池、第二隧穿结、GaAs子电池、第三隧穿结,生长温度均为500-800℃;
其中:1)GaAs缓冲层作为生长AlGaInP基材料的成核层,厚度为0.1-0.3um;
2)GaInP腐蚀停止层作为剥离外延生长衬底的腐蚀控制层,厚度为0.1-0.3um;
3)n型掺杂的GaAs帽层(图中未标注)作为与金属电极形成欧姆接触的重掺杂外延层,厚度为100-500nm,掺杂浓度为1×1018-1×1019cm-3
4)AlGaInP子电池依次生长为p型掺杂的AlInP背场层、p型掺杂的AlGaInP基、n型掺杂的AlGaInP发射区、n型掺杂的AlInP窗口层;
p型掺杂的AlInP背场层厚度为100-200nm,掺杂浓度为1×1017-1×1019cm-3
p型掺杂的AlGaInP基区厚度为500-1000nm,掺杂浓度为1×1016-1×1017cm-3
n型掺杂的AlGaInP发射区厚度为50-200nm,掺杂浓度为1×1017-1×1019cm-3
n型掺杂的AlInP窗口层厚度为30-100nm,掺杂浓度为1×1017-1×1019cm-3
5)第一隧穿结依次生长n型的GaInP层和p型的GaInP层;
其中:n型的GaInP层生长温度为500-800℃,掺杂浓度为1×1018-1×1020cm-3,厚度范围为10-100nm;
p型的GaInP层生长温度为500-800℃,掺杂浓度为1×1018-1×1020cm-3,厚度范围为10-100nm;
6)AlGaAs电池依次生长为p型的GaInP背场层、p型掺杂的AlGaAs基区、n型掺杂的AlGaAs发射区、n型掺杂的GaInP窗口层;
其中:p型掺杂的GaInP背场层厚度为100-200nm,掺杂浓度为1×1017-1×1019cm-3
p型掺杂的AlGaAs基区厚度为1000-2000nm,掺杂浓度为1×1016-1×1017cm-3
n型掺杂的AlGaAs发射区厚度为50-200nm,掺杂浓度为1×1017-1×1019cm-3
n型掺杂的GaInP窗口层厚度为30-100nm,掺杂浓度为1×1017-1×1019cm-3
7)第二隧穿结依次生长n型的GaInP层和p型的AlGaAs层;
其中:n型的GaInP层生长温度为500-800℃,掺杂浓度为1×1018-1×1020cm-3,厚度范围为10-100nm;
p型的AlGaAs层生长温度为500-800℃,掺杂浓度为1×1018-1×1020cm-3,厚度范围为10-100nm;
8)GaAs子电池依次生长为p型的GaInP背场层、p型掺杂的GaAs基区、n型掺杂的GaAs发射区、n型掺杂的GaInP窗口层;
其中:p型掺杂的GaInP背场层厚度为150-250nm,掺杂浓度为1×1017-1×1019cm-3
p型掺杂的GaAs基区厚度为1000-2000nm,掺杂浓度为1×1016-1×1017cm-3
n型掺杂的GaAs发射区厚度为50-200nm,掺杂浓度为1×1017-1×1019cm-3
n型掺杂的GaInP窗口层厚度为30-100nm,掺杂浓度为1×1017-1×1019cm-3
步骤3、采用MOCVD在Si/InP衬底上正向外延生长GaInAsP/GaInAs双结太阳电池结构
采用MOCVD设备,在Si/InP衬底上依次外延生长GaInAs缓冲层、GaInAs子电池、第四隧穿结、GaInAsP子电池、第三隧穿结,生长温度均为500-800℃;
其中:9)GaInAs子电池依次生长为p型的InP背场层、p型掺杂的GaInAs基区、n型掺杂的InP发射区、n型掺杂的AlInAs窗口层;
其中:p型掺杂的InP背场层厚度为100-200nm,掺杂浓度为1×1017-1×1019cm-3
p型掺杂的GaInAs基区厚度为1000-2000nm,掺杂浓度为1×1016-1×1017cm-3
n型掺杂的InP发射区厚度为50-200nm,掺杂浓度为1×1017-1×1019cm-3
n型掺杂的AlInAs窗口层厚度为30-100nm,掺杂浓度为1×1017-1×1019cm-3
10)第四隧穿结依次生长n型的InP层和p型的InP层;
其中:n型的InP层生长温度为500-800℃,掺杂浓度为1×1018-1×1020cm-3,厚度范围为10-100nm;
p型的InP层生长温度为500-800℃,掺杂浓度为1×1018-1×1020cm-3,厚度范围为10-100nm;
11)GaInAsP子电池依次生长为p型的InP背场层、p型掺杂的GaInAsP基区、n型掺杂的InP发射区、n型掺杂的AlInAs窗口层;
其中:p型掺杂的InP背场层厚度为100-200nm,掺杂浓度为1×1017-1×1019cm-3
p型掺杂的GaInAsP基区厚度为1000-2000nm,掺杂浓度为1×1016-1×1017cm-3
n型掺杂的InP发射区厚度为50-200nm,掺杂浓度为1×1017-1×1019cm-3
n型掺杂的AlInAs窗口层厚度为30-100nm,掺杂浓度为1×1017-1×1019cm-3
12)第三隧穿结依次生长n型的GaAs层和p型的AlGaAs层;
其中:n型的GaAs层生长温度为500-800℃,掺杂浓度为1×1018-1×1020cm-3,厚度范围为10-100nm;
p型的AlGaAs层生长温度为500-800℃,掺杂浓度为1×1018-1×1020cm-3,厚度范围为50-150nm;
步骤4、将步骤2、3制备的电池结构键合在一起
通过CMP工艺表面处理GaAs子电池的背场层及第三隧穿结的p++层,使得表面粗糙度降至1nm以内。将表面清洗后的电池表面用等离子体进行表面活化处理,将Si/Ga和Si/InP衬底通过范德华力贴合在一起;置入键合机的键合腔,键合腔内充满N2,将键合腔的温度升至80-120℃时,对电池进行60-120秒的预热;然后施加1-5KN的键合压力,,以15℃/min升温的速度将键合腔内温度提升到150-250℃,保持恒温,进行1-2小时的键合,然后以3℃/min降温的速度将键合腔内温度降到室温,实现低温键合;
步骤5、剥离Si/GaAs衬底
使用HNO3:H2O:HF=50:20:1刻蚀Si衬底,使用HF:H2O2:H2O=2:1:1腐蚀液腐蚀GaAs薄层及缓冲层,Si衬底、GaAs薄层及缓冲层从电池上被剥离掉后,用HCl:H2O=1:1腐蚀液腐蚀GaInP腐蚀停止层,GaInP腐蚀停止层从电池上被剥离掉,完成化学刻蚀的过程;
步骤6、最后按照砷化镓太阳电池的器件工艺完成如图3所示的AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池的制备。
本实施例AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池,具有理论转换效率达到56%(AM1.5),剥离的InP和GaAs衬底通过CMP等过程可以重复使用,显著降低五结太阳电池的制备成本等积极效果。

Claims (4)

1.一种基于SI衬底的五结太阳电池的制备方法,其特征是:基于SI衬底的五结太阳电池的制备过程,AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池采用MOCVD技术,在表面有GaAs层的硅衬底上用MOCVD外延反向生长和GaAs晶格匹配的太阳电池材料,包括AlGaInP子电池,AlGaAs子电池,GaAs子电池;在表面有InP层的硅衬底上用MOCVD外延正向生长和InP晶格匹配的太阳电池材料,包括GaInAsP子电池,GaInAs子电池;然后通过低温键合工艺把GaAs子电池和GaInAsP子电池接在一起,最后通过化学刻蚀完成Si/GaAs衬底的剥离,得到五结太阳电池;
第一结AlGaInP电池:依次生长为厚度100-200nm的P型掺杂AlInP背场层、厚度500-1000nm的P型掺杂AlGaInP基区、厚度50-100nm的n型掺杂AlGaInP发射区、厚度30-100nm的n型掺杂AlInP窗口层;其中:P型掺杂AlInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂AlGaInP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂AlGaInP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第一隧穿结:依次生长为厚度10-100nm的n型GaInP层和厚度10-100nm的p型GaInP;其中:n型GaInP层的掺杂浓度为1×1018-1×1020cm-3,p型GaInP的掺杂浓度为1×1018-1×1020cm-3
第二结AlGaAs电池:依次生长为厚度100-200nm的P型掺杂GaInP背场层、厚度500-1500nm的P型掺杂AlGaAs基区、厚度50-200nm的n型掺杂AlGaAs发射区、厚度30-100nm的n型掺杂GaInP窗口层;其中:P型掺杂GaInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂AlGaAs基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂AlGaAs发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂GaInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第二隧穿结:依次生长为厚度10-100nm的n型GaInP层和厚度10-100nm的p型AlGaAs:其中:n型GaInP层的掺杂浓度为1×1018-1×1020cm-3,p型AlGaAs的掺杂浓度为1×1018-1×1020cm-3
第三结GaAs电池:依次生长为厚度100-200nm的P型掺杂GaInP背场层、厚度1-2μm的GaAs基区、厚度50-100nm的n型掺杂GaAs发射区、厚度30-100nm的n型掺杂GaInP窗口层;其中:P型掺杂GaInP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaAs基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂GaAs发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂GaInP窗口层的掺杂浓度为1×1017-1×1019cm-3
第三隧穿结:依次生长为厚度100-200nm的n型GaAs层和厚度10-100nm的p型AlGaAs:其中:n型GaAs层的掺杂浓度为1×1018-1×1020cm-3,p型AlGaAs的掺杂浓度为1×1018-1×1020cm-3
第四结GaInAsP电池:依次生长为厚度100-200nm的P型掺杂InP背场层、厚度1-3μm的GaInAsP基区、厚度50-100nm的n型掺杂InP发射区、厚度30-100nm的n型掺杂AlInAs窗口层;其中:P型掺杂InP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaInAsP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂InP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInAs窗口层的掺杂浓度为1×1017-1×1019cm-3
第四隧穿结:依次生长为厚度10-100nm的n型InP层和厚度10-100nm的p型InP:其中:n型InP层的掺杂浓度为1×1018-1×1020cm-3,p型InP的掺杂浓度为1×1018-1×1020cm-3
第五结GaInAs电池:依次生长为厚度100-200nm的P型掺杂InP背场层、厚度1-3μm的GaInAs基区、厚度50-100nm的n型掺杂InP发射区、厚度30-100nm的n型掺杂AlInAs窗口层;其中:P型掺杂InP背场层的掺杂浓度为1×1017-1×1019cm-3,P型掺杂GaInAsP基区的掺杂浓度为1×1016-1×1017cm-3,n型掺杂InP发射区的掺杂浓度为1×1017-1×1019cm-3,n型掺杂AlInAs窗口层的掺杂浓度为1×1017-1×1019cm-3
2.根据权利要求1所述的基于SI衬底的五结太阳电池的制备方法,其特征是:AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池,依次连接GaAs接触层、AlGaInP子电池、第一隧穿结、AlGaAs子电池、第二隧穿结、GaAs子电池第三隧穿结、GaInAsP子电池、第四隧穿结、GaInAs子电池。
3.根据权利要求1所述的基于SI衬底的五结太阳电池的制备方法,其特征是:AlGaInP/AlGaAs/GaAs/GaInAsP/GaInAs五结太阳电池的禁带宽度分别为2.2±0.05eV、1.70±0.05eV、1.40±0.05eV、1.05±0.05eV、0.73±0.05eV。
4.根据权利要求1所述的基于SI衬底的五结太阳电池的制备方法,其特征是:Si衬底上的InP和GaAs层采用衬底键合及离子注入剥离的方法制备,剥离的InP和GaAs衬底通过CMP过程重复使用。
CN201810517085.9A 2018-05-25 2018-05-25 一种基于si衬底的五结太阳电池的制备方法 Active CN110534613B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810517085.9A CN110534613B (zh) 2018-05-25 2018-05-25 一种基于si衬底的五结太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810517085.9A CN110534613B (zh) 2018-05-25 2018-05-25 一种基于si衬底的五结太阳电池的制备方法

Publications (2)

Publication Number Publication Date
CN110534613A CN110534613A (zh) 2019-12-03
CN110534613B true CN110534613B (zh) 2021-06-15

Family

ID=68657318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810517085.9A Active CN110534613B (zh) 2018-05-25 2018-05-25 一种基于si衬底的五结太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN110534613B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690325B (zh) * 2021-06-30 2023-10-13 华灿光电(浙江)有限公司 太阳能电池及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110594B (zh) * 2010-12-20 2012-07-25 中国科学院半导体研究所 一种对GaAs与Si进行低温金属键合的方法
DE102012004734A1 (de) * 2012-03-08 2013-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrfachsolarzelle und deren Verwendung
CN106299011B (zh) * 2015-06-09 2017-10-24 中国科学院苏州纳米技术与纳米仿生研究所 基于InP衬底的五结太阳能电池及其制备方法
CN106571408B (zh) * 2015-10-13 2018-03-20 中国科学院苏州纳米技术与纳米仿生研究所 五结太阳能电池及其制备方法
CN105576068B (zh) * 2015-12-17 2017-03-22 中国电子科技集团公司第十八研究所 一种双面生长的InP五结太阳电池

Also Published As

Publication number Publication date
CN110534613A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
AU2013225860B2 (en) Structures and methods for high efficiency compound semiconductor solar cells
CN103000759B (zh) 砷化镓薄膜多结叠层太阳电池的制备方法
US20140137930A1 (en) Multijunction solar cells
KR101719620B1 (ko) 다중접합 태양 전지 소자들의 제조
CN102790120B (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
CN103928539A (zh) 多结iii-v太阳能电池及其制造方法
US20150059832A1 (en) Manufacture of multijunction solar cell devices
WO2016145936A1 (zh) 倒装多结太阳能电池及其制备方法
CN110534613B (zh) 一种基于si衬底的五结太阳电池的制备方法
CN102969387A (zh) GaInP/GaAs/InGaAs三结太阳能电池外延结构
CN111312843A (zh) 三结叠层太阳能电池及其制备方法
KR101700724B1 (ko) 다중접합 태양 전지 소자들의 제조
García et al. Space III-V multijunction solar cells on Ge/Si virtual substrates
CN104993005A (zh) 一种基于外延正向失配生长的多结GaAs薄膜太阳能电池
CN104218108B (zh) 一种高效率柔性薄膜太阳能电池
CN111524992A (zh) 一种GaInP/GaAs/HIT三结叠层太阳能电池及其制备方法
张梦炎 et al. Preparation of large area and high performance flexible GaInP/GaAs/In GaAs tandem solar cells
CN204144278U (zh) 一种高效率柔性薄膜太阳能电池
WO2013004188A1 (zh) 太阳能电池,系统,及其制作方法
CN104362215B (zh) 一种高效率柔性薄膜太阳能电池制造方法
CN111129196B (zh) 一种锗基叠层太阳电池及制备方法
CN111312844A (zh) 三结叠层太阳能电池及其制备方法
CN112289881B (zh) 一种GaInP/GaAs/Ge/Si四结太阳能电池及其制备方法
CN116190482A (zh) 一种柔性四结太阳电池及其制备方法与应用
Griggs et al. Design Approaches and materials processes for ultrahigh efficiency lattice mismatched multi-junction solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant