CN110533167B - 一种电动阀门执行机构用故障诊断方法及诊断系统 - Google Patents
一种电动阀门执行机构用故障诊断方法及诊断系统 Download PDFInfo
- Publication number
- CN110533167B CN110533167B CN201910788724.XA CN201910788724A CN110533167B CN 110533167 B CN110533167 B CN 110533167B CN 201910788724 A CN201910788724 A CN 201910788724A CN 110533167 B CN110533167 B CN 110533167B
- Authority
- CN
- China
- Prior art keywords
- fault
- actuating mechanism
- electric valve
- valve actuating
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 62
- 238000003745 diagnosis Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000003062 neural network model Methods 0.000 claims abstract description 23
- 230000002068 genetic effect Effects 0.000 claims abstract description 11
- 238000012549 training Methods 0.000 claims abstract description 10
- 238000004458 analytical method Methods 0.000 claims abstract description 6
- 210000002569 neuron Anatomy 0.000 claims description 22
- 238000013528 artificial neural network Methods 0.000 claims description 14
- 238000011156 evaluation Methods 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 2
- 230000007257 malfunction Effects 0.000 claims 2
- 238000001514 detection method Methods 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 40
- 238000012423 maintenance Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004205 output neuron Anatomy 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Indication Of The Valve Opening Or Closing Status (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910788724.XA CN110533167B (zh) | 2019-08-23 | 2019-08-23 | 一种电动阀门执行机构用故障诊断方法及诊断系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910788724.XA CN110533167B (zh) | 2019-08-23 | 2019-08-23 | 一种电动阀门执行机构用故障诊断方法及诊断系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110533167A CN110533167A (zh) | 2019-12-03 |
CN110533167B true CN110533167B (zh) | 2022-02-08 |
Family
ID=68662809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910788724.XA Active CN110533167B (zh) | 2019-08-23 | 2019-08-23 | 一种电动阀门执行机构用故障诊断方法及诊断系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110533167B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113049023A (zh) * | 2019-12-26 | 2021-06-29 | 国核电站运行服务技术有限公司 | 一种用于电动阀的在线实时监测装置及方法 |
CN111273638B (zh) * | 2020-01-21 | 2021-10-26 | 华东理工大学 | 基于改进Elman神经网络的气动阀执行机构故障诊断方法 |
CN111259993A (zh) * | 2020-03-05 | 2020-06-09 | 沈阳工程学院 | 一种基于神经网络的故障诊断方法及装置 |
CN111830934A (zh) * | 2020-07-17 | 2020-10-27 | 中车大连电力牵引研发中心有限公司 | 一种电力机车故障源定位方法及装置 |
CN117134302A (zh) * | 2022-03-25 | 2023-11-28 | 厦门华夏国际电力发展有限公司 | 一种电动阀门站异常工况识别及控制方法及其系统 |
CN115112361B (zh) * | 2022-06-27 | 2023-08-08 | 扬州恒春电子有限公司 | 一种用于检测闸阀阀杆与阀板脱落的方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0962871A2 (en) * | 1998-06-02 | 1999-12-08 | Yamaha Hatsudoki Kabushiki Kaisha | Data estimation method in engine control |
CN102779287A (zh) * | 2012-05-24 | 2012-11-14 | 北京工业大学 | 一种具有增量式学习能力的墨键开度预测方法 |
CN106197558A (zh) * | 2016-08-26 | 2016-12-07 | 扬州电力设备修造厂有限公司 | 一种阀门状态在线监测系统及其工作方法 |
CN106441858A (zh) * | 2016-12-05 | 2017-02-22 | 重庆享控智能科技有限公司 | 阀门的预判监测系统和方法 |
CN109974770A (zh) * | 2017-12-27 | 2019-07-05 | 核动力运行研究所 | 一种电动阀状态检测系统及方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160071004A1 (en) * | 2015-10-23 | 2016-03-10 | Sarkhoon and Qeshm LLC | Method and system for predictive maintenance of control valves |
CN107480787B (zh) * | 2017-08-10 | 2020-12-11 | 西安建筑科技大学 | 一种基于bp神经网络的露天矿旋回式破碎机故障诊断方法 |
CN108918137B (zh) * | 2018-06-08 | 2021-04-27 | 华北水利水电大学 | 基于改进的wpa-bp神经网络的齿轮箱故障诊断装置及其方法 |
-
2019
- 2019-08-23 CN CN201910788724.XA patent/CN110533167B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0962871A2 (en) * | 1998-06-02 | 1999-12-08 | Yamaha Hatsudoki Kabushiki Kaisha | Data estimation method in engine control |
CN102779287A (zh) * | 2012-05-24 | 2012-11-14 | 北京工业大学 | 一种具有增量式学习能力的墨键开度预测方法 |
CN106197558A (zh) * | 2016-08-26 | 2016-12-07 | 扬州电力设备修造厂有限公司 | 一种阀门状态在线监测系统及其工作方法 |
CN106441858A (zh) * | 2016-12-05 | 2017-02-22 | 重庆享控智能科技有限公司 | 阀门的预判监测系统和方法 |
CN109974770A (zh) * | 2017-12-27 | 2019-07-05 | 核动力运行研究所 | 一种电动阀状态检测系统及方法 |
Non-Patent Citations (3)
Title |
---|
THE FAULT DIAGNOSIS FOR ELECTRO-HYDRAULIC SERVO VALVE;LIAN-DONG FU et al.;《 2006 International Conference on Machine Learning and Cybernetics》;20090304;第2995-2999页 * |
基于遗传优化BP神经网络的电液伺服阀故障诊断分析研究;李雷;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20160115;第2016年卷(第1期);摘要,第4-5章 * |
基于遗传算法和BP神经网络的多联机阀类故障诊断;郭梦茹;《制冷学报》;20180430;第39卷(第2期);第119-125页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110533167A (zh) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110533167B (zh) | 一种电动阀门执行机构用故障诊断方法及诊断系统 | |
WO2021042935A1 (zh) | 基于隐马尔科夫模型和迁移学习的轴承寿命预测方法 | |
WO2022037068A1 (zh) | 一种机床轴承故障诊断方法 | |
CN113255848B (zh) | 基于大数据学习的水轮机空化声信号辨识方法 | |
CN111813084B (zh) | 一种基于深度学习的机械装备故障诊断方法 | |
CN102340811B (zh) | 无线传感器网络故障诊断方法 | |
CN109272123B (zh) | 一种基于卷积-循环神经网络的有杆泵工况预警方法 | |
CN112785091B (zh) | 一种对油田电潜泵进行故障预测与健康管理的方法 | |
CN106408687B (zh) | 一种基于机器学习方法的汽车发动机故障预警方法 | |
CN108764601A (zh) | 一种基于计算机视觉和深度学习技术的结构健康监测异常数据诊断方法 | |
CN111881627B (zh) | 一种核动力装置故障诊断方法和系统 | |
CN110705812A (zh) | 一种基于模糊神经网络的工业故障分析系统 | |
CN114297918A (zh) | 基于全注意力深度网络和动态集成学习的航空发动机剩余寿命预测方法 | |
CN113188794A (zh) | 一种基于改进pso-bp神经网络齿轮箱故障诊断方法及装置 | |
CN114764538B (zh) | 一种设备声音信号模式识别方法 | |
CN113551904A (zh) | 基于层次机器学习的齿轮箱多类型并发故障诊断方法 | |
CN117347796B (zh) | 一种基于智能网关的开关设备局部放电诊断系统及方法 | |
CN111595584B (zh) | 一种基于1-dcnn联合特征提取的轴承故障在线检测方法 | |
CN114548701B (zh) | 面向全量测点耦合结构分析与估计的过程预警方法及系统 | |
CN116244596A (zh) | 基于tcn和注意力机制的工业时序数据异常检测方法 | |
CN114046816B (zh) | 基于轻量级梯度提升决策树的传感器信号故障诊断方法 | |
CN114266013A (zh) | 基于深度学习虚拟感知网络的传动系统振动解耦方法 | |
CN113987697A (zh) | 一种基于振动数据的机械设备故障诊断方法 | |
RU2648413C1 (ru) | Способ управления режимами на основе нейросетевого диагностирования неисправностей и технического состояния электроприводного газоперекачивающего агрегата | |
CN114298200B (zh) | 基于深度并行时序关系网络的异常数据诊断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200908 Address after: 100027 Beijing, Chaoyangmen, North Street, No. 22, No. Applicant after: China Petroleum & Chemical Corp. Applicant after: South China branch of Sinopec Sales Co.,Ltd. Applicant after: YANGZHOU HENGCHUN ELECTRONIC Co.,Ltd. Address before: 510000 Room 1402, 81 Zhongshan 7th Road, Liwan District, Guangzhou City, Guangdong Province Applicant before: SOUTH CHINA BRANCH OF SINOPEC CHEMICAL COMMERCIAL HOLDING Co.,Ltd. Applicant before: YANGZHOU HENGCHUN ELECTRONIC Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231012 Address after: 100000 22 Chaoyangmen North Street, Chaoyang District, Beijing. Patentee after: CHINA PETROLEUM & CHEMICAL Corp. Patentee after: National Petroleum and natural gas pipeline network Group Co.,Ltd. Patentee after: YANGZHOU HENGCHUN ELECTRONIC Co.,Ltd. Address before: 100027 Chaoyangmen North Street, Chaoyang District, Chaoyang District, Beijing Patentee before: CHINA PETROLEUM & CHEMICAL Corp. Patentee before: South China branch of Sinopec Sales Co.,Ltd. Patentee before: YANGZHOU HENGCHUN ELECTRONIC Co.,Ltd. |
|
TR01 | Transfer of patent right |