CN110531426A - 一种水下或地下地质构造伪旋转实现装置及方法 - Google Patents

一种水下或地下地质构造伪旋转实现装置及方法 Download PDF

Info

Publication number
CN110531426A
CN110531426A CN201910810093.7A CN201910810093A CN110531426A CN 110531426 A CN110531426 A CN 110531426A CN 201910810093 A CN201910810093 A CN 201910810093A CN 110531426 A CN110531426 A CN 110531426A
Authority
CN
China
Prior art keywords
signal
geological structure
reflection
puppet
projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910810093.7A
Other languages
English (en)
Other versions
CN110531426B (zh
Inventor
吕文红
葛家丽
郭银景
王国娟
付守艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201910810093.7A priority Critical patent/CN110531426B/zh
Priority to PCT/CN2019/121854 priority patent/WO2021036065A1/zh
Publication of CN110531426A publication Critical patent/CN110531426A/zh
Application granted granted Critical
Publication of CN110531426B publication Critical patent/CN110531426B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种水下或地下地质构造伪旋转实现装置及方法,包括控制器、布置在水下地面以下的信号发射器,以及能够与信号发射器进行通信的信号接收器,信号发射器用于向位于水下地面以下的地质构造发射探测信号,探测信号能够被地质构造反射形成反射信号,信号接收器用于接收探测信号的反射信号,控制器连接信号发射器和信号接收器;其中,信号发射器能够从多种角度发射探测信号,信号接收器能够从多个角度接受反射信号。本发明能够测量勘探水下或地下的地质构造。

Description

一种水下或地下地质构造伪旋转实现装置及方法
技术领域
本发明涉及勘探领域,具体的,涉及一种水下或地下地质构造伪旋转实现装置及方法。
背景技术
地质构造对于勘探的影响是巨大的,一般来说,所谓地质构造是指组成地壳的岩层和岩体在内、外动力地质作用下发生的变形变位,从而形成诸如褶皱、节理、断层、劈理以及其他各种面状和线状构造等组成地壳的岩层和岩体,在内外地质作用下(多为构造运动),发生变形和变位后,形成的几何体,或残留下的形迹。其中,水下地面以下的地质构造的探测较为困难,发明人认为,在一般的水下环境较为复杂,传统的爆破、钻孔等陆地地质构造勘探手段不适用水下地质构造检测。
目前,利用不同地质之间存在地质界面,不同地质的反射波特性不同,可以使用间接技术手段检测地质构造,而且红外遥感、微波遥感等遥感技术的发展为地质构造检测提供了技术支持。发明人认为,目前的间接测量技术对于水下或地下的地质结构分析缺乏精准分析的能力。
发明内容
针对传统的勘探方法无法测量水下或地下地质构造以及现有的间接测量手段对水下地质构造勘探不准确的不足,本发明旨在提供一种水下或地下地质构造伪旋转实现装置及方法,其能够针对水下地面以下的地质构造进行较为精准的勘探,满足一般的勘探需求。
本发明的第一目的,是提供一种水下或地下地质构造伪旋转实现装置。
本发明的第二目的,是提供一种水下或地下地质构造伪旋转实现方法。
为实现上述发明目的,本发明公开了下述技术方案:
首先本发明公开了一种水下或地下地质构造伪旋转实现装置,包括控制器、布置在水下地面以下的信号发射器,以及能够与信号发射器进行通信的信号接收器,信号发射器用于向位于水下地面以下的地质构造发射探测信号,探测信号能够被地质构造反射形成反射信号,信号接收器用于接收探测信号的反射信号,控制器连接信号发射器和信号接收器;其中,信号发射器能够从多种角度发射探测信号,信号接收器能够从多个角度接收反射信号。
进一步,所述信号发射器与所述信号接收器均包括多个,多个信号发射器将其测量的地壳分为若干采样区域,每个信号发射器在不同角度发射探测信号能够在地壳的构造断面反射。
进一步,控制器配备有用于对每个采样区域反射信号值作为对比的装置和/或模块,在沿横截面方向的连续采样点处执行多个连续测量,从而能够精准检测受不同地质构造之间的反射信号的差异。
进一步,所述信号发射器发射的探测信号为弹性波。
进一步,所述控制器设置有装置和/或模块,基于来自信号接收器的信息,对于每个采样区域绘制图像。
进一步,所述控制器具有用于在不同时间点重复测量所述采样区域反射信号值的装置和/或模块。
其次,本发明还公开了一种水下或地下地质构造伪旋转实现方法,由若干个信号器接收在空间上位于所获取的地壳区域的多个探测信号,根据多个探测信号分析位于水下地面以下的地质构造,并绘制地质构造图。
具体的,包括以下步骤:
所述的信号发射器发射探测信号p1至待检测的采样区域,并到达地质构造;
探测信号p1经地质构造表面反射,形成反射信号q1,所述信号接收器接收反射信号q1;
从0~360°改变信号发射器发射探测信号的角度,使探测信号pn经过一次或多次反射后,到达地质构造表面不同侧面的点,被地质构造表面信息调制,形成反射信号qn;
当探测信号在采样区域的地质构造表面全面地扫描后,处理器将在采样区域的地质构造表面各点反射的反射信号记录为qn′;
所述信号接收装置解调反射信号q1~qn中的地质构造信息,得到该地质构造完整的反射信号图像,由此,通过连续改变发射信号角度,使地质构造呈现的图像旋转,即实现了地质构造伪旋转;
绘制采样区域内的地质构造图。
第三,本发明还公开了一种计算机可读存储介质,其上存储有计算机程序,所述程序被控制器执行时实现所述的地质构造伪旋转实现方法的步骤。
进一步,所述控制器包括处理器。
与现有技术相比,本发明取得了以下有益效果:
1)与现有技术相比,本发明装置及方法实现水下或地下不可见地质构造检测,并且通过多次、多个角度的检测,从而获取采样区域内的地质构造信息,能够保证勘探工作的顺利进行。
2)本发明中,采用间接测量手段测量地质构造信息,通过在水下或地下预埋信号发射器和信号接收器即可,巧妙的利用了地质断面对信号的传播进行反射,从而信号接收器获得反射的信号,信号接收器的设置位置可以位于信号发射器的附近,节约布置时间。
3)本发明中,所采用的多个角度的探测方法,其能够将对地表的侦测和到地质结构的侦测相区分,从而便于控制器对获得的测量数据进行去噪,还原地质结构信息。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例1的构成示意图,
图2为实施例2的步骤图。
图中,1、信号发射器,2、信号接收器,3、第一地质构造,4、第二地质构造,5、地质断面,6、反射面。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所述,针对传统的勘探方法无法测量水下地面以下地质构造以及现有的间接测量手段对水下地面以下地质构造勘探不准确的不足,本发明旨在提供一种水下或地下地质构造伪旋转实现装置及方法,其能够针对水下地面以下的地质构造进行较为精准的勘探,满足一般的勘探需求,现结合附图和具体实施方式对本发明进一步进行说明。
实施例1
一种水下地质构造伪旋转实现装置,包括控制器、布置在水下地面以下的信号发射器1,以及能够与信号发射器1进行通信的信号接收器2,其中,信号接收器2也位于水下地面以下;信号发射器1用于向位于水下地面以下的地质构造发射探测信号,探测信号能够被地质构造反射形成反射信号,信号接收器2用于接收探测信号的反射信号,控制器连接信号发射器1和信号接收器2;其中,信号发射器1能够从多种角度发射探测信号,信号接收器2能够从多个角度接受反射信号。
需要说明的是,本实施例中,假定要勘探的地质构造为某种断层,则,断层由于与周围的地质构造具有明显的纹理走向区分,导致形成不同的地质面特征,发射器的探测信号能够被这种地质面特征反射,形成反射信号,而由于地质断面5的存在,反射信号有经过地质面特征与地质断面5的反射,能够被信号接收器2接收到。
所述信号发射器1与所述信号接收器2均包括多个,以便于测量多个采样区域内的地质构造,多个信号发射器1将其测量的地壳分为若干采样区域,每个信号发射器1在不同角度发射探测信号能够在地壳的构造断面反射,从而被信号接收器2接收。
控制器配备有用于对每个采样区域反射信号值作为对比的装置和/或模块,执行多次探测,从而能够精准检测受不同地质构造之间的反射信号的差异。
所述信号发射器1发射的探测信号为弹性波。具体的,本实施例中,所述信号发射器1为微波发射器,所述信号接收器2为微波接收器,所述弹性波即为微波。
所述控制器设置有装置和/或模块,基于来自信号接收器2的信息,对于每个采样区域绘制图像。
需要说明的是,控制器绘制图像,是基于其处理过的数据进行的,次为现有技术中的常用技术手段,可以使用如ERDAS、PCI、ENVI、ArcGIS等现有的软件进行,在此不再赘述。
所述控制器具有用于在不同时间点重复测量所述采样区域反射信号值的装置和/或模块。可以理解的是,所述控制器能够多次测量每个采样区域反射信号值,并通过一定的计算从而得到每个采样区域的相对准确的测量数据。
需要说明的是,本实施例中的“伪旋转”指信号发射器通过从0~360°连续改变发射角度,经过一次或多次反射后,探测信号扫描到待测地质构造所有的面,使地质构造呈现的图像旋转,实现了所述的“伪旋转”,如,请参考图1,信号发射器可以直接检测A点的地质构造,还可以通过改变探测信号p的角度经过多次反射检测B点的地质构造,类似看作是地质构造旋B旋转到了A点所在的面。
实施例2
一种地质构造伪旋转实现方法,由若干个信号器接收在空间上位于所获取的地壳区域的多个探测信号,根据多个探测信号分析位于水下地面以下的地质构造,并绘制地质构造图。
具体的,使用如实施例1所公开的地质构造伪旋转实现装置,包括以下步骤:
所述的信号发射器1发射探测信号p1至待检测的采样区域,并到达地质构造;
探测信号p1经地质构造表面反射,形成反射信号q1,所述信号接收器2接收反射信号q1;
从0~360°改变信号发射器发射探测信号的角度,使探测信号pn经过一次或多次反射后,到达地质构造表面不同侧面的点,被地质构造表面信息调制,形成反射信号qn;
当探测信号在采样区域的地质构造表面全面地扫描后,处理器将在采样区域的地质构造表面各点反射的反射信号记录为qn′或qn〞;
所述信号接收装置解调反射信号q1~qn中的地质构造信息,得到该地质构造完整的反射信号图像,由此,通过连续改变发射信号角度,地质构造呈现的图像旋转,即实现了地质构造伪旋转;
绘制采样区域内的地质构造图。
实施例3
一种计算机可读存储介质,其上存储有计算机程序,所述程序被控制器执行时实现所述的地质构造伪旋转实现方法的步骤。
所述控制器包括处理器。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种地质构造伪旋转实现装置,其特征在于,包括控制器、布置在水下地面以下的信号发射器,以及能够与信号发射器进行通信的信号接收器,信号发射器用于向位于水下地面以下的地质构造发射探测信号,探测信号能够被地质构造反射形成反射信号,信号接收器用于接收探测信号的反射信号,控制器连接信号发射器和信号接收器;其中,信号发射器能够从多种角度发射探测信号,信号接收器能够从多个角度接受反射信号。
2.如权利要求1所述的地质构造伪旋转实现装置,其特征在于,所述信号发射器与所述信号接收器均包括多个,多个信号发射器将其测量的地壳分为若干采样区域,每个信号发射器在不同角度发射探测信号能够在地壳的构造断面反射。
3.如权利要求2所述的地质构造伪旋转实现装置,其特征在于,控制器配备有用于对每个采样区域反射信号值作为对比的装置和/或模块,在沿横截面方向的连续采样点处执行多个连续测量,从而能够精准检测受不同地质构造之间的反射信号的差异。
4.如权利要求1所述的地质构造伪旋转实现装置,其特征在于,所述信号发射器发射的探测信号为弹性波。
5.如权利要求1所述的地质构造伪旋转实现装置,其特征在于,所述控制器设置有装置和/或模块,基于来自信号接收器的信息,对于每个采样区域绘制图像。
6.如权利要求1所述的地质构造伪旋转实现装置,其特征在于,所述控制器具有用于在不同时间点重复测量所述采样区域反射信号值的装置和/或模块。
7.如权利要求1~6任意一项所述的地质构造伪旋转实现方法,其特征在于,由若干个信号器接收在空间上位于所获取的地壳区域的多个探测信号,根据多个探测信号分析位于水下地面以下的地质构造,并绘制地质构造图。
8.如权利要求7所述的地质构造伪旋转实现方法,其特征在于,包括以下步骤:
所述的信号发射器发射探测信号p1至待检测的采样区域,并到达地质构造;
探测信号p1经地质构造表面反射,形成反射信号q1,所述信号接收器接收反射信号q1;
从0~360°连续改变信号发射器发射探测信号的角度,使探测信号pn经过一次或多次反射后,到达地质构造表面不同侧面的点,被地质构造表面信息调制,形成反射信号qn;
当探测信号在采样区域的地质构造表面全面地扫描后,处理器将在采样区域的地质构造表面各点反射的反射信号记录为qn′;
所述信号接收装置解调反射信号q1~qn中的地质构造信息,得到该地质构造完整的反射信号图像,由此,通过连续改变发射信号角度,地质构造呈现的图像旋转,即实现了地质构造伪旋转;
绘制采样区域内的地质构造图。
9.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被控制器执行时实现权利要求7或8任意一项所述的地质构造伪旋转实现方法的步骤。
10.如权利要求9所述的计算机可读存储介质,其介质在于,所述控制器包括处理器。
CN201910810093.7A 2019-08-29 2019-08-29 一种水下或地下地质构造伪旋转实现装置及方法 Active CN110531426B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910810093.7A CN110531426B (zh) 2019-08-29 2019-08-29 一种水下或地下地质构造伪旋转实现装置及方法
PCT/CN2019/121854 WO2021036065A1 (zh) 2019-08-29 2019-11-29 一种水下或地下地质构造伪旋转实现装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910810093.7A CN110531426B (zh) 2019-08-29 2019-08-29 一种水下或地下地质构造伪旋转实现装置及方法

Publications (2)

Publication Number Publication Date
CN110531426A true CN110531426A (zh) 2019-12-03
CN110531426B CN110531426B (zh) 2021-11-09

Family

ID=68665149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910810093.7A Active CN110531426B (zh) 2019-08-29 2019-08-29 一种水下或地下地质构造伪旋转实现装置及方法

Country Status (2)

Country Link
CN (1) CN110531426B (zh)
WO (1) WO2021036065A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863986A (zh) * 2003-08-08 2006-11-15 普拉德研究及发展公司 套管井中的多模式声成像
CN102395903A (zh) * 2009-04-16 2012-03-28 雪佛龙美国公司 估算远离井眼区域中纵横波速度比(Vp/Vs)的系统和方法
CN103329008A (zh) * 2010-11-12 2013-09-25 雪佛龙美国公司 用于调查岩层的地下特征的系统和方法
CN104090306A (zh) * 2014-07-01 2014-10-08 中煤科工集团西安研究院有限公司 煤矿井下钻孔中径向含水异常体探测方法
WO2015058177A1 (en) * 2013-10-18 2015-04-23 Schlumberger Canada Limited Sonic adapter for converting sonic or ultrasonic waveform data for use with a seismic-based computer program
US20150234074A1 (en) * 2003-10-14 2015-08-20 Merlin Technology, Inc. Tracking positions of personnel, vehicles, and inanimate objects

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879805B (zh) * 2012-10-24 2015-06-24 北京市市政工程研究院 一种基于钻孔与地面相结合的地震波空间探测方法
CN109738963A (zh) * 2018-12-13 2019-05-10 山东科技大学 一种渐变介质界面探测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863986A (zh) * 2003-08-08 2006-11-15 普拉德研究及发展公司 套管井中的多模式声成像
US20150234074A1 (en) * 2003-10-14 2015-08-20 Merlin Technology, Inc. Tracking positions of personnel, vehicles, and inanimate objects
CN102395903A (zh) * 2009-04-16 2012-03-28 雪佛龙美国公司 估算远离井眼区域中纵横波速度比(Vp/Vs)的系统和方法
CN103329008A (zh) * 2010-11-12 2013-09-25 雪佛龙美国公司 用于调查岩层的地下特征的系统和方法
WO2015058177A1 (en) * 2013-10-18 2015-04-23 Schlumberger Canada Limited Sonic adapter for converting sonic or ultrasonic waveform data for use with a seismic-based computer program
CN104090306A (zh) * 2014-07-01 2014-10-08 中煤科工集团西安研究院有限公司 煤矿井下钻孔中径向含水异常体探测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOKINOU, ELENI ET AL.: "Linear Pattern Detection of Geological Faults via a Topology and Shape Optimization Method", 《IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING》 *
侯晓志: "二维地震法探测煤矿采区断层技术", 《辽宁工程技术大学学报(自然科学版)》 *

Also Published As

Publication number Publication date
WO2021036065A1 (zh) 2021-03-04
CN110531426B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
Bistacchi et al. Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy)
CA2964893C (en) Structure tensor constrained tomographic velocity analysis
CN103645503B (zh) 一种三维时间域照明分析及振幅补偿方法
Longoni et al. Surface and subsurface non-invasive investigations to improve the characterization of a fractured rock mass
CN104569972B (zh) 一种植物根系三维构型无损检测方法
CN103809216B (zh) 一种电阻率数据与地震数据联合速度建场方法
US11604301B2 (en) Methods and systems for automated sonic imaging
CN103616390B (zh) 一种胶结充填体顶板裂隙状态无损探测方法
CN108957548B (zh) 一种多波多分量联合观测地震页岩气富集区预测方法
CN106291542A (zh) 一种隧道三维成像方法
CN108051852A (zh) 3d快速高分辨率隧道施工超前智能预报方法
CN112965135A (zh) 一种石窟崖体裂隙空间异质分布的无损探测综合方法
Lay et al. Advanced seismic imaging techniques characterize the Alpine Fault at Whataroa (New Zealand)
CN103558637B (zh) 基于三分量传感器的远探测方法
Wang et al. Fine detection technology of rock mass structure based on borehole acousto-optic combined measurement
AU2022200417A1 (en) A method for seismic frequency resonance exploration technology
CN110531426A (zh) 一种水下或地下地质构造伪旋转实现装置及方法
CN106370225A (zh) 堆积层滑坡的快速勘察成图方法
CN109143398B (zh) 一种自动网格层析深度域速度的建模方法
Maerz et al. Measuring orientations of individual concealed sub-vertical discontinuities in sandstone rock cuts integrating ground penetrating radar and terrestrial LIDAR
EP0297852A2 (en) Method for real time display of marine seismic survey data coverage
CN111897005B (zh) 基于cmpcc二维面波的铁路沿线第四纪活动断裂位置探测方法
Li et al. Fracture Characterization Using Azimuthal AVO, Ant-Tracking and Curvature
Johansen et al. Advances in active acoustic ranging
CN102792187A (zh) 基于零化子的波反演

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant